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Intergroup bias, the tendency to favor ingroups and be hostile towards outgroups, underlies many
societal problems and persists even when intergroup members interact and share experiences. Here
we study the way cognitive learning processes contribute to the persistence of intergroup bias.
Participants played a game with ingroup and outgroup bot-players that entailed collecting stars and
could sacrifice a move to zap another player. We found that intergroup bias persisted as participants
weremore likely to zap outgroup players, regardless of their zapping behavior. Using a computational
model, we found that this biaswas caused by asymmetries in three learningmechanisms. Participants
had a greater prior bias to zap out-group players, they learned more readily about the negative
behavior of out-groups andwere less likely to attribute the positive behavior of one out-group player to
other out-group players. Our results uncover theway cognitive social learningmechanisms shape and
confound intergroup dynamics.

Humans are social creatures who have evolved to live in groups1–3. From
an early age, we are wired to seek out social connections and interactions
with others4,5. Belonging to a group confersmany advantages, from social
learning to emotional support and sharing in efforts to amass resources
and raise one’s offspring6. Ingroup affiliation is also defined in relation to
outgroup members in that a sense of ‘us’ is usually accompanied by a
sense of ‘them’, which may result in ingroup favoritism and intergroup
conflict7,8. Recent research on resolution of intergroup conflict highlights
the importance of shared reality and interaction between members of
different groups in diffusing intergroup tension and overcome
stereotypes9. Yet although many societies are made up of people from
diverse cultural backgrounds who work together and interact with one
another, intergroup tensions and stereotypes persist. Herewe empirically
examine how such persistence can be explained from a cognitive learning
perspective.

Group identity is created through a process of social categorization in
which people form their sense of self-concept based on their membership
and classification into a social group10–12. This categorization into groups
may be based on shared characteristics such as race, ethnicity, gender,
religion and nationality11,13,14. Yet research shows that even assignment to
random groups based on an arbitrary criterion such as color or task per-
formance (i.e., minimal group procedure15,16) is sufficient to evoke

intragroup identity and intergroup discrimination16–18. Social categorization
facilitates simplification of the social world and generalization of existing
knowledge about certain groups to new groupmembers10. Once individuals
classify themselves into a group, they begin to develop a sense of group
belonging, loyalty, and similarity19–21. This identity is characterized by a
distinct set of beliefs, values, and norms that differentiate the group from
others11. Group identity influences one’s thoughts, beliefs, feelings, and
social behavior toward other ingroup partners and toward outgroup
members and can also lead to the activation and application of inaccurate
stereotypes and prejudices11,22–24.

Intergroup bias, also known as ingroup favoritism or ingroup love13,25,
is defined as the tendency for individuals to favor members of their own
group and show more positive attitudes and behaviors toward them8,26.
Ingroup favoritism can have both positive and negative consequences. On
the one hand, it can lead to increased positive attributions and attraction27,28,
cooperation8,29, trust30,31, and social cohesion within the group32. On the
other hand, ingroup favoritism can find expression in negative evaluations
and discrimination toward outgroup members13. Outgroup bias, also
known as outgroup hate, refers to the tendency for individuals to hold
negative attitudes and beliefs toward individuals belonging to a distinctly
different group. Expressions of this type of hostility include prejudice, dis-
crimination, dehumanization, and even violence25,33–36. Among the
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motivating factors for this bias are perceived competition for resources,
differences in beliefs or values, or perceived threat to one’s social identity.

Thepersistence of these intragroup and intergroupbiases in globalized,
multinational, and multicultural modern societies in which people have
opportunities to experience and interact with outgroup individuals is the
source of many conflicts and tensions. For example, people may tend to
favor ingroups as neighbors, employees and service providers37,38, leading to
exclusion and discrimination of outgroup members, which can have det-
rimental effects on society and individuals. Reducing intergroup bias has
been the topic of many scientific investigations. One important direction
suggested by intergroup contact theory39,40 is that increasing the contact and
shared experiences between members of different groups can decrease
prejudice and hostility and help resolve conflict on the individual level. This
direction was shown to lead to reduction of intergroup hostility under some
conditions9,40, especially during supervised interactions aimed at building
personal connections. Nevertheless, it has had limited effect in competitive,
unsupervised conditions41.

One way that intergroup bias may be maintained is through biased
learning mechanisms. Studies have shown that individuals need to learn
about the individual traits of the other in order to predict that person’s
behavior and adapt one’s own behavior accordingly42–44. For example, by
accumulating advisor advice accuracy overmultiple experiences, people can
learn and make inferences about an individual’s honesty45. Based on one
specific situation, people tend to infer not only an individual’s general traits,
but also the general traits of all members of that individual’s social
group42,46–48. Previous research indicated that people tend to treat infor-
mation about ingroup and outgroup members differently. They tend to
assume that ingroup and outgroupmembers have different motivations for
the same actions34,48. For example, selfish behavior may be interpreted as
self-serving when performed by an ingroup member, but as hostile and
harm-seeking when performed by an outgroup member49. In addition,

group membership may bias one’s attention, making an observer more
likely to detect cooperative cues from an ingroupmember50. Finally, people
also tend to perceive outgroup members as similar to one other, while
perceiving greater variability between ingroupmembers, in an effect termed
outgroup homogeneity51,52. Such biases in perception may shape learning
and influence how learners update their impressions of ingroup and out-
group members based on experience, such that these impressions are
dependent on the learner and the target group affiliation.

This study seeks to examine how social learning processes are shaped
by social identity and how they support the formation, maintenance, and
facilitation of intergroup biases. We hypothesized three mechanisms by
which social learning can be biased: biased prior beliefs, biased learning
rates, and biased group-level attribution. First, learners’ prior assumptions
about the likelihood another person will perform a competitive act may be
dependent on that person’s group affiliation. Second, learning from com-
petitive and cooperative actions may be group dependent, such that coop-
erative actions exert a greater influence on learning about ingroups than do
competitive actions, and vice versa in the case of learning about outgroup
members. Finally, group-level attributionmay affect learning about ingroup
and outgroup members differently and may operate differently on com-
petitive and cooperative actions. For example, it may be manifested in a
higher degree of group-level attribution of competitive actions from one
outgroup member to another, making all outgroup members seem more
likely to perform competitive acts.

