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Reinforcement learning of adaptive control
strategies
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Humans can up- or downregulate the degree to which they rely on task information for goal-

directed behaviour, a process often referred to as cognitive control. Adjustments in cognitive

control are traditionally studied in response to experienced or expected task-rule conflict.

However, recent theories suggest that people can also learn to adapt control settings through

reinforcement. Across three preregistered task switching experiments (n= 415), we selec-

tively rewarded correct performance on trials with either more (incongruent) or less (con-

gruent) task-rule conflict. Results confirmed the hypothesis that people rewarded more on

incongruent trials showed smaller task-rule congruency effects, thus optimally adapting their

control settings to the reward scheme. Using drift diffusion modelling, we further show that

this reinforcement of cognitive control may occur through conflict-dependent within-trial

adjustments of response thresholds after conflict detection. Together, our findings suggest

that, while people remain more efficient at learning stimulus-response associations through

reinforcement, they can similarly learn cognitive control strategies through reinforcement.
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Actions that are shared across tasks are usually easy to
implement, while task-specific actions require more
reconfiguration. Imagine two tasks, doing the laundry and

packing luggage. Some actions are shared between both tasks
(folding clothes), while other actions are not (categorizing by
fabric only makes sense while doing the laundry, not when
packing). Now, when both tasks are carried out in close succes-
sion, shared actions will be easier to implement. These necessary
reconfigurations show as task-rule congruency effects, i.e., slower
and more erroneous responding when dealing with conflicting
task sets. It is generally assumed that these reconfigurations
indicate that people exert cognitive control. In this study, we
investigated whether people can learn adaptive control processes
through reinforcement learning.

Traditionally, cognitive control processes, sometimes referred
to as executive functions1, are considered resource-intensive
processes that are executed in service of goals. These strategic
adjustments are typically considered in reaction to experienced or
expected task-rule conflict2–4. In connectionist models this con-
flict arises from shared representations between tasks which
create interference2,5,6. Thus, control is required to select task-
relevant (conflicting) pathways and is traditionally viewed as
orthogonal to learning, i.e., the slow building of these pathways
and associated weights.

However, recent theories have come to suggest that people may
also rely on associative learning or reinforcement learning when it
comes to the regulation of these arguably more abstract cognitive
processes, i.e., the configurations or weights of control settings
themselves7–13. This idea is not new. In fact, although the seminal
cognitive psychology work of Ulric Neisser similarly referred to
these domain-general functions as higher mental processes14, it
also suggested that humans should be able to acquire their own
executive routines by learning through experience. Likewise,
other early work has shown that people tend to adopt different
control strategies in response to different proportions of Stroop
incongruent words, as reflected in modulated congruency
effects15,16 (for reviews, see17,18). Still, likely due to the dominant
focus on these processes as being executive and under strategic
control, studies on the (reinforcement) learning of these desig-
nated higher control functions are scarce.

It is well established that reward affects control processes (for
review see, e.g.19). Also more recent studies showed, for example,
that blocks of anticipated high vs. low reward can trigger
adjustments of control (even in the absence of awareness20), that
reward prospect improves performance through improvements in
task coding21,22 and that people can be instructed to learn asso-
ciations between task representations and rewards23. However,
these studies do not test the idea that cognitive control can be
tested through reinforcement learning, i.e., the learning from
retrospective rewards.

Therefore, the goal of the current study was to offer a test of the
hypothesis that conflict-triggered cognitive control processes are
sensitive to reinforcement learning just like stimulus response
associations. To focus on learning of higher control functions, we
used a design that eliminated learning of more basic stimulus-
response associations. Specifically, we ran three pre-registered
experiments using a recently developed task switching design that
employs unique stimuli on each trial24,25, and assessed the task-
rule congruency effect as a function of selectively rewarding either
congruent or incongruent stimuli more. We predicted that
selective reinforcement of correct responses to incongruent sti-
muli should promote control and therefore result in a reduced
task-rule congruency effect, i.e., smaller relative differences in
reaction times (RT) and accuracy between congruent and
incongruent trials, indicated by a significant interaction between
reward condition and congruency level. Moreover, we used drift

diffusion modelling26,27 to investigate which underlying cognitive
processes were most affected by reinforcement learning.

In all three experiments, participants were asked to categorize
target words based on either their size or animacy, depending on
a task cue (see Fig. 1). Both tasks used the same response buttons
resulting in congruent and incongruent trials. Each experiment
had minor differences in design. Most importantly, the third
experiment differed from the first two in presenting the task cue
and stimulus separated in time, allowing more time for task
preparation. Moreover, while all experiments presented each task
stimulus only once, Experiment 2 also contained a second
experiment half to study the effect of stimulus repetitions. This
second half of this experiment was analysed separately and will be
referred to as Experiment 2B. In the first part of the paper, we will
only present results from Experiments 1, 2, and 3, i.e., where we
employed the set of unique stimuli. Importantly, because no sti-
mulus ever re-occurred throughout these experiments and
response mappings were orthogonal to the congruency level,
rewards were neither contingent on the stimulus, nor the
response key, but only on the congruency level.

