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Attractor dynamics with activity-dependent
plasticity capture human working memory across
time scales
Connor Brennan1 & Alex Proekt 1✉

Most cognitive functions require the brain to maintain immediately preceding stimuli in

working memory. Here, using a human working memory task with multiple delays, we test

the hypothesis that working memories are stored in a discrete set of stable neuronal activity

configurations called attractors. We show that while discrete attractor dynamics can

approximate working memory on a single time scale, they fail to generalize across multiple

timescales. This failure occurs because at longer delay intervals the responses contain more

information about the stimuli than can be stored in a discrete attractor model. We present a

modeling approach that combines discrete attractor dynamics with activity-dependent

plasticity. This model successfully generalizes across all timescales and correctly predicts

intertrial interactions. Thus, our findings suggest that discrete attractor dynamics are insuf-

ficient to model working memory and that activity-dependent plasticity improves durability of

information storage in attractor systems.
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Working memory—a flexible limited capacity system
which temporarily maintains and stores salient infor-
mation in the absence of sensory cues—is an essential

requirement for most human cognitive processes1,2. Despite its
fundamental importance, working memory is unreliable. Repre-
sentations stored in working memory degrade over time3–6. Some
aspects of memory decay are random. In the setting of spatial
working memory for instance, this form of memory decay gives
rise to the random dispersion of recalled locations relative to the
original stimulus7. Furthermore, working memory in different
domains is systematically biased8–12. For instance, recalled spatial
locations8,9,12 and colors10,11 systematically deviate from the
original stimuli. Much like the random errors, biases in working
memory also grow over time10,13.

Persistent neuronal firing14–17 observed during the delay per-
iod between stimulus and response in the prefrontal cortex led to
the hypothesis that working memory trace is maintained by a
stable “attractor” state established through recurrent
excitation18,19. Such stabilization of neuronal activity may allow
the neuronal network to store sensory information in the absence
of the stimulus and counteract the effect of noise—ubiquitous in
most aspects of brain physiology20–22.

While the importance of attractors in memory storage has
received considerable experimental support16,23,24, two compet-
ing attractor models have been proposed. Continuous attractor
models propose that memories are stored by a continuum of
stable states such as line or ring attractor19,23–25 particularly well
suited for remembering continuous variables such as location in
space. Alternatively, it has been proposed that in order to
counteract the effect of noise26, discrete attractors are used to
store stimuli in working memory10,27–29. In contrast to con-
tinuous attractor models that give rise to unbiased memory sto-
rage, discrete attractor models can be fit to reproduce
experimentally observed biases in working memory and can be
shown to have noise-stabilizing properties10. Despite some sig-
nificant differences between the predictions made by the con-
tinuous and the discrete attractor models, there is a fundamental
assumption that is common to both formulations. Specifically,
both classes of models assume that the dynamics—the laws of
motion that govern how neuronal activity changes during the
delay between the stimulus and its recall—are fixed.

Under this assumption, the dynamics of the memory trace can
be modeled as drift and diffusion on a fixed energy landscape. For
a continuous line or ring attractor network, the energy landscape
has a linear or a circular energy trough; while for a discrete
attractor network, the energy landscape has discrete energy
wells30. Local minima in the energy landscape serve to stabilize
neuronal activity against noise and other perturbations and can
give rise to sustained neuronal activity in the absence of stimulus.
This energy landscape approach has been recently used to provide
evidence that working memory in humans and non-human pri-
mates is mediated by discrete attractors10.

An example of the drift-diffusion model used to model
working memory is shown in Fig. 1A, B. A participant is pre-
sented with the stimulus (e.g., location of a dot along a line) and is
then asked to recall the stimulus location after some delay.
During a delay period between the stimulus and the response, the
memory trace evolves under the influence of two classes of forces.
Diffusion adds uncorrelated noise which accumulates over time.
This results in the random unbiased dispersion of the recalled
location relative to the target stimulus such that in the limit of
long delays, the responses tend towards a uniform distribution.
This is the expected long-term behavior of a continuous attractor
model corrupted by noise26. To mitigate this damaging effect of
noise, it has been proposed that in addition to diffusion, drift
towards a local minimum of the energy landscape serves to

stabilize the memory trace. Under this discrete attractor model,
the memory trace diffuses down the energy gradient towards a
local minimum. Once at the local minimum, the concave shape of
the energy landscape serves to stabilize the memory trace against
the corrupting influence of noise. After the memory trace has had
sufficient time to relax towards the local energy minimum, the
distribution of responses is determined by the shape of the energy
landscape—the probability of observing a response at a specific
location along the target interval is related to the energy through
the Boltzmann equation. Consistent with the predictions of the
discrete attractor model, it has been shown that, given uniformly
distributed target stimuli, the distribution of responses exhibits
several discrete peaks corresponding to the local minima of the
energy landscape10.

However, a key prediction of the discrete attractor model was
not explicitly tested. Specifically, the discrete attractor model
predicts that after the memory trace relaxes to the energy mini-
mum and the biases saturate, the only information that can be
recovered from the response is the location of its nearest energy
minimum. In other words, the maximal mutual information
between the stimulus and the response for a discrete attractor
model is solely limited by the number of discrete energy wells in
the system. Here, we test this prediction by attempting to
approximate human visual working memory performance using
drift diffusion models.

Methods
Participants. 161 human participants engaged in an online
experiment administered through Prolific. We screened for
attention to the task by removing trials with a bias of greater than
0.25 (210 out of 17760 trials). This threshold is set at roughly the
99% quantile of all recorded biases to avoid outlier artifacts. Each
participant was asked to complete at least 100 trials at two dif-
ferent delays. They were then given the option to complete more
trials at a new set of two delays for increased reward. Data
reported in the main text uses the aggregate dataset pooled across
participants.

The average age of participants was 26.2 with a standard
deviation of 8.6. Information about the participants’ sex was
obtained through self-report. There were 86 male participants,
and 66 female participants. Nine participants chose not to answer.

All experiments in this study were approved by Institutional
Review Board at the University of Pennsylvania and were
conducted in accordance with the National Institutes of Health
guidelines. All participants gave written informed consent before
beginning the experiment.

