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Humans display interindividual differences in the
latent mechanisms underlying fear generalization
behaviour
Kenny Yu 1✉, Francis Tuerlinckx 1, Wolf Vanpaemel 1 & Jonas Zaman 1,2

Human generalization research aims to understand the processes underlying the transfer of

prior experiences to new contexts. Generalization research predominantly relies on

descriptive statistics, assumes a single generalization mechanism, interprets generalization

from mono-source data, and disregards individual differences. Unfortunately, such an

approach fails to disentangle various mechanisms underlying generalization behaviour and

can readily result in biased conclusions regarding generalization tendencies. Therefore, we

combined a computational model with multi-source data to mechanistically investigate

human generalization behaviour. By simultaneously modelling learning, perceptual and

generalization data at the individual level, we revealed meaningful variations in how different

mechanisms contribute to generalization behaviour. The current research suggests the need

for revising the theoretical and analytic foundations in the field to shift the attention away

from forecasting group-level generalization behaviour and toward understanding how such

phenomena emerge at the individual level. This raises the question for future research

whether a mechanism-specific differential diagnosis may be beneficial for generalization-

related psychiatric disorders.
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As humans, we frequently encounter instances of ‘once
bitten, twice shy’ in our daily lives. Having been bitten by
a dog, we may naturally be wary of other dogs in the

future. This capability of generalizing prior learning to unfamiliar
situations is crucial because it enhances our adaptivity in a con-
stantly changing environment.

The fear of a particular dog, however, might become rigid and
harmful if it is spread to a wide range of harmless dogs or dog-
like animals. Maladaptive generalization behaviour is associated
with several psychopathologies, such as anxiety disorder1–3,
autism4, and obsessive-compulsive disorder5,6. Consequently,
assessing generalization behaviour and quantifying the proclivity
of a latent generalization process is an important goal of gen-
eralization research.

Typically, generalization is studied using a conditioning
paradigm7–9. In a generalization experiment, participants first
learn about the relationship between one or more cues (condi-
tioned stimulus, CS; e.g., a circle) and their associated con-
sequences (unconditioned stimulus, US; e.g., an electrical shock).
Following that, generalized responses are obtained by measuring
conditioned responding to multiple novel test stimuli (TS) that
most often differ slightly in certain physical dimensions from the
stimuli used during training (e.g., the size or color of a circle). As
the physical resemblance to the CS diminishes, the response
strengths tend to decrease7,9,10. This relationship is presumed to
reflect a latent similarity-based generalization process, with a
flatter response gradient implying a greater proclivity for gen-
eralization. Traditionally, researchers in the field have focused on
the group gradient, which is the average of the individual
response gradients7. Along with the summary statistics, numer-
ous statistical models and theories were applied to quantitatively
describe and predict generalization behaviour10–16.

The currently dominant approach of inferring a generalization
mechanism (i.e., the propensity to generalize past learning to
encountered unfamiliar stimuli) directly from the observed
(averaged) response gradient has several limitations. One is that it
relies on the implicit presumption of a single mechanism (i.e.,
generalization) that underlies the behaviour and thus does not
consider the possibility that different latent mechanisms can yield
the same observable behaviour.

However, such a single mechanism perspective is not realistic.
Generalization can be regarded as a cognitive process whereby
previous learning is transferred to newly encountered stimuli
based on their similarity to the originally learned stimulus11,12.
Thus, if any aspect of the process - from the initial learning to
stimulus perception to the actual transfer of learning - goes awry,
it may result in aberrant generalization behaviour. For instance, it
has been observed that manipulating the experimental learning
experiences, such as the number of learning trials, the reinfor-
cement rate, and the learning procedures, exerts a direct influence
on generalization gradients17–21. Without proper learning,
organisms are incapable of generating distinct and consistent
responses. However, even when CS-US learning is firmly estab-
lished, generalized responses can still occur as a result of
imperfect perceptual discrimination between the CS and newly
encountered stimuli22–26, providing the second potential
mechanism for generating flatter or noisy response gradients. In
earlier research, the relationship between insufficient perceptual
discrimination and generalization behaviour has been
discussed27,28. Recently, researchers have further pointed out the
relationship between stochastic perception and generalization
behaviour. The implication is simple: a generalized response to
TSs may not necessarily emerge due to a generalization process
but merely emerge due to an inability to perceive the TS as dif-
ferent from the CS. In support of this idea, the high prevalence of
problematic stimulus discrimination during a generalization