Methods
An initial pilot experiment (not reported in the main text) and
first two experiments were preregistered on OSF (https://osf.io/
qdk5t/) in May, August and December 2021, respectively. These
preregistrations slightly differed with respect to the mixed effects
models predicting accuracy and RT. The first two preregistrations
(for the pilot and first experiment) did not include random sti-
mulus intercepts and the pilot preregistration did not include
Block number and Task as a predictor. As we did not detect any
effect of time on task on congruency modulations and for better
comparison in the final paper, we thus decided to fit a similar
model to each experiment excluding Block number. For the
combined analysis, we additionally accounted for Experiment
number (factorized), as will be described in more detail in the
Data analysis section. Complete result tables of all preregistered
analyses are displayed in Supplementary Tables 1-6. All experi-
ments were approved by the Ghent University Psychology and
Educational Sciences Ethical Committee and participants signed
informed consents prior to participation.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Experiment 1
Participants. Participants were recruited online from Prolific and
compensated for their participation using monetary payment
(2.92 pounds). At the end of the experiment, a bonus was
determined for each participant and paid out to the 10% highest
scoring participants. Sample size was determined based on effect
sizes of previous experiments. After pre-processing, our final
sample consisted of 104 participants (N= 68 women, N= 2
undisclosed, N= 11 left-handed, Mean age = 24.55 years, SD=
5.14 based on self-report).

Materials. The experiment was programmed using JsPsych28 for
online testing. Stimuli consisted of 320 unique English words,
adapted from previous studies24,25. They consisted of an equal
number of words per size/animacy relevant category (i.e., small
and animate, small and inanimate, large and animate, large and
inanimate). Target words were presented in blue (#0000FF) or
green (#00FF00) at the centre of the screen (30px Verdana) on a
black background. In 24 practice trials, we included three dif-
ferent feedback messages: CORRECT!, ERROR! And TOO
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SLOW! Reward feedback consisted of either a low (1ct) or high
(5ct) reward. Task key-to-condition mapping was similar across
subjects for the size task (F-key smaller/ J-key larger) and ran-
domized for the animacy task to ensure counter-balancing of
task-rule congruency per stimulus (congruent vs. incongruent).
Task-rule congruency was defined by stimuli either requiring the
same (congruent) or other (incongruent) response as for the
currently irrelevant task. For example, “mouse” can represent a
congruent stimulus, when “F” refers both to the smaller and
animate response key but it can represent an incongruent sti-
mulus in another participant for who “F” refers to the smaller but
“J” to the animate response key. We additionally included two
questionnaires on reward contingency awareness and the Beha-
vioural inhibition, behavioural activation, and affective responses
to impending reward and punishment (BIS/BAS) scale29. The
latter comprises four subscales measuring BIS, BAS reward
responsiveness, BAS drive, and BAS fun seeking with items
answered on a four-point Likert scale.

Procedure. The total duration of the experiment was around
30–35 min. Participants had to perform two different tasks in four
blocks of 80 trials each, following 12 practice trials per task with
performance feedback. Depending on the stimulus colour, they

either had to perform the size task, in which they had to cate-
gorize the stimulus into being smaller or bigger than a basketball,
or the animacy task, in which they had to categorize the stimulus
into being animate or inanimate. Participants were instructed that
animate referred to any kind of organism, including plants,
vegetables and fruits and they were encouraged to respond as fast
and accurately as possible. If they responded correctly and within
3000 ms, the stimulus was followed by probabilistic reward
feedback. The group rewarded more on incongruent trials would
receive a high reward following 90% of all incongruent correct
trials and 10% of all congruent correct trials, while receiving the
low reward on all other correct trials. This mapping was reversed
in the group rewarded more on congruent trials. If participants
responded incorrectly, they saw a blank screen for the same
amount of time as the reward screen. Between blocks, participants
obtained feedback on how much (potential) money they earned
within that block. At the end of the experiment, they saw the total
amount of money they won, and were asked to fill in the
questionnaires.

Statistics and reproducibility. Our main dependent variables of
interest were accuracy and RT. In line with our preregistration,
we only registered and analysed data of participants completing

Fig. 1 Task procedure. Note. General trial procedure for a participant from the group were incongruent trials were rewarded more, with the example task
mapping displayed in the right top corner (counter-balanced across participants): congruency was defined by either having to use the same (congruent) or
different (incongruent) response button for a given item across both tasks. Rewards were only presented following correct trials, and reward magnitude
was dependent on the congruency level of that trial with reward schemes and payout slightly differing across experiments (see Methods). In Experiment 1
and 3, the top 10% of all participants were given the total rewards earned as a bonus payment (+2.92 pounds baseline). In Experiment 2, the top
participant of each group was given a 50 Euro gift card (+course credit). Exp.: Experiment.
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the experiment. On the subject level, we further excluded parti-
cipants with an overall accuracy of, or below, chance performance
(60%) per task. We also excluded participants who showed clear
signs of inattentive behaviour, such as long sequences of pre-
mature or null responses. For the remaining participants, we
excluded missing responses, and trials following a null response
or error for all analyses. We also removed trials resulting in an
error from the RT analysis. For the RT analyses, we further
removed all trials with RTs 1.5 times the inter-quartile range
(IQR) above the 75th percentile, and all trials 1.5 times the IQR
below the 25th percentile (within-subject) as well as RT faster
than 200 ms. Zero sum coding was used for categorical predictors
in all analyses. All analyses were conducted based on Bayesian
mixed-effects models using brms30 and RStudio31. Our main RT
models used shifted lognormal likelihood distributions and the
accuracy models used Bernoulli likelihood distributions (logit
link). This choice fitted our assumption of a right skewed RT
distribution. Our main predictors were Reward group, Con-
gruency, Transition (switch/repeat), as well as all interactions.
Task was included as a control variable which did not interact
with the other variables. We further used random subject inter-
cepts and random slopes for all within-subject variables and
interaction terms. We additionally modelled random intercepts
for Stimulus, with Task as a random slope, to control for potential
effects of the individual stimuli per task. Default priors were used
in both models. The main accuracy model was fitted with
12,000 sampling iterations (3000 warm-up), and the main RT
model with 20,000 sampling iterations (10,000 warm-up) each to
achieve good convergence (with four chains each).