To test these hypotheses, we adapted a sequential social dilemma
paradigm called the star-harvest game42,53, in which five players collect stars
and are allowed to sacrifice a move to zap other players and send them to a
time-out zone for three turns (Fig. 1A). We employed a computational
social learning model to this game to study how trial-by-trial experiences
and asymmetric learning processes shape intergroup bias. Participants
played the star-harvest game with four other players. Participants were not

Fig. 1 | Minimal-group star-harvest task andmain
hypotheses. A The game layout consisted of five
players—the participant (marked with thick border)
and four other bot-players—whomoved across a 2D
grid and collected stars. On each trial, players could
either zap each other (via a ray that sent the affected
other player to a time-out zone for three turns) or
could avoid zapping and move using the blue
arrows. The stars they collected were presented as
their score. B The experiment included six condi-
tions. In theGroups conditions, participants initially
picked a team color for themselves, and then played
with two same-color and two different-color bot-
players. In the Neutral conditions, participants
picked a color for their player and played with four
bot-players with different colors. In the homo-
geneous conditions all bot-player behaved in the
same way, either as zappers or zap-avoiders. In the
heterogeneous conditions, two bot-players (one
from each color team) were zappers and the other
two bot-players were zap avoiders. C Three hypo-
thesized learning mechanisms can govern learning
about the zap behavior of the other and can be
affected by the other player’s group identity.
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informed about the identity of the other players. Those players were in fact
bot-players and were programmed to manifest one of two behavioral pat-
terns. All bot-players were programmed to display star-seeking behavior,
and differed in the way they react when another player was standing
between themand a star. One type of bot-player zapped this player, clearing
the path for them to collect the star, a type called ‘zappers’. The other type of
bot-player did not zap, and instead moved away towards other stars, a type
called ‘avoiders’ (see methods for full details). To test the group identity
effect, we used the minimal-group procedure16,17, in which participants
chose the team color of their avatar. They played with two bot-players with
the same avatar team color (ingroups) and two bot-players with the other
teamcolor (outgroups).The color of the avatars didnot affect their behavior,
such that ingroup zappers and avoiders behaved in the same way as out-
group zappers and avoiders. Finally, our experimental design included
homogenous conditions, in which all bot-players behaved in the same way,
and heterogenous conditions, in which two bot-players were zappers and
twobot-playerswere avoiders (Fig. 1B).This experimental design allowedus
to examine the preregistered effects of the three learning mechanisms on
behavior using a computational learningmodel (Fig. 1C). First, prior effects
were expected to be manifested in a generally greater likelihood that out-
groups would be zapped more than ingroups, and markedly so in the all-
avoiders condition, in which both ingroups and outgroups never zap. Sec-
ond, a learning effectwas expected to bemanifested in differential treatment
of zappers and avoiders from the different groups. Finally, an attribution
effect was expected to be found in differences in the way zappers and
avoiders are treated in homogenous and heterogenous groups. All three
effects can be characterized by our computational learning model.

Methods
Participants
We recruited participants from the Prolific online platform. Participants
were randomly assigned to six experimental conditions that comprised
all-zappers, all-avoiders and mixed, and within these to group and
neutral conditions, for a total of six conditions (Fig. 1B). The group
conditions included two subtypes in which the order according to which
players played each turn (ingroup and outgroup) was counterbalanced.
We therefore collected twice as many participants in the group condi-
tions than in the neutral condition. We preregistered a sample size of
N = 630 based on a preliminary pilot study pointing to an effect size of
f2 = 0.02 for the interaction effect in zap ratings, to achieve 90% power in
detecting this effect size, with alpha level of 0.05.We collected data from a
total of 680 participants (357 men, 316 women, 2 non-binary, and 5
choosing not to indicate gender), with a mean age of 37.2 (±12.34). (See
full details per experimental condition in supplementary Table 1– in the
supplementary materials.) No participant was excluded from the main
analysis. All participants gave their informed consent and received
monetary compensation at a fixed rate of GBP 2.5 for 15 min of parti-
cipation (resulting in a mean hourly rate of GBP11.5). The study was
approved by the research ethics committee of the Faculty of Social Sci-
ences at the University of Haifa, Israel (number 038/18).

Experimental Task
The experimental task builds on the star-harvest game, which was pre-
viously developed toprovide aflexible and rich setting for studying different
types of social learning mechanisms in a user-friendly manner42. The game
included five players, represented by colored avatars that move around a
10 × 10 grid (Fig. 1, see example here: http://socialdecisionlab.net/stuff/
GridWorldDemoN/). The game is played on a turn-by-turn basis, and the
order of players remains constant throughout the game. On each turn
players can eithermove inoneof four directions andcollect stars that appear
on the grid, or they can zap by emitting a pink ray in one of the four
directions. Players caught in the ray are sent to a time-out zone visible to the
player for three turns. After each round in which all players take a turn, a
new star can appear anywhere on the grid with a 0.75 probability, and
uncollected stars can disappear. Each player’s collected stars appear in their

‘score’ section on the screen. The participants did not receive any bonus
based on the stars they collected, beyond the fixed monetary rate.

Participants were instructed that they are not going to act alone. In the
group conditions the task was preceded by a minimal group
manipulation15,54, inwhich the participantwas asked to choose a team-color
for his avatar (blue or orange) and was shown the avatar colors of his fellow
players, two of which were the same color (but different shade) as the
participants, and twowere in the color schemeof the other, unchosen, color.
In the control condition participants chose one of five different colors for
their avatar. See Fig. 1 and the supplemental material for full instructions.
Please note that in light of the nature of the study, debriefing about themild
deception was not a requirement by the ethics committee.

The behavior of the bot-players was governed by algorithms imple-
menting zapper and avoider behavior, as used in a previous study42 (Sup-
plementary Fig. S1). Both bot-player types were programmed to first check
whether they are the closest player to a star, and if so to move towards the
star, thus concluding their turn. Otherwise, bot-players were programmed
to check whether they are in direct competition with another player for a
star. This happenswhen another player is on theirway to a star, i.e., closer to
the star closest to them. Avoiders were programmed tomove away and seek
other stars. Zappers were programmed to zap the competing player if they
share the same row or column. Zapping is therefore done in the context of
competitionover a star, andnot arbitrarily, i.e., doesnot occur every time the
bot-player can zap another player. The two algorithms capture the behavior
of star-seeking players with different levels of competitiveness.

Procedure
Participants were directed to the experimental task website and received
instructions about the game play. They were then told that they would play
the gamewith four other players, but were not explicitly informed about the
players’ identity, and whether they were humans or bots. They then con-
tinued to choose their avatar color, and to the task. The task lasted 100 turns;
each turn included actions fromallfiveplayers (unless theywere in the time-
out zone). The order of players’moves on each turn was kept constant.We
collected the location of players and stars on each turn and move, and the
actions carried by the players. The game lasted 12minutes on average.