The study was not preregistered.
Participant compensation was described as follows:
“The task is divided into blocks of 10 trials each. You will be

asked to complete at least 10 blocks. You will be compensated at a
rate of $10.00 USD an hour if you complete 10 blocks. If you
choose to complete more blocks your compensation will increase
by $1.00 USD per hour for every 10 blocks completed.”

Experiment. The experiment web app was developed in Unity.
During the experiment participants were asked to recall the
position of a dot on a line after a delay of 0, 1, 3, 6, 13 or 20 s. The
target position of the dot along the line was drawn randomly on
each trial from a uniform distribution between 10 and 90% along
the length of the line to avoid edge effects. The size of the target
dot had a diameter of 15 pixels and the length of the line was
200px.

Participants were first asked to complete a short survey,
followed by an example trial where the instructions were printed
on each slide and the slides only advanced when the participant
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clicked. The first slide showed a line with a dot on it and the text
“You must remember the position of the slider on the line. Click
anywhere to continue. (Next time this will auto-advance) Your
cursor has been hidden, please don’t use your finger.” The next
slide was the delay period in which a blank slide with the text
“You will wait a few seconds before being asked to respond.” was
displayed for 3 s (in future trials the display time of this slide was
randomized). Finally, the response slide was displayed showing
the line in the same position but without the target dot. A skip
button in the button right of the screen was added to allow

participants to skip a trial. In the example trial the following
instruction was given as text “Click or drag the slider to the
original position. The closer the better! If you’re not sure, press
skip for no penalty.” Once the participant clicks on the line the
true experiment starts.

During the execution of the task, the participant first sees a
fixation slide that has the text “Get ready!” in the middle of the
screen. Next, they see the target slide with the dot for 1.5 s. Then
the blank slide is shown for a variable delay interval. During the
delay interval, the cursor disappeared and appeared in the middle
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Fig. 1 Schematic of the energy landscape model of visual working memory. A Experimental design. Participants are asked to remember the position of a
dot on a line. After a variable delay period, the participants are asked to indicate the remembered location of the dot with a mouse click. B Schematic of
diffusion on an energy landscape used to model working memory dynamics. The dynamics of the memory trace are governed by two components: drift
(black arrows) given by the local gradient of the energy landscape (black curves) and diffusion (gray arrows) which gives rise to random fluctuations of the
memory trace. Under the influence of both drift and diffusion, the memory trace will over time move to the local energy minimum and randomly fluctuate
around the minimum (vertical gray dashed line) under the influence of noise. C Distribution of errors at different delays. Errors were calculated as Error =
Response value - Target value across the entire number line (targets ranging from 0.1 to 0.9). D Histogram shows the density of responses. The black line
shows the distribution of the targets. Targets were drawn from a uniform distribution between 0.1 and 0.9 to avoid edge effects. E Simulation of two well
energy landscape (curve on the right margin) illustrates the dynamics of working memory. Color indicates starting value of the trace (location of the target
stimulus). Note that all traces eventually converge on the bottom of the energy wells (dashed black lines) at long timescales. F As the memory trace
evolves down the energy gradient, the memory becomes systematically biased. The time course of development of such biases (averaged across all
locations) is shown by the black trace (shaded area shows 95% confidence interval). Note that bias saturation occurs when the system approaches the
bottom of the energy well because at this point the drift is negligible and the system becomes purely diffusive.
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of the screen upon conclusion of the delay. Each participant saw 2
of the 6 possible delay times (0, 1, 3, 6, 13, and 20 s). The delay
was chosen randomly at the beginning of the experiment and
every 100 trials (10 blocks). The experiment was divided into two
separate runs. The first run used only the delay time (0, 1, 3, and
6 s) while the second run used only the delay times (1, 13, and
20 s). Finally, the participants return to the response screen with
the blank line and the skip button. This process repeats for a 10-
trial block. Once a block is finished the participant receives the
text “Good job! Click anywhere to start another 10 trials.” This
process repeated for at least 100 trials (10 blocks) with the option
to do more for extra reward. There was no time limit for the
response.

Effect of delay on bias. The error of each trial was defined as the
difference between the target and the response value. Bias of
responses at a given position along the line was then calculated by
binning each trial into non overlapping bins based on target value
with a width of 0.25 (41 total bins along the line). The bias of each
bin was defined as the mean error for all trials belonging to that
bin. To calculate the overall bias for a given delay time we took
the maximum absolute bin bias across all bins associated with
that delay. This process was then bootstrapped 1000 times to
estimate the variance.

Model goodness of fit is reported as coefficient of determination
(R2) and earth mover’s distance (EMD). R2 was computed on a
vectorized version of the distributions. For computational
efficiency, EMD was calculated individually for each target location
and then averaged across target locations. We implemented EMD
using a MATLAB function31 based on Ruber et al. 32.

To characterize the time constant that governs the develop-
ment of the overall bias, the following exponential function was
fit to the data using constrained minimization implemented via
the MATLAB function fminsearch:

B tð Þ ¼ η 1� e�λt
� �þ B0 ð1Þ

Where ηþ B0 is the overall bias observed at saturation, λ is the
time constant, and B0 is the bias estimate for the initial delay
time. The fit was optimized using a least squares cost function
between the expected bias, B tð Þ, and the observed bias for each
timepoint in the data. The fit was bootstrapped 100 times to
estimate the variance of the time constant.

Effect of delay on mutual information. Mutual information of
the target value and participant response was calculated using 12
non-overlapping bins along the line to support the distributions.
The marginal distributions of trial targets, p Tð Þ, and participant
response, p Rð Þ, were calculated by normalizing the trial count in
each bin for the respective variable. The joint distribution,
p T;Rð Þ, was calculated using normalized trial counts in a 2D grid
with the same bin sizes as the previous distributions. Mutual
information was then calculated as:

MI T;Rð Þ ¼ ∑p T;Rð Þ ln p T;Rð Þ
p Tð Þp Rð Þ ð2Þ

Where the sum is taken over all bins, and elements in which
p Tð Þp Rð Þ= 0 were set to 0. The value was calculated indepen-
dently for each delay time and bootstrapped 100 times to estimate
the variance.

Static landscape model definition. The dynamics of spatial
memory were first modeled as Brownian motion on a fixed
energy landscape as in ref. 10:

dx ¼ βG xð Þ þ ε σð Þ� �
dt ð3Þ

Where x is the position of the system along the line, β is a scalar
encoding drift strength, and G xð Þ is the amount of drift at each
location along the line and corresponds to the negative gradient
of the energy landscape, G xð Þ ¼ � dE xð Þ

dx . ε σð Þ is zero mean Gaus-
sian noise with variance of σ and dt is the time step.