Experiment 2
Participants. Participants were recruited online from the Uni-
versity’s recruitment platform and compensated for their parti-
cipation with course credit. At the end of the experiment, we
determined the highest scoring participant per group and awar-
ded each a 50 Euro gift card. Sample size was doubled due to the
non-conclusive effects in the pilot and first experiment. After
pre-processing, our final sample consisted of 208 participants
(N= 184 women, N= 1 undisclosed, N= 21 left-handed, Mean
age = 18.52 years, SD= 1.97). For the analyses on the second
half, we had to exclude two more participants, who performed
below 60% across all eight experiment blocks (results were vir-
tually identical with or without these participants).

Materials. Materials were similar to the first experiment but all
stimuli, feedback and questionnaires were presented in Dutch.
Reward feedback was no longer monetary but presented as points
(1 point or 10 points).

Procedure. The total duration of the experiment was around
60 min. The procedure was identical to the first experiment with
the crucial difference that in a second experiment half, every
stimulus was presented again. In this experiment, the group
rewarded more on incongruent trials received the high reward
following 50% of all incongruent correct trials and 0% of the
congruent correct trials, and the low reward on all other correct
trials. This mapping was reversed in the group rewarded more on
congruent trials. In addition, we ensured that only one third of
the incongruent (congruent) stimuli rewarded with the high
reward in the first experimental half was rewarded again with the
high reward in the second half. This was done to ensure that high
rewards sufficiently varied across stimuli, and participants were
not encouraged to develop an item-specific strategy (e.g., when
seeing the same items being rewarded a lot).

Statistical analyses. Preprocessing was similar to Experiment 1.
Participant level exclusion criteria were performed on the first
four blocks for the analyses on the first half and across all eight
blocks for the analyses on the second half. We further removed
the first block of one participant who seemed to have consistently
responded with the other response key in one of the two tasks,
suggesting misunderstanding of the mapping which was resolved
in the later blocks following a reminder. For the analyses on the
second half of Experiment 2, we tagged all stimuli that were
rewarded with a high reward in the first experiment half for each
participant separately, i.e., 50% of the rewarded condition if
responded to correctly. Subsequently, for the second half of
interest, we created one dataset including only those previously
highly rewarded stimuli of the reward condition and all stimuli of
the non-rewarded condition. Similarly, we created one dataset
containing only stimuli of the reward condition that were not
previously rewarded with a high reward and all stimuli of the
other condition to test generalization of the reinforcement effect.
Analyses on the first experiment half (blocks 1-4) were similar to
the ones reported above. Regarding the second half with item
repetitions (see above), we ran six models. First, we split the data
from the second half according to whether stimuli from the
reward condition were paired with a high or low reward in the
first experiment half (see above). We then fit the main accuracy
and RT models to the set of previously highly rewarded items
from the reward condition (and all items from the no reward
condition; subset 1) as well as to the set of not previously highly
rewarded items from the reward condition (and all items from the
no reward condition; subset 2). In addition, to test whether
potential effects on previously rewarded stimuli are located at the
level of the stimulus or stimulus-response learning, we ran two
separate models on subset 1, but further including Task similarity
(same vs. different compared to the previous half).

Experiment 3
Participants. Recruitment and payment of participants (n= 103
after pre-processing) was similar to Experiment 1. Mean age was
19.11(SD= 4.57), 64 women, 39 men, 11 left-handed.

Materials. Materials were similar to Experiment 1 with the only
difference that the fixation cross, instead of the target word was
now presented in colour.

Procedure. The procedure was similar to Experiment 1, however,
now the duration of the fixation cross was fixed at 1000 ms and
the duration of the blank screen following reward feedback jit-
tered (750–1000ms).

Data analysis. Data analysis and pre-processing was done simi-
larly as in Experiment 1.

Combined analyses
In order to provide a well-powered test for the global modulation
of conflict processing, we generalized across the methodological
differences by combining all three experiments into single mixed
effects models and a meta-analysis (N= 415). Significance was
inferred based on the 95% credible interval including 0 or not. In
the mixed effects models analysis, we further report the prob-
ability of direction (pd), which can be interpreted as a one-sided
Bayesian p-value when subtracted from 1 (two-sided when
multiplied by 2)32. The mixed effects models were similar to the
models fitted to each experiment separately, with the exception
that we further included experiment number (factorized) as a
variable. Exploratory analyses on the BISBAS scores and con-
tingency analyses are displayed in the Supplementary Methods
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and Discussion 1 and 2, respectively. Meta-analyses across all four
experiments focusing on our main effect of interest, the group by
congruency interaction, were run using the package RoBMA33.
To this end, we generated two different families of models that
assume either the presence or absence of an effect, or hetero-
geneity and combined them using Bayesian model averaging. For
the accuracy analysis, where we observed a clear directional effect,
we used a normal distribution with mean 0 and a standard
deviation of 0.1 for the effect prior treated as belonging to the
alternative hypothesis, and a cauchy distribution with the location
parameter set to 0 and the scale parameter set to 0.05 for the
heterogeneity parameter τ. Both priors were truncated to positive
values only as we hypothesized a positive effect and found con-
sistent evidence for this direction. For the meta-analysis on RT,
we used a normal distribution with mean 0 and a standard
deviation of 0.01 for the effect prior, and a cauchy distribution
with the location parameter set to 0 and the scale parameter set to
0.005 for the heterogeneity parameter τ. As we used unstandar-
dized effect sizes, these priors were chosen based on the scale of
the effect sizes from the mixed effects models, i.e., assuming a 1%
increase or decrease in RT to be meaningful. As we did not
observe a clear directional effect across experiments, only the
heterogeneity parameter was truncated to positive values only.
For both meta-analyses, we used four chains with 2000 warm-up
and 5000 sampling iterations.