At the end of the task, we included three items to examine the effects of
the groupmanipulationand theparticipants’ experience in the task. First,we
asked them to distribute ten extra stars between the four players withwhom
they played. All ten stars had to be allocated. Second, we asked participants
to rate the intentions behind the behavior of the other players. We asked
them to rate harmful intent (‘prevent others from gaining stars’) and selfish
intent (‘gain more stars’), as previous research found intergroup effects on
such judgments49.

Computational learning model
We used a computational learning model to identify the contribution of
three mechanisms, prior, learning and group level attribution, to the way
participants decide whether or not to zap other players. Ourmodel includes
a decision rule by which participantsmake the decision to zap other players
on a trial-by-trial basis, and a learning mechanism which accumulates the
behavior of the other players to establish beliefs about their likelihood to zap.

Decision rule. On a trial-by-trial basis, wemodeled the decision to zap or
avoid zapping a target player as dependent on a weighted sumofmultiple
variables (eq. [1]). These variables included the situational factors of
distance from the target (weighted by free parameter wDistTarget) and
distance from the closest star (parameterwDistStar). It was also dependent
on zap priors: a zapping bias (parameter Bias), indicating the overall
inclination of participants to zap, and prior related to the group identity
of the target, either ingroup or outgroup (parameters (Priorin/Priorout)),
indicating the likelihood to zap players based only on their group identity,
regardless of their behavior. Finally, the decision was dependent on the
learned belief about the target’s likelihood to zap (parameter wTargetZap
wTargetZap). This belief is not immediately available from the data and has
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to be inferred using the learning part of the model.

pðZapÞ ¼ LogitðBiasþ Priorin=Priorout þ wStarDist � StarDist
þwTargetDist � TargetDist þ wTargetZap � TargetZapÞ

ð1Þ

Learning mechanism
To estimate the likelihood of each of the four other players to zap, we used a
reinforcement learning mechanism that calculates the prediction error, i.e.,
the difference between the observed behavior (zap = 1, avoid = 0) on each
trial and current estimation of player’s likelihood to zap, and updates the
belief using a learning rate55 (eq. [2]). We assumed different learning rates
for avoidance and zapping behavior for in/outgroup members (four free
parameters). The initial value for beliefs about players’ likelihood to zapwas
set to 0, as prior beliefs were captured by the Priorin=Priorout parameters in
the decision rule.

PlayerZapðt þ 1Þ ¼ PlayerZapðtÞ þ
LRIn=Out

Zap � ð1� PlayerZapðtÞÞ
LRIn=Out

Avoid � ð0� PlayerZapðtÞÞ

(

ð2Þ

Group-Attribution was modeled in terms of updating the beliefs not
only about the player that just acted, but also about his other group mem-
bers. We assumed different group-attribution values for avoidance and

zapping behavior for in/outgroup members (four free parameters). These
free parameters governed the rate of update, similar to learning rates.When
attribution rates are close to 0 itmeans no group level attribution, andwhen
they are identical to the learning rates (LR) it means complete attribution.

OthersZapðt þ 1Þ ¼ OthersZapðtÞ þ
AtIn=OutZap � ð1� OthersZapðtÞÞ
AtIn=OutAvoid � ð0� OthersZapðtÞÞ

(

ð3Þ

A number of technical decisions were made in setting up the learning
model. First, while it is straightforward to detect zapping behavior, and
update the beliefs about the zapper, detecting avoidances is less clear. Here
we defined avoidances as moving (instead of zapping) when the player was
able to zap another player, i.e., shared a column or rowwith him, and when
the player was not closest to a star, in line with our bot-player algorithm
(Supplementary Fig. S1). This means that no learning occurred when the
observed player was closest to a star and moved towards it, or when the
observed player could not zap any other player.

Another assumption is that ourmodel tries topredict zappingbehavior
only when the participants could zap another player, i.e., shared a row or
column with another player. Our model did not provide predictions for
trialswhen theparticipants couldnot zapother players. This alsomeans that
these trials did not contribute to the model fitting procedure.

Fig. 2 | Model simulations of three learning
mechanisms. We simulated the learning model to
generate zapping behavior of agents in the hetero-
geneous conditions which include zapper and
avoider bot-players. We examine the pattern of
simulated agent’s zapping behavior (right) and the
underlying learning curves (left) which represent the
way beliefs about players’ likelihood to zap are
learned over time. A We disabled learning and
attribution effects and set the group identity prior
parameters to be either low (–0.9) or high (–0.1).
The model predicts high zapping rates when prior is
high, and low zapping rates when prior is low, and
no learning about players’ behavior. Note that
situational variables such as distance from target,
and the tendency of zappers to be closer to other
players, affected simulated zapping behavior. BWe
disabled the attribution effect, fixed the prior effect
and varied the learning rates (LR) of zaps to be either
low (0.2) or high (0.9). Learning curves illustrate
faster learning of zappers behavior (left), and dif-
ference in zapping rates between zappers and avoi-
ders (right). CWe fixed zapping learning rates and
priors and varied the zap attribution rate parameter
to be either low (0.2) or high (0.5). High attribution
rates increased the estimation of the zapping prob-
ability of zap avoiders (left) and led to more similar
zapping behavior towards zappers and avoiders
(right). Lines in learning curves indicate mean zap-
ping estimation variables, shadows indicate 95%
confidence intervals of the mean. Boxplots include
the median in bold line, interquartile range is
represented by the box, minimum and maximum
range by the whiskers, and outliers by dots.
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Model simulations
We simulated the computational learning model to examine how well its
predictions of zapping behavior can differentiate between the learning
mechanisms. To simulate the model, we used data collected in a pilot study
from 189 participants in the six experimental conditions. The data we used
included the stars and bot-players’ locations on each turn and move, and
their behavior;moves, zaps and avoidances. This allowedus to predict howa
player governed by our learning and zap-decision model would behave in
our experiment, in a variety of situational contexts.

The simulations included three steps, from a simple model with no
learning and attribution mechanisms (prior only, P model), to one that
includes the learningmechanism (prior+learning, PLmodel), and amodel
that includes the attribution mechanism (prior+learning+attribution,
PLA). We did not simulate all parameter space, but instead focused on two
values for one set of parameters in each simulation to demonstrate the
models’ flexibility and its ability to capture different behavioral patterns in
our experimental design.

Finally, after themodelfittingprocedure,we simulated themodel using
the estimated group-level parameters, and the data from the experiment
proper, to generate themodel zappingpredictions and theunderlyingbeliefs
about player’s likelihood to zap.