Plastic landscape model definition. Plasticity was modeled as a
local deformation of the energy landscape. Specifically, we
hypothesized that in order to explain the unexpectedly high
amount of mutual information between the stimulus and
response present at a steady state, the memory trace must be
locally stabilized. This stabilization was modeled as a Gaussian
depression added to the landscape at each step. This depression
was centered on the current position of the system, and its
amplitude and width are parameters of the model fit to the
experimental observations (see below):

G x; t þ 1ð Þ ¼ G x; tð Þ þ ζP xð ÞβPdt ð4Þ
Where G x; tð Þ is the drift of the system at location x and time t,

ζP xð Þ is the plastic kernel and βP is the scalar which encodes the
growth rate of the local deformation of the energy landscape.
Because, the drift of the memory trace is given by the negative
derivative of the energy landscape, the plastic kernel, ζP xð Þ, is
defined as the derivative of a Gaussian centered at the present
location of the memory trace x0 with parameter plastic sigma, σP :

ζP xð Þ ¼ � x0 � x
� �

e
� x0�xð Þ2

2σ
P2 ð5Þ

Note that the positive derivative gives a negative Gaussian on
the energy landscape. Furthermore, note that if the plasticity time
constant, βp, is set to zero Eq. (4), describes a static energy
landscape and the dynamics of the system are reduced to those in
Eq. (3). Thus, the plastic landscape model introduces two
additional parameters, βp and σP which govern the development
and the shape of the local deformation of the energy landscape.
Both the static and the plastic landscape models were fit to the
data using identical procedure described below.

Fitting the energy landscape models to data. G xð Þ was fit at 50
equidistant bins spanning the length of the line. The value of G xð Þ
at each location is a parameter of the model. To reduce depen-
dence of the model on a single value of G xð Þ, the drift was
smoothed using a Guassian kernel with variance of 0.2.

We fit the model to data collected at six delay times and
sampled uniformly over the range of target values between 0.1
and 0.9. In order to synchronize the time course of the model
dynamics and observed data we include a delay term, t0, into the
model such that:

tfit ¼ t0 þ t ð6Þ
Where tfit is the time used to fit the data and t is the simulation
time. We initialized the model at 50 starting positions ranging
from 0.1 to 0.9 and simulated 300 runs of the model (Eq. (3)) for
each of these start points. The dt of the model was fixed to 0.1
and the model was run until tfit reached 20 s. This occurs after
20þt0
dt time steps. This implicitly assumes that the dynamics of the

memory trace on the interval [0, t0] are identical to those
observed subsequently. In additional model simulations, we
relaxed this assumption and allowed the drift constant β and
noise variance σ to assume different value during the time up to
t0. This introduced two new parameters to the model (βto and
σ to ), but otherwise the fitting procedure was unchanged.

The models were fit to approximate the distribution of
responses at all target locations and delay intervals to ensure
that both bias and variance were well approximated. The data
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distribution was calculated by binning the trials by target value
into 50 bins from 0.1 to 0.9 at each delay interval. For each target
bin, the distribution of responses was estimated using MATLAB’s
ksdensity function with 50 bins between −0.25 and 0.25 relative
to the target value as support. The modeled distributions of
responses were calculated in the same way for each of the 50
target locations used. In order to reduce the effect of the
stochastic nature of the model, we smoothed the model
distributions using a moving mean filter with a stencil size of 3
before comparing to the data distributions. Kullback–Leibler
divergence (KL divergence) between model and experimentally
observed distributions summed over all six delays was used as the
cost function.

Model optimization was performed using the pattern search
algorithm in MATLAB. We first optimized the full parameter set
(50 drift parameters, G xð Þ that define the gradient of the energy
landscape, and the parameters that set the dynamics of the system
on this energy landscape β, βp, σ; σp, and t0), and then in a second
run optimized just the dynamical system parameters while
keeping G xð Þ fixed. For static landscape model βp and σp were
set to zero. See Table 1 for a full list of the range of parameter
values explored.

Static landscape model fit to optimize the development of bias.
Instead of directly matching the distributions of the data we
attempted to produce a static landscape model that matched just
the delay time vs. bias curves. The model and simulation are the
same as used for the static landscape model. The only mod-
ification was that the cost function was changed to be the squared
error of the biases observed in the data compared to the biases
given by the model at each time point and the squared error of
the model’s fit time constant and the observed time constant.
These two terms were normalized by dividing by the observed
value:

C ¼ ðBmodel � BdataÞ2
Bdata

þ ðτmodel � τdataÞ2
τdata

ð7Þ

Where C is the cost function, B is the bias of at a given time delay
defined as the maximum absolute value of the mean error across
spatial bins, and τ is the time constant of the fit exponential
model.

Inter-trial effects. In order to calculate the spatial dependence of
inter-trial effects we first binned the data based on the current
trial’s target position and the delay time. We used 50 non over-
lapping bins from 0.1 to 0.9 with width 0.1 to spatially partition
the current trials. We then calculated the error for different
previous trial responses relative to the current trial’s target by
iterating through 21 offsets from −0.3 to 0.3. For each offset we
estimated the error using a weighted average of all trial errors in
the target bin and weighted by the offset of the previous trial’s
response. The weighting used a Gaussian kernel with variance of

0.05. Mean and confidence intervals are estimated by boot-
strapping the trials used in the calculation 100 times.

The temporal dependence of inter-trial effect was calculated by
taking a stereotypical spatial bin and calculating the spatial
dependence for this spatial bin at each of the observed delay
times. The total size of the effect at each time point is calculated
by taking the range (maximum value - minimum value) of the
spatial effect. Mean and confidence intervals were estimated by
bootstrapping the calculation 100 times.

Finally, in order to test the level of inter-trial effect predicted by
the plastic model, we add a term that allows the plasticity in the
previous trial to decay during the inter-trial period.

G x; 0ð Þ ¼ λTG0 xð Þ þ 1� λT
� �

Gf ðxÞ ð8Þ
Where G0 xð Þ is the static landscape given by the model
parameters, λT is the plastic trial decay value and Gf ðxÞ is the
final landscape in the previous trial. This value was not explicitly
fit to the data as the trials were self-paced. Instead different values
of λT were explored to examine the possible range of intertrial
interactions that can be produced by the plastic landscape model.