Results
Individual estimates of our main effect of interest, i.e., the group
by congruency interaction of each sub-model fed in the meta-

analysis is displayed in Fig. 2. Complete result tables for each
individual experiment as well as for the joint analyses are pre-
sented in Supplementary Tables 7-10. We also ran an initial pilot
experiment which, however, showed methodological flaws which
is why we excluded it from the main analyses. Notably, our main
analyses reached the same statistical conclusions with or without
this experiment (also reported in Supplementary Tables 9–12).

Selective reinforcement of incongruent trials reduces accuracy
congruency effects. In the combined mixed effects model on the
accuracy results, we found a significant interaction between
Congruency and Group (Est. = 0.038, 95% CI [0.009, 0.067], 99%
[pd]). As expected, the group rewarded more on incongruent
trials showed a smaller congruency effect than the group rewar-
ded more on congruent trials. Significant main effects were found
for Congruency (Est.= 0.299, 95% CI [0.268, 0.330], 100% [pd]),
Transition (Est.= 0.139, 95% CI [0.111, 0.166], 100% [pd]), and
Task (Est. = 0.244, 95% CI [0.196, 0.292], 100% [pd]), with
participants being more accurate on congruent trials, task repe-
titions, and the animacy task. In line with Goschke34 we also
found a two-way interaction between Congruency and Transition
(Est.=−0.029, 95% CI [−0.053, −0.004], 99% [pd]), indicating
that congruency effects were smaller following task repetitions.
Lastly, we found a significant interaction between Congruency
and Experiment (Est. = 0.063, 95% CI [0.019, 0.108], 100% [pd]),
suggesting a larger congruency effect in the first experiment
compared to the grand mean.

The additionally performed Bayesian model-averaged meta-
analysis35–37 on the estimates of our main effect of interest, the

Fig. 2 Meta-analysis results and congruency effects across experiments Note. A, C Model estimates per experiment and estimated effect size across
experiments for the accuracy (A) and RT (C) model. The x-axes of the accuracy and RT meta-analyses depict different scaling. µ = Mean effect size.
B, D Raw data plot showing the accuracy and RT congruency effect (interaction between group and congruency). The upper and lower hinges of the
boxplot correspond to the first and third quartiles (the 25th and 75th percentiles). The solid points indicate the means in addition to the median. We used
blue and orange lines to project the congruency effects on the other group to ease comparison. N= 209 in the condition congruent group, n= 206 in the
condition incongruent group. These raincloud plots are adapted from Allen et al.77. Significance stars refer to the mixed effects model results, *p < 0.05.
Accuracies are depicted as error rates for better visualization.

COMMUNICATIONS PSYCHOLOGY | https://doi.org/10.1038/s44271-024-00055-y ARTICLE

COMMUNICATIONS PSYCHOLOGY |             (2024) 2:8 | https://doi.org/10.1038/s44271-024-00055-y |www.nature.com/commspsychol 5

www.nature.com/commspsychol
www.nature.com/commspsychol


Group by Congruency interaction across all three experiments
revealed the same Group by Congruency interaction across
experiments (μ= 0.029, 95% CI [0.000, 0.065], see Fig. 2).

Selective reinforcement of incongruent trials shows less sys-
tematic effects on reaction times. In our reaction time model,
the Group by Congruency interaction did not reach significance
(Est. = 0.001, 95% CI [−0.001, 0.004], 86% [pd]). If anything, the
effect was in the opposite direction than expected (larger RT
congruency effects in the group rewarded more on incongruent
trials), suggesting a speed-accuracy trade-off which we will get
back to in the following sections. Again, we found significant
main effects of Congruency (Est.=−0.015, 95% CI [−0.018,
−0.013], 100% [pd]), Transition (Est.=−0.061, 95% CI [−0.065,
−0.057], 100% [pd]), and Task (Est.=−0.054, 95% CI [−0.060,
−0.048], 100% [pd]), with participants being faster on congruent
trials, task repetitions, and the animacy task. We also found a
Congruency by Experiment interaction (Est. =−0.006, 95% CI
[−0.009, −0.002], 100% [pd]) with congruency effects being
larger in the first experiment as compared to the grand mean.
Finally, we also observed significant Transition by Experiment
interactions for the first (Est.=−0.016, 95% CI [−0.022,
−0.010], 100% [pd]) and second (Est.= −0.022, 95% CI [−0.027,
−0.017], 100% [pd]) experiment. Inspection of the marginal
effects plots and single model fits indicates that switch costs were
larger in these first two experiments, where no task cues were
presented before target onset and thus less task preparation was
possible (in line with e.g.,38,39).

In line with the mixed effects model findings, the meta-analysis
on RT revealed no clear Group by Congruency interaction but a
tendency towards a positive effect, against our initial hypothesis
(μ= 0.000, 95% CI [−0.001, 0.004]). This positive effect reached
significance in Experiment 3 where task preparation was possible
(Est. = 0.007, 95% CI [0.002, 0.013], 100% [pd]).