Analysis
To evaluate differences in zapping behavior and in star allocations, we used
mixed-effects linear regressions with group-level coefficients (fixed effects)
to model population-level effects and individual-level coefficients (random
effects) to capture average individual responses56. We report type III
ANOVAbasedon the regression, including F values, p values andpartial eta
square as effect size index. All analyses were conducted using R software (R
version 4.2.2). Analysis packages are detailed in the supplementary
materials.

The model fitting procedure was conducted using the Hamiltonian
Monte Carlo engine STAN via the ‘rstan’ package57. We used hierarchical
model fitting, in which group-level parameter averages and standard
deviations were fitted and individual-level parameters could also be
extracted. We used weakly informative normal priors centered on 0, which
were estimated on a linear scale for weight parameters and prior parameters
(eq [1]), and a logit scale for priors, learning rate and attribution rates. To
improve convergence, we implemented the non-centered version of varying
effects using a Cholesky decomposition of the correlation matrix58 Model
comparison was estimated using ‘rethinking’ R package59. We calculated
model’s WAIC scores and compared them by calculating the difference
between WAIC scores (dWAIC) and the standard error of the difference
(dSE), and the Aikake weight given to each model when considering their
ensemble predictions.

Sample size and analyses were pre-registered, based on a pilot
experiment.

Preregistration: https://osf.io/75mdf/?view_only=949067f8651d4878
b055a05ef78a7108

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Model simulations
First we evaluated how the three learning mechanisms—prior effects,
individual learning, and group-level attribution— can be captured by a
computational model developed in previous work and how they can pro-
duce different learning patterns in our experimental design42. Our model
includes adecision rule bywhichparticipantsmake thedecision tozapother
players ona trial-by-trial basis. It also includeda learningmechanism,which
establishes beliefs about different players’ likelihood to zap on a trial-by-trial
basis based on prior, individual-level learning and group-level attribution.
Full details regarding the model are included in the methods section.

To examine our model and experimental design ability to capture the
effects of different learning mechanisms, we simulate the model using data
collected in a pilot study. For the model simulations, we discarded the
participants’ behavior and used only the bot-players’ behavior (location and
zaps) and the star locations to generate expected zapping behavior under
different experimental conditions. In each simulation, we either disabled
two learning mechanisms or kept them fixed and varied the model para-
meters associated with the mechanism of interest. We examined the
learning patterns in the heterogeneous conditions, where different con-
tributions from the learning mechanisms were expected to be most pro-
nounced. We retrieved the trial-by-trial beliefs about players’ zap
probabilities estimated by the model, and the zapping rate towards each
player (Fig. 2).

We began examining how prior effects shape beliefs and zap behavior
by setting learning and attribution rates to zero. We used two values for
priors—low (–0.9) and high (–0.1). The model’s estimation of beliefs about
players’ zap probabilities did not change, regardless of the players’ zap
behavior or the behavior of their group members (Fig. 2A). The zapping
pattern was dependent on the priors’ value, with a higher likelihood to zap
when prior value was high compared to low.

We then examined how learning rate values shape learning by fixing
the prior parameters and attribution-rates to 0. We also kept the avoidance
learning rate fixed at 0.25, and zap learning rate to be either low (0.2) or high
(0.9). The estimation of beliefs about players’ zapping probability was
dependent on the players’ behavior, increasing only for zappers and not for
avoiders. The model predicted faster learning and higher zapping beliefs
when learning rates were high. These beliefs were translated to higher
zapping rates for zappers comparedwith avoiders, and higher zapping rates
when learning rates were high.

Finally, to evaluate the group-level attribution effects, we kept priors
fixed at 0, zapping learning rates fixed at 0.8 and avoidance learning rates
fixed at 0.25. We also fixed the avoidance attribution rates at 0, and set the
zapping attribution rates to be either low (0.2) or high (0.5). The model
predicted that beliefs about players’ zapping behavior would be higher for
zappers comparedwith avoiders, but that estimation of avoiders’ likelihood
to zap would increase over time even though they never zapped, due to the
group-level attribution. High attribution rates led to increased similarity in
beliefs about players’ zapping behavior between the zappers and avoiders.
This translated to increased similarity in zapping rates of zappers and
avoiders when attribution rates were high.

To summarize, our simulations showed that our learning model,
coupled with our experimental design, can capture the three different
learning mechanisms and that setting different values to parameters in the
model can yield different learning patterns in our experimental task and its
conditions.

Participants’ aggregated behavior
We collected data from 680 participants who played the different experi-
mental conditions online in a pre-registered experiment (see Methods). To
examine participants’ behavior in our task, we first examined the rate at
which participants zapped the other players. According to our preregistered
analysis, we calculated the number of times each participant zapped each of
the bot-players and thenumber of turns onwhich said participant could zap
eachof the bot-players, i.e., share a columnor a rowon the gridwith the bot-
players. We divided these measures to calculate the zapping rate (the per-
centage of zaps out of all zap opportunities). We used this measure as a
dependent variable in a mixed-effects linear regression, which included
group identity (ingroup/outgroup/neutral), bot-player’s behavior (zapper/
avoider), and group homogeneity (homogeneous/heterogeneous), and the
interactions between these factors.

Our analysis revealed a significant effect of group identity
(F(2,1011.76) = 179.38, p < 0.001, ηpartial = 0.26, 95% CI (confidence interval):
[0.22, 0.3]) and a significant effect of bot-player behavior (F(1, 1400) = 77.84,
p < 0.001, ηpartial = 0.052, 95% CI [0.032, 0.077]) (Fig. 4 and supplementary
table 2 in the supplementary materials). We did not observe significant
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interaction effects. The behavior effect is indicative of a learning effect, as
participants adjusted their zapping behavior according to the observed
behavior of the bot-players and were more likely to zap players that dis-
played zapping behavior. We also observed a group identity effect, as par-
ticipants were more likely to zap outgroup than ingroup bot-players, with
neutral bot-players in the middle, even in cases where no bot-player was
zapping (all-avoiders conditions). This indicates a persistent intergroup
bias, as zapping behavior was strongly dependent on bot-players’ group
identity, even when all bot-players behaved in the same manner. We also
predicted that due to group-level attribution we would observe a difference
in zapping behavior between the heterogeneous and homogeneous condi-
tions. Nevertheless, we did not find a significant interaction effect in the
aggregated zap rates measure.