AIC and BIC calculations. All models are fit to approximate the
distribution of responses at all target locations and delay intervals.
Thus, we can explicitly compute the log likelihood of the model
given the data by taking the value of the normalized bin for a
given response, target, and delay tuple. AIC and BIC were then
calculated using the number of parameters in the model k, the
likelihood L̂ and the total number of responses n:

AIC ¼ 2k� 2lnðL̂Þ ð9Þ

BIC ¼ klnðnÞ � 2lnðL̂Þ ð10Þ
Finally, the AIC and BIC p values were calculated by

bootstrapping the AIC and BIC values of both the plastic and
static models and calculating the number of times the plastic
model gave a higher AIC or BIC than the static model. Note that
a p-value of <0.001 means that no bootstrapped pairs corre-
sponded to the null hypothesis that the values overlap.

Statistics. p-values were calculated empirically from the boot-
strapped data using resampling with replacement. This method
ensures that even if we were to increase the sample size of our
simulations, we will not artificially inflate the power of our sta-
tistical tests. The dataset had 17550 total trials, and simulations
were run 1000 times to be able to detect p-value of up to 0.001.

For p-values of model time constants vs. the data time constant
we first found the distributions of the model time constants, and
then calculated the quantile of this model distribution that was
greater than the mean value observed in the data. This same
method was used to calculate the p-value that the mutual
information in the data and plastic model were greater than the
results from the static model.

Table 1 Model parameters and value ranges.

Parameter name Lower bound Upper bound Static fit Static meta model Plastic fit

Drift, G xð Þ −5 5 N/A N/A N/A
Drift strength, β 0.03 0.2 0.0481 0.0998 0.0794
Noise strength, σ 0 0.2 0.0821 0.0759 0.0977
Delay term, t0 1.0 4 1.22 3.50 2.4843
Plastic weight, βP 0.1 15 N/A N/A 9.9976
Plastic sigma, σP 0.015 0.05 N/A N/A 0.0218

List of all fit parameters for models mentioned in the Main Text. Abbreviations are the same as used in the Main Text.
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By making use of this empirical permutation testing, we avoid
needing to make any assumptions about the distribution of the
data, and instead rely only on empirical estimates of the
distributions of our measures of interest (i.e., time constant,
AIC value, etc.)

Plastic fit robustness. We performed a robustness study on the fit
parameters of the plastic model. Starting from the parameter
values given in the main paper we systematically varied the Plastic
weight and Plastic sigma parameters over the full search range
defined during fitting. Note that due to computational constraints
we opted to vary each of these two parameters separately. We
then ran the loss function used for fitting on the new parameter
values a total of 5 times and reported the mean and standard
deviation of the loss.

Robustness of fitting procedure. In order to verify the validity of
our fitting procedure we fit simulated data. Simulations were
performed with an idealized two well energy landscape at varying
levels of noise and drift parameters. Parameters were drawn from
a mesh grid of 10 noise and 10 drift parameters, for 100 total
combinations. The 10 noise and drift values were chosen to be in
the range of parameter values sampled in the main paper. Each
combination of parameters was simulated 50 times from 50
equally spaced starting positions and sampled at the same time
intervals as our dataset. This resulted in 1500 samples for the
fitting procedure, which is about an order of magnitude less data
than available in our dataset. Due to the large number of fits, we
opted to fix the energy landscape during fitting.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Energy landscape models of working memory. Here, our pri-
mary goal was to model the performance of human volunteers
(161 participants, 17550 trials) on a simple spatial working
memory task. The task consisted of an initial fixation (1.5 s)
followed by a presentation of a line segment with a dot placed at a
random location along the line. After a variable delay (Methods),
the participants were instructed to indicate with a mouse click
where they thought the dot was located (Fig. 1A). The response
bias was defined similarly to previous work as the deviation of the
mean of recalled locations from the target location. The presence
of such biases has been well documented in a number of working
memory tasks8–11. Accurate estimation of these biases at each
location over multiple delays requires more trials than are
available at the level of an individual participant. Thus, in what
follows we aggregate the data across all 161 participants. This
aggregation is justified as the distribution of biases observed in
individual participants is similar across participants (Supple-
mentary Fig. 1).

A general class of models used to explain the development of
errors and biases cast the dynamics of working memory as
diffusion on an energy landscape (Fig. 1B). The memory state
starts out near the target location and then evolves during the
delay period under the influence of two forces: drift and diffusion.
Diffusion is modeled as a random walk and gives rise to the
random dispersion of recalled locations relative to the target. The
experimentally observed dispersions of recalled location as a
function of the delay period is shown in Fig. 1C. As expected
from the accumulation of random noise, the dispersion of
responses grows with increasing delay period.

In contrast to diffusion which does not have a preferred
direction, drift always points in the direction of the local energy
minimum which corresponds to an attractor state of the network.
Thus, the shape of the energy landscape deforms the overall
distribution of responses. As a consequence of drift down the
energy gradient, responses accumulate near the bottom of the
wells. Consistent with this model, given the uniform distribution
of target stimuli, the distribution of responses exhibits two clear
peaks (Fig. 1D). This suggests that the energy landscape
governing the dynamics of working memory in this task has
two wells. To better visualize how these peaks develop, Fig. 1E
shows simulation of memory traces on a hypothetical energy
landscape that contains two wells separated by an energy
maximum. While target locations are uniformly distributed on
a line segment (colored traces), over time the responses gravitate
towards the energy minima of the landscape giving rise to a
highly non-uniform distribution of responses. This model
naturally gives rise to biased memory storage. Note that if the
target location is presented near the energy maximum, the
memory traces systematically drift away from the target over
time. The direction of this drift depends on whether the target
was just above or just below the local energy maximum. The
development of bias given by this hypothetical two well energy
landscape is shown in Fig. 1F. Bias grows over time and
eventually saturates when the memory trace approaches the
bottom of the energy well. At steady state, when the system has
sufficient time to decay towards its corresponding energy
minimum, all drift subsides and the dynamics become purely
diffusive. In what follows, we will explicitly fit an energy
landscape model to working memory performance to determine
whether it can in fact reproduce the distribution of responses
observed in human volunteers performing a visual working
memory task in Fig. 1A.