Drift diffusion modelling. In order to better understand the
cognitive processes that were affected by our reinforcement
schedule and to follow-up on the speed-accuracy trade-off, we
turned to drift diffusion modelling (DDM) as an exploratory
analysis. DDMs conceptualize binary decision tasks as tasks
where the decision maker needs to accumulate evidence until a
certain response threshold is reached26. They allow us to
decompose the decision-making process in at least three para-
meters: boundary separation (a), capturing the speed-accuracy
trade-off or response caution, non-decision time (t), capturing
perceptual and motor processing of the stimulus and response,
and drift rate (v) capturing the strength of evidence accumulation
over time40 (see Fig. 3). Extensions to the standard DDM, in
particular for conflict tasks (diffusion models of conflict; DMC),

have further included the superimposition of conflicting activa-
tions of both controlled and automatic responses by means of
modelling evidence accumulation with a gamma function (see
Supplementary Methods 3 and27). This U-shaped function allows
a response on incongruent trials to initially drift towards the
boundary of the conflicting response before drifting towards the
controlled correct response, thus accounting for fast errors which
are not predicted by the standard DDM. The additional para-
meters comprise at least the peak latency and peak amplitude
(describing when this peak occurs and how strong the activation
is, see Fig. 3). Another parameter which is often set to a fixed
value is alpha describing how much the probability density
function shifts to the right. Visual inspection of the conditional
accuracy functions (CAF), showing the percentage of correct
responding per RT quintile, suggested that a DMC is adequate for
our data, as we noted lower accuracy in the fast quintiles on
incongruent trials (see Fig. 4).

In order to test if both reward groups differed in one or more
of these parameters, we first fitted both the standard DDM and
DMC to the data of the three experiments using R and Rcpp41–43

(See Supplementary Table 13) for used parameter bounds). We
fitted separate drift rates for congruent and incongruent trials in
the standard DDM (analogous to the DMC) to capture potential
differences in evidence accumulation for congruent and incon-
gruent trials. Changes in attentional control are commonly
reflected in this parameter44–46. For instance, changes in drift rate

Fig. 3 Visual explanation of (conflict) drift diffusion models with the boundary shift extension. Note. Drift diffusion and diffusion models of conflict. The
green lines refer to congruent trials and the yellow line to incongruent trials (boundary shift for congruent trials not depicted for simplicity).

Fig. 4 Conditional accuracy function. Note. Conditional accuracy function.
Quintiles were calculated across subjects and conditional accuracy per
quintile calculated per congruency and group. A quadratic trendline is
added for interpretability. Fast errors can be observed for incongruent trials
in both reward groups.
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have been positively linked to reward incentives47,48, confidence
judgments and reward satisfaction49, all of which may play an
important role in this study. In both models, we further allowed
non-decision time to vary trial by trial. Each model was fitted to
the data by minimizing the Kolmogorov-Smirnov (KS) criterion,
describing the maximum absolute vertical distance between the
empirical and the predicted cumulative density functions (CDF)
of the response time distributions50,51 (see Supplementary
Table 14 for values). We evaluated the fit by looking at the
correlations between estimated and observed quantile means in
correct reaction times and estimated and observed accuracy
which showed that both models fitted the data well (see
Supplementary Methods 4 and Supplementary Table 14, for the
according correlations of observed and predicted values and
scatter plots). Interestingly, when performing group comparisons
on the standard DDM and DMC using t-tests, we observed no
significant differences between the two reward groups for any of
the parameters (see Supplementary Table 15), suggesting we were
unable to capture the group difference we observed in accuracy in
any of the processes modelled by the traditional DDM and DMC.
Thus, these models may not be optimal to describe (changes in)
adaptive strategies for conflict processing in our task switching
paradigm.

Dynamic adjustments in decision boundary. Several studies
have suggested that modelling dynamic boundaries which change
trial by trial can be helpful in capturing behaviour. For example, it
has been shown that “collapsing” boundaries can help in mod-
elling some urgency signal52–54 or, alternatively, that people
strategically adjust their decision boundary in response to conflict
on a trial-by-trial basis55–58. Similarly, we recently reasoned that
people, across a range of decision making tasks from cognitive
conflict to moral or reasoning conflict tasks, may dynamically and
strategically adjust their boundary within a trial, i.e., after the
detection of conflict59. Perhaps our participants used such stra-
tegic adjustments of decision boundary to differentially respond
to congruent versus incongruent trials, depending on which
congruency condition was reinforced, which also fits with the
observation that the group difference in congruency effect was
most pronounced for the slowest reaction times (Fig. 4). In order
to test whether people can learn to strategically adjust their
boundary as a function of differentially reinforced congruency
conditions, the model has to allow for an additional boundary
shift parameter (which could be positive or negative) after a shift
time (independent from but after the non-decision time). While
several researchers have hypothesized about these congruency-
dependent, within-trial shifts in decision boundary, we are cur-
rently unaware of published efforts to actually model and esti-
mate them. Therefore, we extended the DDM and DMC by
estimating versions where the decision boundary was allowed to
change (both increase or decrease) given a certain shift point in
time. We estimated these individual shift time parameters, which
were allowed to vary trial by trial by adding normally distributed
noise. Both models seemed to fit our data well, although the
conflict DMC with boundary shifts fitted the data better com-
pared to the standard DDM with boundary shifts (see Supple-
mentary Methods 4 and Supplementary Table 14) for the
according correlations of observed and predicted values and
scatter plots. Both models with boundary shifts had lower KS
values than those without.