We followed this analysis with an exploratory time-bin analysis, cal-
culating zapping rates in four consecutive 25-trial long timebins, to examine
how observation of bot-players’ behavior throughout the experiment
shaped participants’ zapping decisions (Fig. 3 and supplementary tables 3
and 4 in the supplementary materials). We used mixed-effects linear
regression, which included group identity (ingroup/outgroup), bot-player’s
behavior (zapper/avoider), and a continuous time-bin factor (1–4), and the
interactions between these factors as independent variables, and zapping
frequency as dependent variable. We analyzed the homogenous and het-
erogeneous conditions independently. In both conditions we found a

significant group effect (Homogeneous): (F(1, 1798) = 48.5), p < 0.001,
ηpartial = 0.012, 95% CI [0.01, 0.02], Heterogeneous: (F(1, 1798) = 29.3,
p < 0.001, ηpartial = 0.014, 95% CI [0.01, 0.03]), in line with the full-block
analysis. In the homogeneous condition we found a significant time-bin
effect (F(1, 1798) = 9.49, p = 0.002, ηpartial = 0.002, 95%CI [0.003, 0.006]), as
participants’ zapping behavior increased throughout the block, and did not
observe a significant behavior effect (F(1, 1798) = 2.94, p = 0.08,
ηpartial = 0.002, 95%CI [0.00, 0.01]), but found an interaction between time-
bin and behavior (F(2, 1798) = 5.27, p = 0.021, ηpartial = 0.001, 95% CI
[0.0001, 0.004]), as likelihood to zap avoiders did not increase over time
whereas likelihood to zap zappers increased over time. This demonstrates a
learning effect on zapping decisions, and this effect is dependent on the
players’ behavior. In the heterogeneous condition we found a significant
time-bin effect (F(1, 1798) = 6.23, p = 0.012, ηpartial = 0.003, 95% CI [0.00,
0.01]), and a significant behavior effect (F(2, 1798) = 4.6, p = 0.03,
ηpartial = 0.002, 95% CI [0.00, 0.008]), but did not observe a significant
interaction effect (F(2, 1798) = 0.06, p = 0.79, ηpartial < 0.0001, 95% CI
[0.00, 0.002]).

We examined several other behavioral measures that can indicate
intergroup bias in our experiment. In an exploratory analysis, we examined
the likelihood of participants to cross-path with another player, i.e., to
choose tomove to a locationwhere they share the same row or columnwith
another player. Cross-pathing means that the participant becomes
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Fig. 3 | Group-identity and bot-players’ behavior effects on participants’ zapping
behavior experimental outcomes. Zapping rates throughout the experimental
block (left panels) and progression of zapping rates throughout the blocks (right
panels) in the homogeneous (A) and the heterogeneous (B) conditions. Participants
zapped outgroup bot-players more than neutral and ingroup bot-players, indicating
a consistent intergroup bias. Participants were also more likely to zap bot-players
that displayed zapping behavior than zap-avoiders and increased their likelihood to

zap zappers over time, indicating learning effect on behavior. In the heterogeneous
condition participants showed reduced differentiation between avoiders and zap-
pers in the progression of zapping rates, indicating a group-level attribution effect.
Lines in learning curves indicate mean zapping frequencies, shadows indicate 95%
confidence intervals of the mean. Boxplots include the mean by light circles, median
in bold line, interquartile range is represented by the box, minimum and maximum
range by the whiskers, and outliers by black dots.
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vulnerable as the other player can zap them in the next trial (Fig. 4A). We
used this measure as a dependent variable in a mixed-effects linear regres-
sion, which included group identity (ingroup/outgroup/neutral), bot-play-
er’s behavior (zapper/avoider), and group homogeneity (homogeneous/
heterogeneous), and the interactions between these factors as independent
variables. Our analysis revealed a significant effect of group identity (F(2,
1012) = 6.65, p = 0.0013, ηpartial = 0.013, 95% CI [0.002, 0.03]) and a sig-
nificant effect of bot-player behavior (F(1, 1983.5) = 4.21, p = 0.04,
ηpartial = 0.002, 95% CI [0.00, 0.01]) (Supplementary Table 5 in the Sup-
plementary Materials). Participants were more likely to cross-path with in-
groups, and avoid outgroups, indicating an intergroup bias in their esti-
mation of the risk posed by ingroup and outgroup players. In addition,
participants were sensitive to the behavior of the players, and were more
likely to avoid zappers and to cross-path with zap-avoiders.

After the experiment was over, participants were asked to perform two
additional pre-registered tasks. First, we asked participants to rate how
much they thought each player’s actions were motivated by their desire to
gain stars, i.e., selfish intention. We ran a mixed-effects linear regression,
with selfish intentions ratings as dependent variables, and bot-player group-
identity (ingroup/outgroup/neutral), bot-player behavior (zapper/avoider),
and condition (homogeneous/heterogeneous) and their interactions as
dependent variables. Results show that participants tended to rate ingroups
as acting from selfish motive more than outgroups (F(2,1012) = 17.85,
p < 0.001, ηpartial = 0.03, 95%CI [0.01, 0.06]), and that zappers were rated as
more selfish than avoiders (F(1,1105.9) = 14.09, p < 0.001, ηpartial = 0.01, 95%
CI [0.00, 0.03]). Participants tended to rate selfish intentions higher in the
heterogeneous conditions than in the homogeneous conditions, indicating
an attribution effect (F(1,674) = 6.84, p = 0.01, ηpartial = 0.01, 95% CI [0.00,
0.03]) (see for further details in Supplementary Fig. S2 and supplementary
Table 8).

Participants were also required to rate how much they thought dif-
ferent players acted based on an intention to prevent others from gaining
stars, i.e., harm intention. We ran a mixed-effects linear regression, with
harm intentions ratings as dependent variables, and bot-player group-
identity (ingroup/outgroup/neutral), bot-player behavior (zapper/avoider),
and condition (homogeneous/heterogeneous) and their interactions as
dependent variables. Results show that participants tended to rate zappers as

acting more from harmful motive than avoiders (F(1,1196.8) = 341, p < 0.001,
ηpartial = 0.22, 95% CI [0.18, 0.26]). Participants also tended to rate harmful
intentions higher in the heterogeneous conditions than in the homogeneous
conditions, indicating an attribution effect (F(1,674) = 55.12, p < 0.001,
ηpartial = 0.08, 95% CI [0.04, 0.11]) (more details in Supplementary Fig. S3
and supplementary table 8 in the supplementary materials).