Energy landscape models fit to human working memory data
fail to recapitulate the dynamics of working memory. Con-
sistent with previous findings13, experimental results revealed that
the bias of spatial working memory grew over time, eventually
reaching a plateau (Fig. 2A). This behavior is qualitatively similar
to that found for a hypothetical energy landscape with two wells
(Fig. 1F). The responses systematically deviated from the target
locations consistent with an energy landscape with discrete
energy wells (Fig. 2C top). These deviations were exacerbated
with longer delays (Fig. 2D top). The general shape of these
deviations of responses (spline through the distributions) informs
the general shape of the energy landscape. Locations where this
curve crosses zero, and unbiased responses are obtained, corre-
spond to the extrema of the energy landscape. When the slope of
the line is positive, any deviations from the extrema become
exacerbated by the bias (black circles in Fig. 2C, D). These
unstable points correspond to the energy maxima. Conversely,
zero crossings with negative slope are stable because all pertur-
bations are opposed by the drift (red circles Fig. 2C, D). These
stable points correspond to energy minima. Thus, the shape of the
response distribution (Fig. 1D) and the systematic deviation of
responses (Fig. 2C, D) are both consistent with the diffusion on
an energy landscape with two energy wells separated by an energy
peak located close to the middle of the line. These results are also
similar to those in Panichello et al.10 who used a very similar
approach to model performance on a visual working memory
task which used colors rather than spatial locations.

While saturating biases and the probability distributions of
responses (Fig. 2C, D top) are qualitatively consistent with
diffusion on an energy landscape with two wells, it is not a priori
obvious that the dynamics of the development of such bias across
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Fig. 2 Experimental observations and energy landscape model fits. A Development of bias in the visual working memory task. Blue boxplots are individual
bootstrapped estimates of bias calculated from human participants. Orange line and shaded area are the mean bias and 95% confidence interval for the
energy landscape model fit to the raw data. Yellow line is the bias of the energy landscape model fit explicitly to approximate the experimentally observed
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(C) but after 20 s delay.
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different delay periods can be faithfully fit by diffusion on such
landscape. To determine whether this is the case, using methods
similar to that used by Panichello et al.10, we fit the entirety of the
behavioral data to an energy landscape model. In a slight
departure from previous attempts, our modeling approached was
based on Monte Carlo methods and was aimed at approximating
the distribution of responses observed at every target position and
time delay. This was accomplished by minimizing the Kullback-
Leibler divergence between experimentally observed and modeled
distributions (Methods). The validation of this modeling
approach is shown in Supplementary Fig. 2.

As expected from qualitative observations of the data (Fig. 1D,
Fig. 2C, D), the fit of the data yielded an energy landscape with
two potential wells (Supplementary Fig. 3). As expected, this
model gave rise to progressive increase (Fig. 2A red) and eventual
saturation of biases (Supplementary Fig. 4). The rate of bias
development in the model, however, was clearly different from
experimental results (Fig. 2A). Consistent with results in Fig. 2A,
the time constant for bias development in the model was
approximately an order of magnitude smaller than in experi-
mental observations (Fig. 2B, p value < 0.001). The energy
landscape model faithfully fit the distribution of responses at
short delays (Fig. 2C middle row, R^2= 0.880, earth mover’s
distance (EMD)= 0.03) but deviated from the data at longer
delays (Fig. 2D middle row, R2= 0.688, EMD= 0.084). Previous
work on modeling working memory performance using drift-
diffusion models separated the overall dynamics of the system
into two components: “encoding” and “memory”10. To determine
whether this change in the modeling approach can rescue the
performance of the drift-diffusion model, we allowed the drift
strength and noise during the initial “encoding” period to be
distinct from those observed subsequently (Methods). This,
however, did not improve model performance (Supplementary
Fig. 5). Thus, while the qualitative features of working memory
are similar to those expected for diffusion on an energy landscape,
a drift-diffusion model does not faithfully fit experimental
observations across multiple delays.

To determine whether an attractor system can be used to
approximate the dynamics of development of bias, we fit the static
landscape model constrained only by the dynamics of develop-
ment of biases and agnostic to the actual distribution of responses
(Methods). Figure 2A, B (yellow) show that time constant of the
fir model is not significantly different than the data (p value=
0.44, time constant for bias development). However, Fig. 2C
(bottom row) shows that this model is not able to faithfully
recapitulate the distribution of experimentally-observed responses
and yields an energy landscape with a qualitatively different shape
(Fig. 2C bottom, R2= 0.700, EMD= 0.072 and Fig. 2D bottom
R2= 0.407, EMD= 0.117). Thus, a model that attempts to
capture dynamics of human working memory across a number of
delay periods as diffusion on a static energy landscape cannot
simultaneously fit both the distribution of responses and the
dynamics of development of biases.

These observations suggest that diffusion on a static landscape
may not be sufficient to adequately capture the dynamics of
working memory. This conclusion, however, critically relies on
the fitting procedure. To provide additional model free
confirmation of this conclusion, we examined the mutual
information between the stimulus and the response.

Figure 3A shows the evolution of memory traces on a fixed
energy landscape with two potential wells. Note, that early on
during the delay period traces initiated from all three locations
(red, green, blue) are readily distinguishable. However, as the
system equilibrates and approaches steady state, the distinction
between the red and green traces is lost. This information loss
occurs because both the red and green initial conditions belong to

the same basin of attraction – they eventually settle at the same
energy minimum at steady state. The information loss is reflected
in the characteristic deformation of the distribution of responses
(Fig. 3B). Thus, at steady state, the only information about the
stimulus that can be recovered from the response is the basin of
attraction to which the stimulus belongs. All other information is
lost. We therefore sought to determine whether the mutual
information between the stimuli and the responses in working
memory behaves in a manner consistent with the energy
landscape model.