Interestingly, allowing boundary shifts resulted in group
differences in the differential boundary shifts for congruent
versus incongruent trials, reaching marginal significance in the
best fitting DMC with shifts (Mean difference score for boundary

adjustments congruent group=11.42, SD= 29.35, Mean differ-
ence score incongruent group = 6.11, SD= 27.89; t(413)= 1.89,
p= .06, Cohen’s d= 0.19, 95% CI [−0.01, 0.38], see Fig. 5 and
Fig. 6), and significance in the standard DDM with shifts (Mean
difference score congruent group=0.01, SD= 0.03, Mean differ-
ence score incongruent group=0.00, SD= 0.03; t(413)= 3.01,
p= .003, Cohen’s d= 0.30, 95% CI [0.10, 0.49]). We also
followed up on these interaction effects with between-group
comparisons for congruent and incongruent trials separately,
which suggested that this effect could not be attributed to either
of the congruency conditions in the DMC with shifts, but
suggested higher boundary shifts for incongruent trials,
t(399.54)=−2.29, p= .02, Cohen’s d=−0.23, 95% CI
[−0.42–−0.03] (Welch correction to degrees of freedom due to
inequality of variances). We found no significant effect for
congruent trials, t(413)= 0.26, p= .79, Cohen’s d= 0.03, 95% CI
[−0.17–0.22], in the group rewarded more for incongruent trials
in the standard DDM with shifts. Specifically, as can be seen in
Fig. 5, our modelling results suggest that, while both groups
upregulated their decision boundaries more in response to
congruent trials, the group rewarded more on incongruent trials
also upregulated their decision boundary on incongruent trials
(see Discussion for interpretation). While a higher boundary for
congruent trials might seem at odds with the general observation
of congruency effects in RT, it is important to note that the RT is
also determined by the drift rate, which was generally higher (i.e.,
faster) for congruent than incongruent trials. The DDM with
shifts further revealed group differences in the difference score in
drift rate, suggesting a smaller difference in drift rate for
congruent versus incongruent trials when incongruent trials were
rewarded more (Mean congruent group = 0.03, SD= 0.05, Mean
incongruent group = 0.02, SD= 0.05), t(413)= 2.43, p =.02,
Cohen’s d= 0.24, 95% CI [0.04–0.43]). In follow-up analyses
there was a marginally significant effect for reward group on the
drift rate in incongruent trials, t(403.85)=−1.66, p= .098,
Cohen’s d=−0.16, 95% CI [−0.36–0.03]. There was no
statistically significant effect for the reward group in congruent
trials, t(413)= 0.25, p= .81, Cohen’s d= 0.02, 95% CI
[−0.17–0.22]. None of the other parameters were able to explain
the difference in congruency processing (see Fig. 5 and Fig. 6).
The finding of numerically similar adaptations in drift rate fits
with current theories on cognitive control, as reinforcement or
incentives have been linked to faster and more accurate
responding48,60,61.

To see if either differential adjustments to boundary shifts or
drift rate on congruent or incongruent trials were adaptive in
terms of optimizing performance, we also conducted additional
optimality analyses. As we only modelled separate drift rates for
each trial type in the DDM with shifts, these optimality analyses
were restricted to this model. Specifically, we simulated 50000
trials for 256 agents with different combinations for each
boundary shift (−0.05-0.1 in 16 steps of 0.01) and drift rate (0-
0.5 in 16 steps of 0.033) while setting all other parameters to
average estimates across both groups. Reward was discounted by
dividing it through the reaction time plus the intertrial interval, to
account for the rewarding effect of fast responses (based on44).
Interestingly, these simulations showed that, indeed, it is
beneficial to upregulate one’s boundary shift in response to the
reward condition up to a certain point after which it ceases to be
beneficial. Moreover, it is adaptive to increase one’s drift rate for
the reward condition (see Fig. 7). While increasing one’s
boundary after a certain point ceases to be beneficial as the time
cost increases without an important benefit for additional reward,
it is plausible that the drift rate is constrained by biological
factors, such as attentional processing units.
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Allowing selective reinforcement learning of stimuli. In all
previous sections, we tested a design without stimulus repetitions
to ensure that the selective reinforcement of the different con-
gruency conditions could not be attributed to the selective rein-
forcement of a specific stimulus or a specific response. We
reasoned that in a design with stimulus repetitions, the repeated
reinforcement of, e.g., the word “elephant” could give rise to
differential processing rather than the mere congruency identity
of the stimulus. To put this hypothesis to test and compare the
magnitude of our global reinforcement effect with an item-
specific one, we added an additional experiment half to Experi-
ment 2, where we repeated every stimulus of the first four blocks
once. Crucially, our reward schedule in this experiment allowed
us to distinguish whether recurring stimuli of each respective
reward condition were presented with the high reward or the low
reward in the first experiment half (see Methods section). Thus,
we could test the difference of item-specific (previously highly
rewarded item of reward condition) vs. congruency specific
(global; not previously highly rewarded item of reward condition)
reinforcement effects (see Method section for details). We found
that the Group by Congruency interaction reached significance in
the accuracy model in the set of stimuli containing the previously
highly rewarded items of the reward condition (and all items of
the other condition; Est. = 0.103, 95% CI [0.054, 0.153], 100%
[pd]), but not in the set of stimuli containing the not previously
highly rewarded items of the reward condition (and all items of
the other condition, Est. = 0.026, 95% CI [−0.024, 0.076], 85%
[pd]). Again, the group rewarded more on incongruent trials
showed smaller congruency effects than the group rewarded more