In addition, participants were also asked to distribute ten extra stars
among the four players they had played with.We ran two separate analyses
for the homogeneous and heterogeneous conditions, with stars-allocated as
the dependent variable and bot-player group-identity (ingroup/outgroup/
neutral), bot-player behavior (zapper/avoider), and their interaction as
dependent variables (Fig. 4B and Supplementary Tables 6 and 7 in the
supplementarymaterials). In the homogenous conditions of all-zappers and
all-avoiders, participants distributed the stars equally in the neutral condi-
tions and favored ingroup over outgroup bot-players in the grouped con-
ditions (F(1, 1798) = 475.9, p < 0.001, ηpartial = 0.34, 95% CI [0.26, 0.38]), in
linewith aprior effect (Fig. 4B).Wealso founda significant interaction effect
(F(1, 1798) = 11.9, p < 0.001, ηpartial = 0.013, 95%CI [0.004, 0.024]), as the gap
in star allocations between ingroup and outgroup bot-players narrowed in
the all-zappers condition compared with the all-avoiders condition, in line
with the learning effect and increased zapping rates. When examining the
heterogenous conditions, we found a significant effect of group identity
(F(2, 910) = 82.16, p < 0.001, ηpartial = 0.15, 95% CI [0.11, 0.19]), such that
participants allocatedmore stars to ingroup bot-players than to neutral and
outgroup players. We also found a significant behavior effect
(F(1,910) = 43.85, p < 0.001, ηpartial = 0.045, 95% CI [0.00423, 0.075]). In the
heterogeneous conditions when participants played with both zappers and
avoiders, they allocated more stars to avoiders than to zappers. We also
observed a significant group-identity by behavior interaction effect
(F(2, 910) = 5.24, p = 0.005, ηpartial = 0.011, 95% CI [0.001, 0.02]), indicating
that participants treated zappers and avoiders differentlywhen these players
were members of an ingroup or neutral (Fig. 4B).

Overall, our aggregated behavioral results strongly support the notion
that participants learn from experience and tend to zap more and allocate
fewer post-task stars to zappers than avoiders. In addition, our results
strongly indicate a persistent intergroup bias, according to which partici-
pants favored ingroups and were hostile to outgroup members compared

Fig. 4 | Additional behavioral manifestations of
intergroup bias. A Path-cross frequency, indicating
the frequency of participants deciding to move to a
position where another player can zap them. Parti-
cipants were more likely to cross-path with ingroup
than outgroup players, and with avoiders compared
with zappers. B After the experiment, participants
were asked to distribute an extra ten stars between
bot-players. They allocated more stars to ingroup
bot-players than to outgroup players. In hetero-
genous conditions they allocated more stars to zap-
avoiders, except in the outgroup condition, in which
both group members were treated similarly. Box-
plots include the mean by light circles, median in
bold line, interquartile range is represented by the
box, minimum and maximum range by the whis-
kers, and outliers by black dots.
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with controls, both in their zapping behavior and in their path-crossing and
post-task star allocation. Finally, an attribution effect was observed in the
time-bin analysis of zapping behavior, and in the post-experiment star
allocation, in which outgroup players were treated similarly regardless of
their behavior and received fewer stars than ingroup players.

Estimated learning model parameters
To reveal the learningmechanisms underlying the persistence of intergroup
bias, we fitted the learning model described earlier to the participants’ data.
We fitted the model only to the mixed-grouped condition, in which parti-
cipants encountered both zapper and avoider bot-players and both ingroup
and outgroup players in the same condition. This allowed meaningful
estimation of model parameters for ingroup and outgroup players and for
zap and avoidance behaviors.We further excluded participants that zapped

less than once during the experiment from the model fitting procedure, as
estimation may be unreliable for such sparse behavior. Hence, we excluded
12 participants and fitted the model to the remaining 132 participants (see
Method for full model fitting procedure).

We fitted three different models: The first included only the prior
mechanism (P model, eq [1]), the second included prior and learning
mechanisms (PL model, eq [1] +eq [2]), and the third included prior,
learning and group-level attribution mechanisms (PLA model, eq [1]+eq
[2] +eq [3]). Our model fitting and model comparison procedure yielded
the lowest WAIC fitting score to the PLA model, indicating that it best
described the participants’ decisions while accounting for its increased
complexity andnumberof parameters (Table 1). Support for thePLAmodel
was already indicated in the aggregated behavioral results, which demon-
strated prior, learning and group-level attribution effects.

Our PLA model fitting procedure resulted in estimation of the pos-
terior of group-level parameters, allowing us to compare the learning
mechanisms in learning about the zapping behavior of ingroup and out-
group players (Fig. 5A, Table 2). For the decision rule (eq. [1]), we found a
support for a positive effect of distance from stars (wDistStars mean: 0.26, 89%
high density interval (HDI): [-0.04, 0.58]), as participants were more likely
to zap while stars far from them. We found a strong support for a negative
distance from target-player stars (wDistTarget mean: –1.84, 89% HDI: [–2.23,
–1.46]), as participantsweremore likely to zap target-players thatwere close
to them. Importantly, we found a strong support for the effect of the target
player’s likelihood to za on participants’ zapping decisions (wTargetZap mean:
0.89, 89% HDI: [0.53, 1.22]). Finally, an overall negative zap-bias was

Table 1 | WAIC fitting scores and model comparisons

Model WAIC SE dWAIC dSE pWAIC weight

PLA 4206.67 86.98 0 NA 193.92 0.92

PL 4211.63 87.13 4.95 5.66 178.47 0.08

P 4251.06 87.15 44.39 12.44 155.24 ≪0.01

WAIC scores of each model, sorted from small (better) to large (worse), SE is the standard error of
eachWAIC,dWAIC is thedifferencebetweeneachmodel’s score and thebestmodel’s score, dSE is
the standard error of this difference, pWAIC is the measure of effective number of parameters,
capturingmodel’s flexibility, andweight is theAikakeweight given to eachmodel in the prediction of
participants’ behavior58.
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Fig. 5 | Social learning model results.We estimated group level parameters of the
PLA social learning model. A Posterior distribution of the model group-level
parameter. 1. Priors include the general bias parameter, and ingroup and outgroup
priors. Out-group prior to zap were higher than in-group prior. 2. Learning rates
were higher for zaps compared with avoidances and were highest for outgroup zaps.
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rates. 4. Situational parameters indicate that likelihood to zap increased when stars
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mation of the target player’s likelihood to zap was high. BModel estimations of the

internal learning process about bot-players’ likelihood to zap in the different
experimental conditions. Higher learning rates for outgroup zaps, and lower attri-
bution rates for outgroup avoidances contributed to higher estimation of zap
probability both for outgroup zappers and avoiders. CModel predicted zapping
behavior shows a group and behavior effect, like the observed behavioral pattern.
Lines in learning curves indicate mean zapping estimation variables, shadows
indicate 95% confidence intervals. Boxplots include the median in bold line, inter-
quartile range is represented by the box, minimum and maximum range by the
whiskers, and outliers by dots.

https://doi.org/10.1038/s44271-024-00061-0 Article

Communications Psychology |            (2024) 2:14 8



observed (bias mean: –1.01. 89%HDI: [–2.86, 0.90]), indicating that parti-
cipants tended to avoid zapping overall.