Experimental data (Figs. 1, 2) strongly suggest that the energy
landscape has two wells separated by the energy maximum and that
at the longer delay periods the system is approximately at steady
state as evidenced by saturation of bias (Fig. 2A). The line segment
is thus partitioned into two basins of attraction (to the left and right
of the energy maximum). Because the information about different
starting conditions for all points within the same basin of attraction
is lost at steady state, the mutual information between the stimulus
and the response at steady state is sensitive only to the overall
number of energy wells. Specifically, for a uniform distribution of
target locations (as was the case in experimental data) at steady
state the mutual information between the stimulus and the
response is equal to �∑2

i¼1 pilogðpiÞ, where pi is the probability
of being in the i-th basin of attraction. Mutual information is
maximized when for p ¼ 1=2. Thus, the upper bound on the
estimate of the mutual information between the stimulus and the
response obtained at steady state from a two well potential system
is log(2). Generally, for an n-potential well system the upper bound
on information is log(n).

Simulation of diffusion on a static landscape model with two
energy wells, saturates close to this predicted value. In contrast,
for the human behavioral data, we observe that mutual
information saturates at a significantly higher value (p-value <
0.001). In order to explain this high amount of information in
human data at steady state, the energy landscape would need to
have about four wells. Indeed, the model fit to explicitly
recapitulate the development of bias has three energy minima
(Fig. 2C, bottom). This three well model, however, yields a
qualitatively different distribution of responses from those
observed experimentally. In other words, human working
memory at steady state reflects higher information about the
stimulus than would be expected from the static landscape model.
This is the fundamental reason why static landscape model is
unable to fit the totality of the data across all relevant time scales.

Plastic landscape model faithfully recapitulates working
memory dynamics. How do we reconcile the saturating biases in
working memory with higher information about the stimuli present
at steady state? One important insight comes from observing that the
static landscape model reliably fits the data after short delays but fails
to predict long-term behavior. This observation suggests that the
landscape changes on a slow timescale. Motivated by work on
activity-dependent synaptic plasticity33, we generalized the landscape
model by allowing the memory trace to form a local deformation in
the energy landscape (Fig. 4A). The rate of development of this
activity-induced deformation as well as its spatial extent are added as
parameters in the fitting procedure (Methods). Thus, the static
model (Fig. 2) is a special case of the more general plastic landscape
model, where plasticity parameters are set to zero. The fitting pro-
cedure for the plastic model was identical to that used for the static
landscape model in Fig. 2. To get an intuitive understanding of how
this local plasticity affects the dynamics, consider simulated trials in
Fig. 4A. If the energy landscape remained static, with time both
traces will decay to the energy minimum and become indis-
tinguishable so long as both trials belong to the same basin of
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attraction. However, the deformation in the plastic model provides
some local stability and impedes descent towards the energy mini-
mum. As a result, trajectories starting from two locations within the
same basin do not necessarily mix even at steady state.

The plastic landscape model (Methods) successfully recapitu-
lates the dynamics of development of biases in working memory
(Fig. 4B) and gets an unbiased estimate of the experimentally

observed time constant for bias development (Fig. 4C, p
value= 0.22). Supplementary Fig. 6 shows that the estimation
procedure for the plasticity parameters is robust (Supplementary
Fig. 6). Given this result, we did not fit the plastic model to
approximate the development of biases separately like we did
with the static model. Furthermore, the model accurately predicts
the distribution of responses both at short (Fig. 4D, left,
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R2= 0.935, EMD= 0.040) and the long (Fig. 4D right,
R2= 0.945, EMD= 0.025) delays. Finally, unlike the static model
in which the mutual information decays to ~log(2) at steady state,
the plastic model retains significantly more information about the
stimulus (Fig. 4E, p-value < 0.001). The decay in the mutual
information closely resembles that seen in the experimental data.
We confirmed that the plastic model is a better approximation to
the experimental data than a discrete attractor (static) model
using Akaike Information Criterion (AIC) (static model AIC=
1.61e5, plastic model AIC= 1.92e5, p value < 0.001) and
Bayesian Information Criterion (BIC) (static model BIC 1.61e5,
plastic model BIC= 1.92e5, p value < 0.001).

There are two essential components to the plastic model. The
first is the static component of the landscape. The second
component is the plasticity of this landscape during the delay
period. Consistent with the distribution of the data at short delays
and with previous observations arguing for the discrete rather
than continuous attractors, the static component of the landscape
does indeed reveal two discrete energy wells (Supplementary
Fig. 6). Thus, in total, our results imply that plasticity super-
imposed onto this discrete attractor landscape is required to fully
capture dynamics of working memory.

Plastic model explains proactive interference observed in
experimental data. One consequence of the plasticity of the
energy landscape is that different trials of the working memory
task can become interdependent. This interdependence arises if
the plasticity imposed by the previous trial does not relax
completely by the time the next trial is initiated. Indeed,
proactive interference (PI) between trials is well-known to
corrupt working memories34,35. PI was also readily apparent in
our experimental data (Fig. 5A). Simulations of the plastic
model revealed that it can indeed give rise to PI and that this PI
is similar to that observed experimentally (Fig. 5B). Consistent
with previous work on this subject the overall shape of the PI is
similar to the derivative of Gaussian (DoG)36. One minor
deviation between the experimental observations and model
predictions is that DoG is slightly shifted—yields a small non-
zero interference between two trials in which target stimuli were
presented at the same location.

The model predicts that the magnitude of the PI should grow
as a function of delay time (Fig. 5D). This prediction was also
confirmed with experimental observations (Fig. 5C). The details
of PI demonstrated in this task are qualitatively similar to those
observed with visual working memory task in primates37. Thus,
we show how both the development of biases in human visual
working memory and the inter-trial interference can both be
explained with the plasticity of the energy landscape. Given that
the model fit was completely agnostic to the existence of PI, the
qualitative agreement between model predictions and experi-
mental observations is rather good.

The local deformation of the energy landscape in the plasticity
model naturally stabilizes the memory trace against the

corruptive influence of diffusion. However, in contrast to discrete
attractors, plasticity does not increase the bias. Instead, the
tradeoff is between the noise-stabilizing properties of plasticity
and the level of PI. This raises an interesting question: Do discrete
attractor offer additional noise stabilization benefits over
continuous attractor systems once plasticity is introduced?

To begin to address this question, we first compared the
performance of discrete and continuous attractor systems without
plasticity on the accuracy of working memory performance. In the
noise free case, continuous attractors yield perfect performance, as
expected (Fig. 5E, black line). In contrast, discrete attractor system
produces biased responses even in the noiseless limit. Thus, the
fidelity of memory storage is degraded in the discrete attractor
system in the noise free regime (Fig. 5E, red line). Consistent with
previous work, in a noisy regime, the discrete attractor model yields
better performance at longer delay times, p value < 0.001 (Fig. 5E,
blue and green lines, p value based on difference at the longest
delay). Thus, as shown previously10,18,26, discrete attractors are
superior to continuous attractors for memory storage in noisy
systems because discrete energy wells stabilize the memory trace
against the corrupting influence of noise.