on congruent trials (see Fig. 8). This effect was of a markedly
larger effect size in the previously rewarded items as compared to
the findings of the first experiment half discussed previously,
while the (non-significant) effect-size of the not previously
rewarded items corresponded to the effect size found in the first
half and our across-experiment analysis. Interestingly, we also
found this interaction to be significant in the expected direction
in the RT model in the set of stimuli rewarded previously with the
high reward (Est.=−0.004, 95% CI [−0.007, −0.001], 99% [pd])
but not in the stimuli not previously rewarded with the high
reward (Est.=−0.002, 95% CI [−0.006, 0.002], 80% [pd]; see
Fig. 8 for comparison). In other words, we found a speeded
processing of incongruent stimuli when they were rewarded
more, rather than the seemingly slower processing reported in the
main analyses across experiments without stimulus repetitions.
Perhaps, items previously highly rewarded now, when recognized
as such, act as reward cues themselves, a possibility that did not
exist in the design with no item repetitions. In line with our
finding, such reward cues have been associated with invigorating
effects that speed up (rather than slow down) responses60,61. It is
important to note that stimuli rewarded with the high reward in
the first experiment half, could be presented with both the same
or the other task in the second half and thus with the same or
different response in the reward incongruent group. In order to
test if response repetitions played a role, we additionally ran the
model including the similarity of task as a factor. These additional
control analyses revealed no significant three-way interaction
between group, congruency and similarity of tasks, suggesting a
reinforcement effect at the stimulus rather than the stimulus-

Fig. 5 Modelling results of the standard drift diffusion model (DDM) with boundary shifts. Note. Estimates of the different model parameters per group
(a–k). Bars reflect the standard error per group. The group rewarded more on incongruent trials seemed to increase their boundary more for incongruent
trials than the group rewarded more on congruent trials. In fitting the models, we went with the common formalizations of the classic DDM, modelling
boundary separation as the difference between boundaries. **p < 0.01, *p < 0.05, °p < 0.1.
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response level (see Supplementary Tables 16–19) for results
tables). Interestingly, we also found a significant Group by
Transition interaction in the accuracy models, both in the set of
previously highly rewarded (Est.=−0.047, 95% CI [−0.092,
−0.002], 98% [pd]), and not highly rewarded stimuli (Est.=
−0.061, 95% CI [−0.103, −0.019], 100% [pd]), with the group
rewarded more on incongruent trials showing larger switch costs
than the group rewarded more on congruent trials. These results
align with attractor state models, conceptualizing states of cog-
nitive flexibility and stability as landscapes with wells that differ
in terms of depth6,62. If the group rewarded more on incongruent
trials shows deeper wells, therefore shielding their task repre-
sentations better, this may come at the cost of larger switch costs
required to overcome this shielding. The previously found main
effects of task, transition and congruency remained significant in
both accuracy and RT models (corresponding to the earlier
described effects; all pd= 100%).

Discussion
Across three experiments, we tested whether reward can teach
people abstract control processes. A joint analysis showed that
people indeed learned to increase their control settings when
incongruent trials were rewarded more. Computational models
suggest that this effect can be attributed to a selective upregula-
tion of decision boundaries. It has been known for long that
reinforcers shape learning of stimulus-response links63. Indeed,
more recent studies suggested that this could also explain selective
reinforcement of congruency effects in Stroop- and Simon- like
tasks64–67. However, the present results critically extend this line
of research by showing that reinforcement learning is not

restricted to describe acquisition of concrete stimulus-response
associations, but can also successfully capture learning of abstract
control processes independently of the concrete S-R links they
operate on (see also65,66).

In a similar vein, we found that stimulus-specific reinforcement
learning (when using stimulus repetitions in Experiment 2)
resulted in noticeably stronger modulations of the congruency
effect in accuracy, and qualitatively different patterns in reaction
time, relative to the reinforcement learning of adaptive control
strategies (when using unique stimuli; as in the combined analysis
of Experiments 1, 3, and the first half of Experiment 2). Together,
these findings suggest that reinforcement learning can operate on
different processes that vary along a gradient of abstraction,
where the learning of stimulus value likely is a more efficient
strategy for control selection, followed by increasingly abstract
forms of learning when the former is not possible68–70. It would
be interesting for future research to formalize this idea as a credit
assignment problem where policies at different levels of control
can have different learning rates. Specifically, such studies could
test whether participants are biased towards first assigning
rewards to the stimulus-response level rather than their more
domain-general control configurations, and whether this first
level is also associated with higher learning rates.

It is important to note that additional cognitive processes may
have contributed to the observed group differences in conflict
processing. For instance, rewards, rather than having served as a
reinforcement signal in the narrowest interpretation, may have
acted as a form of conscious reminders to pay more attention to
the task, particularly when following incongruent stimuli. Yet,
while offering a complementary explanation of our findings, this

Fig. 6 Modelling results of the diffusion model of conflict (DMC) with boundary shifts Note. Estimates of the different model parameters per group
(a–k). Bars reflect the standard error per group. In fitting the models, we went with the common formalizations of the DMC, modelling boundary as the
relative difference of the lower and upper bound from the start of the evidence accumulation (here from 0). °p < 0.1.
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Fig. 7 Heat maps of analyses for drift diffusion model with boundary shift. Note. Figure depicting mean discounted reward rates based on different
combinations of boundary shifts (in number of evidence units; a, b) and drift rates (in number of evidence units per second; c, d) for each congruency
condition per reward group. Scaling is set to five breaking points for rewards but differs between sub plots. Crosses depict estimated means and standard
errors across participant estimates. The line segment for the optimal boundary shift plots depicts the difference to the initial boundary with coordinates
(0, 0).