We then examined group-identity dependent differences in para-
meter values. Group identity prior parameters were different from each
other, as ingroup prior was lower than outgroup prior (Priorout � Priorin
mean: 0.75, 89% HDI: [0.55, 0.96]). Learning rates were overall higher
for zaps than for avoidances within each group (LRin

zap � LRin
avoid mean:

0.49, 89%HDI: [0.03, 0.99], LRout
zap � LRout

avoid mean: 0.63, 89%HDI: [0.35,
0.92]), in line with previous works42. Learning rates for zaps tended to be
higher for outgroup comparedwith ingroups (LRout

zap � LRin
zap mean: 0.13,

89% HDI: [-0.27, 0.60]), and learning rates for avoidances were similar
between groups (LRout

avoide � LRin
avoide mean: 0, 89% HDI: [-0.34, 0.31]).

Finally, attribution rates for zaps and avoids were similar for ingroups
(Atinzap � Atinavoid mean: 0.06, 89% HDI: [-0.41, 0.67]), but were different
for outgroups (Atoutzap � Atoutavoid mean: 0.22, 89% HDI: [-0.04, 0.49]), and
attribution for avoidances was higher for ingroups compared with
outgroups (Atinavoid � Atoutavoid mean: 0.16, 89% HDI: [-0.06, 0.44]),as
attribution rates for outgroup avoidances were very low. These results
indicate three group-identity asymmetries in learning parameters. First,
priors for zaps were higher for outgroup compared with ingroup target
players. Second, learning rates for zaps were higher when observing
outgroup bot-players comparedwith ingroup bot-players. Third, group-
level attribution of avoidances was lower when observing outgroup bot-
players than ingroup bot-players.

To examine how these parameter values shaped learning about other
players’ zap behavior, we used the mean parameter estimations to simulate
the model in all experimental conditions (Fig. 5). We found that our model
was able to capture the pattern of participants’ zapping frequency.We then
inspected the underlying learning curves about the likelihood of the bot-
players’ likelihood to zap. We found that outgroup’s zapping behavior was
learned faster, and reached higher plateau, in line with the higher learning
rates for outgroups’ zaps. We also found that for outgroups, zappers’ like-
lihood to zap did not decrease in the mixed condition, while avoiders’
likelihood to zap increased, in line with the asymmetric attribution rates for
outgroups. Overall, these results show how asymmetric evidence accumu-
lation and priors make outgroup players appear more competitive, and
make intergroup bias persist even when the behavior of players is readily
available.

Discussion
The aimof this studywas to examine theway social identity shapes learning
about others and the persistence of intergroup bias. We tested the con-
tribution of three learningmechanisms: (1) biased prior effects for ingroups
and outgroups; (2) biased learning rates for positive (avoidance) versus
negative (zapping) behavior for an ingroup or an outgroup member; (3)
biased attribution of behavior to another member. By using a multiplayer
star-harvest game and the minimal group procedure, we were able to
examine how these learning mechanisms govern trial-by-trial updates of
beliefs about the zapping behavior of other players. Participants exhibited
intergroup bias in their zapping behavior in that they zapped ingroups less
outgroups, even when both behaved in the sameway, andwere less likely to
cross-pathwithoutgroups. In addition, participants showeda learning effect
throughout the experiment, and were more likely to zap players that were
zappers themselves. Finally, group-level attribution was observed in the
similarity of learning patterns between avoiders and zappers’ learning pat-
terns and in the post-task star allocation in the heterogeneous condition.We
used a computational learning model to uncover the way learning
mechanisms underlie the persistence of intergroup bias. We found that
participants held higher prior for zapping outgroup players than ingroup
players. We also found that the learning rates used to update the partici-
pants’ beliefs about the players’ likelihood to zap were higher for outgroup
zaps than for ingroup zaps, and that group-level attribution for outgroup
avoidances was lower than for ingroup avoidances. The combined effects of
these mechanisms make asymmetry in group-identity priors hard to
overcome, as competitive behaviors have more impact on beliefs about
outgroups’ behavior than cooperative behaviors.

We found a strong prior effect in all our measures, indicating that
allocating participants to arbitrary groups is enough to create biased
behavior in favor of the ingroup and against the outgroup19. This finding
is in line with the literature about stereotypes, and especially the ste-
reotype content model in which social structure features, namely com-
petition and status, shape the content of stereotypes60. In our study,
participants were presentedwith a competitive context—a video game in
which multiple players try to collect stars—and competitive behavior
was shown to be highly salient and persistent42. In such competitive
settings, a stereotype contentmodel predicts a lowwarmth stereotype, in
line with prior beliefs of high zap probability for outgroups. Setting the
expectation in such a way is therefore expected to have a long-lasting
effect on behavior throughout the task. Furthermore, Reggev et al.
(2021)61 demonstrated that expectation-consistent information is
associated with intrinsic value such as food or money, regardless of the
source of that social expectation. This also may explain how easily we
develop prior beliefs and how hard it is to reduce them.

We also found that participants learned from their experience and
observation of other players, updated their beliefs about other players’
zapping behavior, and adjusted their behavior accordingly. Computa-
tional models of stereotype changes suggest that such observations can
be used to re-categorize people into different subgroups, for example
categorizing players according to their behavior instead of their color62.
Theoretical accounts suggest that such processes may, under some cir-
cumstances, underlie the impact of interactions between people from
different groups on stereotype reduction39. However, we observed a
moderate change in attitude toward ingroups and outgroups during our
task, as zapping behavior towards ingroups and outgroups did never
converge. We found that learning was group dependent, and that out-
groups competitive actions were more readily learned than ingroups.
This effect was demonstrated in a number of studies, showing that
people tend to update their beliefs about others in away that is consistent
with their stereotype, and to assign higher weight to negative actions
coming from outgroups compared with ingroups8,15,61,63. Increased
learning rates about outgroups negative behavior can therefore lead to
persistent intergroup bias by making negative stereotypes difficult to
overcome.