It is not clear, however, whether noise stabilization afforded by
discrete attractor dynamics is also beneficial in systems with
plasticity. To address this question, we simulate the performance
of both continuous and discrete attractor systems with varying
amounts of plasticity. We specifically focused here on the effect of
the overall plasticity strength (βp)—a time constant that sets how
quickly the local deformation of the energy landscape develops.
Other parameters such as noise and (σ), and shape of the plastic
deformation (σp) (Eqs. 3–5, Methods) were kept constant at the
values that best approximated the experimental results. Our
experimental design did not allow for robust estimation of the
rate of dissipation of the local energy deformation between trials
(λT, Eq. (7), Methods). Thus, we kept this parameter constant at
0.8—a value that yielded the best qualitative fit to the amount of
PI between trials observed experimentally. So long as λT is long
enough such that plasticity does not dissipate completely between
trials, PI will ensue. Note that λT sets the magnitude of
interference between trials rather than the shape of the
interference (Fig. 5B). The models were simulated on sequences
of trials to assure that the penalty for PI is considered in the
estimates of the overall accuracy. The relative cost of the PI,
generally depends on the relative timescales of λT and the
intertrial interval. Thus, the following theoretical results do not
undergo qualitative changes with different intertrial decay values.
We find that if a non-zero amount of plasticity is added to the
model the continuous attractor system with plasticity always
outperforms the discrete attractor system with plasticity (p-
value < 0.001, Fig. 5F). This is surprising as it suggests that there is
no intrinsic noise stabilization benefit of discrete attractor systems
so long as the stationarity assumption is relaxed and plasticity is
allowed to deform the energy landscape and thus stabilize the
memory trace against noise.

Fig. 3 Energy landscape model at steady state contains less information about the stimulus than human working memory. A Illustration of information
loss in energy landscape model. Each color represents a unique target location. Drift and diffusion cause the red and green memory targets to become
undistinguishable and all information about the initial target is lost as the system approaches steady state. B Response distributions of simulations in (A) at
several different time points. Red circles denote stable fixed points and black circles denote unstable fixed points. C Bias time course for the experimental
data and time-warped energy well system in (A). Blue boxplots are individual bootstrapped estimates of bias calculated from human participants. Thick
black line and shaded area show mean and 95% confidence interval of the bias for the time-warped model. Note that after time warping, the energy well
system is a qualitatively good match for the observed data. D Mutual information between the stimulus and response as a function of delay time. Blue
boxplots are individual bootstrapped estimates of mutual information calculated from human participants. Thick black line show mean, shaded areas show
95% confidence interval of time-warped model. Red dashed line shows the theoretical upper bound of the mutual information that can be stored in a two
well energy model.
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Discussion
Here, we attempted to approximate the dynamics of working
memory in humans on a simple visual task across different delay
periods using diffusion on a fixed energy landscape. Diffusion on
an energy landscape is a general model of the dynamics of
attractor neural networks that can store stable memory repre-
sentations in the absence of stimulus. We find that while static

energy landscape models are sufficient to accurately fit the
response distribution at a single delay timepoint, they cannot fit
the performance across different delays. This failure occurs
because even after memory biases saturate, the responses contain
more information about the stimuli than would be expected from
a static landscape model. The addition of a plasticity term
expressed as local deformation of the energy landscape formed
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during the delay period fits the data across all delay periods,
explains why the responses contain information about the sti-
mulus even at steady state, and accurately predicts inter-trial
interactions. Thus, our results suggest that stabilized transients
contribute to working memory dynamics. The overall dynamics
of the memory state, therefore, are influenced both by the pre-
formed attractors that shape the trajectory of the memory state,
and the plasticity mechanisms that stabilize the trajectory and
impede its decent into the attractor.

Attractor neural networks offer an appealing framework which
can explain how the memory trace can be transiently stored after
the stimulus is withdrawn and resist noise-driven perturbations18.
These models received considerable experimental and theoretical
support10. While continuous attractors are in principle best suited
for storing memories of continuous variables such as spatial
locations, noise fundamentally limits their storage capacity26. In
contrast, discrete attractors have been hypothesized to produce a
mechanism for neural systems to counteract noise and stabilize
stored memory18. This stabilization comes at the cost of intro-
ducing memory biases10. Our experimental results and many
other similar findings8–12 reveal biases in memory storage and are
thus, at least superficially, consistent with the discrete
attractor model.

There is, however, an important departure of our experimental
findings from the predictions of the discrete attractor framework.
Once a discrete attractor network settles into a steady state and
biases saturate, the only information remaining about the original
memory representation is which attractor it was closest to at the
onset. Our results show that human visual working memory
contains more information about the original stimulus even after
biases saturate. Thus, our experimental findings depart from the
predictions made by both continuous and discrete attractor
networks.

Continuous attractor networks have been successfully deployed
to model performance on visual working memory19,38,39 and
other settings such as path integration40,41. To create a network
with a continuum of attractor states, biologically unrealistic
symmetry is required25. In more biologically realistic models in
which properties of individual neurons and synapses are allowed
to vary42, a continuum of attractor states quickly disintegrates,
and a few discrete attractors form43. This observation has been
used to argue that, while continuous attractor networks, are a
natural choice for storing memories of continuous variables such
as spatial locations, they are not biologically plausible. However,
synaptic strength evolves dynamically as a function of neuronal
activity43,44. Remarkably, introduction of synaptic scaling into
more biologically plausible heterogenous neuronal networks was
able to effectively homogenize the network and restore approxi-
mately continuous attractor dynamics providing a strong argu-
ment for biological plausibility of continuous attractor
dynamics29. The interactions between the heterogeneity of net-
work architecture and activity-dependent synaptic plasticity

prompted several theoretical investigations of the effect of plas-
ticity on dynamics of memory storage in ring attractor
networks33,44. Kilpatrick44 demonstrates that when the environ-
ment is changing rapidly, the best prediction strategy for the next
stimulus is most heavily weighed by the location of the imme-
diately preceding stimulus. This insight naturally leads to the
kinds of intertrial PI that has been observed by us and by
others36,37. Such intertrial interactions arise naturally in ring
attractor networks with activity-dependent plasticity44. Here, we
chose a general modeling framework agnostic to the specifics of
network architecture. This phenomenological model is consistent
with mean field approximations of attractor neural networks with
synaptic plasticity33. Our results are consistent with the proposals
that working memory storage is not mediated solely by pre-
formed attractor dynamics but also involves activity-dependent
plasticity. Simulations of the plastic landscape model show that
local landscape deformations impede the drift down the energy
gradient. This has the benefit of increasing the information stored
about the stimulus at long delay intervals but causes proactive
inference between trials.