Fig. 8 Stimulus-specific and stimulus-unspecific reward effects in the second experiment half. Note. Raw data plot showing the accuracy (a, c) and RT
(b, d) congruency effect (interaction between group and congruency) of the previously highly rewarded trials (a, b) and previously not highly rewarded
trials (c, d). The upper and lower hinges of the boxplot correspond to the first and third quartiles (the 25th and 75th percentiles). The solid connected
points indicate the means in addition to the median. We used blue and orange lines to project the congruency effects on the other group to ease
comparison. N= 104 in the condition congruent group, n= 102 in the condition incongruent group. ***p < 0.001, **p < 0.01.
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account cannot stand alone or inherently rule out a reinforcement
learning account, because, if observed differences in control
modulations were the mere consequence of participants’ redir-
ecting their attention, we would expect the resulting lasting
control modulations to be global rather than congruency-specific.
As elaborated in the Introduction, we believe that an encom-
passing learning perspective, in both cases, provides a more
parsimonious explanation of cognitive control adaptations rather
than conceptualizing learning and control as strictly orthogonal
processes. To further investigate what underlying cognitive pro-
cesses might drive the found effect of reinforcement learning, we
ran four different drift diffusion models by factorially combining
the decomposition of the drift rate into a controlled and auto-
matic process to model the early interference (making it a
DMC27), and the implementation of a congruency-dependent
shift in decision boundary after the detection of stimulus (in)
congruency. In other words, we compared a standard DDM with
a DDM with varying decision boundary, with a DMC, and with a
DMC with varying decision boundary. The latter was inspired by
previous studies showing that participants show higher decision
thresholds, i.e., cautiousness when conflict increases55–58, allow-
ing more time and caution for conflict resolution upon conflict
detection. The idea of boundary (or speed-accuracy)71 adjust-
ments as a reward maximizing strategy has further gained
attention in the design of neural networks, providing a plausible
mechanism to be tested in actual performance13.

Interestingly, while both the standard and diffusion model of
conflict revealed no group differences in parameters, the shift in
boundary parameter turned out to be critical in explaining the
group differences we observed in accuracy. While both groups
increased their boundaries following congruent trials, the group
rewarded more on incongruent trials also showed a similar
increase for incongruent trials. The general increase for congruent
trials across groups may seem surprising at first, as we would have
expected a larger increase in response to the more difficult trials.
However, the observed pattern may be a result of the specific
reinforcement schedule, and is compatible with previous research
showing that people are only willing to invest effort if it pays
off72. Assuming that congruent trials require less effort or control
to resolve, people may have been willing to invest more time on
these trials (i.e., by being more cautious at the cost of foregoing
speed), for both high or low rewards. Doing the same for
incongruent trials, however, might have been considered more
costly, and therefore only resulted in increased decision bound-
aries in the group that was also rewarded more on incongruent
trials, in line with the basic premise behind the expected value of
control theory73. Naturally, this interpretation should be taken
with caution as it is derived post-hoc on the basis of exploratory
follow-up analyses.

Following a similar pattern as compared to the boundary shift,
the group rewarded more on incongruent trials showed a smaller
difference in drift rate for congruent and incongruent trials
according to the DDM with shift, pointing at control adaptations
not only in response caution but also to smaller differences in
selective attention or improved task focus between the two con-
gruency conditions. This finding shows that control can be
optimized in multivariate ways45, as also further supported by our
optimality analyses. Assuming that participants’ behaviour was
driven by a reward maximization strategy, i.e., the maximization
of rewards per time unit, both adjustments in drift rate as well as
in boundary shift were adaptive strategies up to a certain point,
after which boundary shifts ceased to be optimal.

In addition to the above described findings across experiments,
we note that there were a few experiment-specific findings. One of
the most important between-experiment differences, perhaps, was
that we presented the target and task simultaneously in our first

two experiments, allowing participants less time to process and
respond to the target, while in the last experiment, the task cue
preceded the target. Initially, we reasoned that we could maximize
variance by presenting task and target information simulta-
neously, providing more leeway for a potential effect of our
congruency-specific reinforcement schedule: if participants knew
only upon target presentation which task to perform, the com-
peting task information can conflict more with the relevant task.
However, in hindsight, this design likely worked against the
reinforcement-sensitive regulation of congruency-specific control
strategies, which turned out to be most outspoken in our third
experiment where the task cue and target were temporally sepa-
rated. In this experiment, participants could prepare first for the
task at hand (as evidenced by the reduced switch costs), and focus
more on task- and congruency-specific control strategies during
target processing and response preparation.

Limitations. To follow up on our main results, i.e., the reduction
of congruency effects as a function of reinforcement learning, we
used diffusion models as described above. These models were of
exploratory nature to obtain better insights into which underlying
cognitive mechanisms were affected by our reinforcement sche-
dule. However, these models were not preregistered, and do not
model the learning of these process parameters. Therefore, it
would be interesting for future research to follow up on our
findings by developing a more overarching computational model
that can account for both congruency-specific reinforcement
learning and control adaptations (linked to performance bene-
fits), for example by combining an evidence accumulation module
to a neural network, and assigning separate weights to
congruency-specific boundary shift parameters that can become
stronger with practice. Along those lines, it would be interesting
to adapt neural networks such as by Simen and colleagues13 to
capture adaptations in thresholds as a function of stimulus
congruency.

Conclusion
In sum, we provide evidence that congruency-specific control
strategies can be subject to reinforcement learning, extending
previous studies that focused on the reinforcement of stimulus,
response, and task values. Through modelling, we show that
people most likely optimized control by strategically shifting their
decision boundary in a congruency-specific manner. At the same
time, our findings also suggest that reinforcement learning at the
lowest available level (i.e., increasing stimulus value) is still the
preferred, default strategy guiding control adaptations, resulting
in stronger and faster changes in performance. This fits with the
broader ideas that reinforcement learning of abstract control
strategies can only follow the slower process of abstraction (i.e.,
requiring exposure to multiple stimuli) and meta-learning74, and
that the strategies on which it operates are considered more
costly72,75.

Data availability
All data and materials are available on OSF under this link: https://osf.io/qdk5t/76.
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