Table 2 | Parameter estimations of the computational learn-
ing model

Variable Mean Median sd rhat 89% HDI

Prior_In –0.87 –0.87 1.17 1.0005 [–2.76, 0.98]

Prior_Out –0.12 –0.13 1.17 1.0005 [–1.99, 1.76]

LR_Zap_In 0.71 0.70 0.84 1.0016 [0.27, 1.00]

LR_Zap_Out 0.84 0.82 0.78 1.0009 [0.55, 1.00]

LR_Avoid_In 0.08 0.07 0.85 1.0020 [0.00, 0.42]

LR_Avoid_Out 0.13 0.13 0.69 1.0000 [0.02, 0.27]

Bias –1.01 –1.01 1.17 1.0005 [–2.86, 0.90]

w_dist_star 0.03 0.03 0.02 1.0001 [–0.04, 0.58]

w_dist_Target –0.18 –0.18 0.02 0.9998 [–2.23, –1.46]

w_zap_Target 0.89 0.88 0.23 1.0007 [0.53, 1.22]

At_Zap_In 0.19 0.19 0.83 1.0004 [0.00, 0.60]

At_Zap_Out 0.22 0.22 0.75 1.0009 [0.01, 0.48]

At_Avoid_In 0.14 0.13 0.80 1.0008 [0.00, 0.44]

At_Avoid_Out 0.02 0.03 0.73 1.0004 [0.00, 0.06]

Mean, median and standard error (sd) of the posterior distribution of group level parameters is
presented, along with the 89% HDI. Rhat represents the convergence of the mcmcm chain, with
values close to 1 representing convergence.
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Finally, we found that participants tended to attribute negative beha-
viors, but not positive behaviors, of one outgroup member to all other
outgroup members. For in-group, however, attribution was symmetrical.
This was observed both in the model parameters and in the time-bin ana-
lysis and post-task star allocation pattern. The symmetrical attribution for
in-groups is in line with recent works showing greater learning and more
flexible impressions formation about ingroup members64. However, our
findings suggest a more complex effect of outgroup homogeneity on
intergroup bias than initially predicted, demonstrated by our model’s
group-level attribution rates. Outgroup homogeneity builds on perceptual
bias, where outgroups are less distinguishable from one another. This may
be related to differential neural processing of same-race and other-race
faces65, which can later lead todifferences in social categorization. In another
study, racial minorities were perceived as more salient than majorities,
indicating a lower sense of variability among other-race faces66. In the
current study, participants tended to attribute negative behavior from one
outgroupmember to another, but not positive behavior. This indicates that
in the context of social learning, group-level attribution is not symmetrical
but is affected by stereotypes and the content of the actions. People aremore
ready to view all outgroup members as similarly competitive, but not
similarly cooperative. This effect may attenuate the effect of experience on
stereotype change by hampering learners’ ability to properly track indivi-
dual behavior, as it is concurrently confounded by evidence from other
individuals. Interestingly, we found symmetrical group-level attribution
when learning about ingroupmembers’ behavior, which ismore inline with
homogeneity assumption.This symmetrical attribution led to reducedbelief
about the zapping behavior of ingroup zappers, as the avoidances of the
other group member was also attributed to them. Homogeneity assump-
tions may therefore serve different outcomes in intergroup learning pro-
cesses. Together with the prior effect and learning rates, group level
attribution contributes to the persistence of intergroup bias.

Limitation
Several limitations should be consideredwhen interpreting our results. First,
we used bot-players to manipulate the behavior the participants were
exposed to in the different experimental conditions, which may cast some
questions regarding the extent of the ecological validity of this work. Our
aim in this work was not to study the formation of group dynamics, such as
intergroup bias, but to study the learningmechanisms underlying this well-
established phenomenon. This required controlling the behavior of ingroup
and outgroup players, that do not display intergroup bias in their behavior
and zap/avoid zapping all other players in a similar way, whichwe achieved
by using bot-players. We assumed that in a live interaction setting, parti-
cipants would have displayed intergroup bias in their zapping behavior,
making ingroups and outgroups behave very differently and thus con-
founding our ability to study the participants learning process. Therefore,
our findings regarding learning biases may unfold in a more complex
manner in real interactive situations, where in addition to learning biases
players actively display discriminatory behavior. We suggest that even
in situations where such discrimination may be controlled for, such as in
working environments, biased learning may still impact behavior.

It is also important to note that participantswere not explicitly told that
they were playing with algorithmic players, and it is very likely that they
sustained some level of belief that the other players might be other human
participants. As interaction with anonymous humans and anonymous bots
in online multiplayer games and environments become ubiquitous, and
online participants seem to assume that theymight be interactingwith other
participants67–69. In previous works, we found that participants playing
multiplayer games online were not good at differentiating between human
and algorithmic players70, to the extent that participants were willing to
incur monetary loss to gain influence on players whose identity is
unknown71. In addition, the behavior of the algorithmic agentswas designed
to be similar to human players, as they prioritized star collection over
zapping, and zappedduring competitionover stars andnot arbitrarily42.Our
behavioral results are that participants differentiated between ingroup and

outgroup members above and beyond the observed behavior of these
players. This effect replicateswell documented intergroupbias in a variety of
experiments and real life situations9,15,72,73. We therefore suggest that the use
of bot-players was not detrimental to the formation of group-identity and
intergroup bias.

Another limitation is that in the current study we used the minimal
group procedure, allocating players to groups by a random color. Using
more salient group identity, such as political party, religion, or race, might
have elicited larger group effects. Nevertheless, our results show the per-
sistence of intergroup bias even under theseminimal conditions ofminimal
group procedure and bot-players, indicating the strength of the design.
Future studies may benefit from suchmanipulations as well as from adding
other group facilitating mechanisms, such as group-level incentives.

To conclude, by using a multiplayer star-harvest game with minimal
group manipulation we were able to detect persistent intergroup bias, even
when participants experienced and observed similar behavior among
ingroups and outgroups. Our experimental design allowed trial-by-trial
analysis to reveal the computational learning mechanisms underlying this
effect, beyond the average aggregated results. Our modeling approach
revealed that a combination of learning mechanisms made it difficult to
overcome prior stereotypic beliefs about outgroups. This was high learning
rates for competitive behavior and low group-level attribution for coop-
erative behavior for outgroups. Our results suggest a cognitive mechanistic
basis that underlies a broad social phenomenon and can be used to expand
theoretical approaches to intergroup biases and conflict.

Data availability
The data that support the findings of this study are openly available in:
https://osf.io/nx2hv/.

Code availability
Scripts: https://osf.io/nx2hv/.
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