The overall shape of the interference between two consecutive
trials as observed experimentally herein and in other related
work36,37 is similar to a DoG. This shape emerges naturally if one
assumes that, as the memory trace traverses the energy landscape
on the previous trial, it produces a Gaussian depression in the
landscape. If this Gaussian depression does not completely relax
in the inter-trial period, then the subsequent responses should be
attracted towards the previously recalled location so long as the
stimulus on the next trial is near the one on the preceding one.
More complex experimental paradigms that involve interactions
between multiple stimuli revealed both attractive and repulsive
intertrial interactions45,46. Fritsche et al.47 also observed both
repulsive and attractive interference between trials. In this case
the direction of the interference depended on the timescale—over
short time scales attractive interference is observed; while on
longer time scales repulsive interactions appear to be present. In
principle, the plastic landscape model can yield both attractive
and repulsive interactions depending on the choice of the plas-
ticity kernel. An attractive component is required in order to
impede the descent of the memory trace into the energy well and
preserve the mutual information between the stimulus and the
response, but a more exotic plasticity kernel can in addition
include a repulsive interaction. Our experiment was not designed
to specifically probe the finer details of the shape of the plasticity
kernel or the timescale on which the depression imposed by the
previous trial dissipates in the inter-trial period. The modeling
framework proposed herein can be further refined in future
experiments specifically designed to address these important
issues.

PI of a similar kind to that observed herein has been studied
using continuous attractor models in macaques29,31. While con-
tinuous attractor models with plasticity capture the effects of PI,

Fig. 4 Addition of plasticity to the energy landscape model fits the totality of data across all time scales. A Illustration of the effect of plasticity on
memory traces. Toy system with a single energy well (energy is represented by color). Black curves show memory traces starting on opposite sides of the
energy minimum. Without plasticity (left), the traces coalesce together, and information is lost. With plasticity (right), the system adds a small negative
deflection to the landscape at each step which lets it “burrow” into the landscape and resist drift. Thus, the two memory traces do not necessarily converge
to the same stable state. B Bias time course for plastic model fit to experimental data. Blue box plots are individual bootstrapped estimates of bias
calculated from observed data. Green line and shaded area are the bias mean and 95% confidence interval for the plastic model fit to the data.
C Distribution of time constants for the data and the plastic model. D Response distributions of plastic model at 1 and 20 s. Red circles are stable fixed
points, black circles are unstable fixed points. Reconstruction R2 values and earth mover’s distance (EMD) for comparison to experimental data (shown in
Fig. 2C, D top) are reported for model fits. E Mutual information time course for experimental data and plastic model. Blue boxplots are individual
bootstrapped estimates of human data. Thick black line and shaded area show mean and 95% confidence interval of the model. Start time of plastic model
is adjusted to align with experimental data (gray dashed line). Red dashed line shows the mutual information of the 2-well model at steady state.
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continuous attractors give rise to unbiased memories. Other work
using continuous attractors has suggested that the combination of
plasticity in the form of short-term facilitation and depression
over many repeated trials can give rise to sustained biases in
memory representations33. This work is consistent with theories
that long-term synaptic plasticity is a mechanism for learning44.
Thus, our model of plasticity on a static energy landscape can be
understood as plasticity on two separate time scales. The fast time
scale plasticity increases the fidelity of memory storage at the cost
of PI. However, over hundreds of trials this plasticity may build
on a slow time scale to shape the system’s systematic biases as
expressed by the energy landscape. This intuition is consistent
with previous work reporting PI over time scales from single
trials48 to several days49. While PI degrades performance on our
working memory task where the location of target stimulus was
sampled randomly from a uniform distribution, in more etho-
logically salient tasks increased autocorrelation in memory may
prove to be a useful feature35,44,50,51. Eissa and Kilpatrick52

recently showed that networks with long-term synaptic plasticity
can, overtime yield energy landscapes that conform to the dis-
tribution of stimuli in the environment that efficiently store
information in ethologically salient settings.

Interestingly, we find that in systems with plasticity, discrete
attractors no longer increase the system’s overall robustness in the
presence of noise. Yet, our results and those of Panichello et al.10

strongly argue that discrete attractors are involved in mediating
visual working memory. This raises the question: Why have dis-
crete attractors at all? One possibility is that the discretization
afforded by discrete attractor dynamics can be used to compress the
memory representations into manageable “chunks”53. By categor-
izing memories into compressed chunks, the system can store
much more behaviorally salient information than if it stored the
specifics about each memory54. Thus, discrete attractors may not
have emerged in working memory to confer robustness to noise but
to effectively store complex memories in manageable chunks.

Limitations. There are several limitations of our study that
should be addressed in the future work. We aggregated the data
across many individuals. While this choice is justified by the fact
that the distribution of responses was approximately conserved
across participants, future work should determine if the plasticity
model applies to each participant individually. This analysis may
reveal interesting inter-individual differences in the relative
contributions of the pre-formed attractor system and plasticity.
The second notable limitation of our study was that it was not
explicitly designed to quantify the dynamics of dissipation of
plasticity during inter-trial interval. If it is indeed true that the
plasticity in working memory confers a benefit in ethologically
salient tasks with notable temporal correlations, the time scale of
plasticity ought to reflect the time scale of the temporal correla-
tions in the environment.

Data availability
Data is available at https://doi.org/10.17605/OSF.IO/FXWMR55. No restrictions on
sharing. All data are packaged into ParticipantData.rar. Each participant has a separate
folder with one JSON file for each 10-block set of trials they completed.

Code availability
The code used to produce the results in this Manuscript can be found at https://doi.org/
10.17605/OSF.IO/FXWMR55.
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