protocol was demonstrated with strong effects on the strength of
generalized responding. Conditioned responses to TSs were
strong when they were falsely perceived as the CS while atte-
nuated when the stimulus was perceived as different from the CS
(even during CS trials)22–24,26. This inflated the inferred extent of
a latent generalization process as response gradients were much
narrower after accounting for perceptual errors25. Yet, the tra-
ditional approach predominantly attributes differences in gen-
eralized responding to a single generalization mechanism, or in
some instances, neglects to acknowledge any underlying
mechanisms altogether. As a result, the inherent variability of the
aforementioned mechanisms and their contribution to the
observed behaviour is often disregarded29. Additionally, it is
pertinent to note that certain patient populations often exhibit
impaired learning30–33, misperceptions34–36, and flatter
generalization1–6 patterns when compared to healthy controls.
Even at the pre-clinical level, variations in these underlying
processes have been associated with state anxiety levels37,38.

Under the assumption that generalization behaviour is not
restricted to a single cognitive mechanism accounting for all
observed behavioural variation, all relevant psychological tasks
(e.g., learning, perception, generalization) should be studied
concurrently. Neglecting the influence of any of these aspects
renders a comprehensive understanding of generalization beha-
viour impossible. Inspiration can be found in the category
learning literature39, in which it is assumed that the performance
of categorization can be influenced by similarity judgment. With
similarly-rating data, the mental representations of physical dif-
ferences between stimuli are derived. These representations will
ultimately affect how organisms make category decisions, as
observed in the category learning data. Without the use of multi-
source data in generalization research, insight into the potential
(multiple) mechanisms at play will remain limited as the same
observable behaviour may stem from various latent processes
with no way to differentiate and identify among them.

Another notable limitation of previous fear generalization
research is the disregard of individual differences, while they
actually may be a rich source of information about the hidden
causes that drive individual generalization gradients. In recent
research, it has been observed that generalization behaviour has
diverse shapes across and within individuals23,25,26. In many
instances, aggregated group data will not adequately reflect
individual behaviour, potentially leading to biased conclusions
about behaviour phenomena40. An abundance of empirical evi-
dence has shown that individual differences in learning and
perception may account for the diversity in generalization
behaviour29. As an example, a recent study has provided evidence
that the use of inter-individual differences in perception and
memory as predictors substantially improved the ability to
account for differences in generalization gradients41. In the field
of perception, it is well-acknowledged that humans do not have
direct access to the physical world, and that the brain may
probabilistically represent sensory inputs with large individual
differences in how one perceives their surroundings42–48. How-
ever, previous research on generalization has largely ignored the
potential impact of inter-individual differences, often by either
equating perception to the physical dimension (making percep-
tion the same for everyone) or employing psychophysical map-
ping methods such as multidimensional scaling11,12 to derive a
mental representation of encountered stimuli. These psycho-
physical mapping methods mostly assume a universal (and
invariant) psychological space, with stimulus representations in
an identical constellation for all humans, rendering them unable
to account for inter- and intra-individual variations in perception,
the impact of learning on perception49–53 and the impact of both
on generalized responses54–56. Alike, despite the robust empirical
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evidence that individuals do not achieve the same level of learning
at the end of most experiments17–21, these differences are sur-
prisingly often overlooked when studying subsequent differences
in generalization behaviours. Such oversight is not without pit-
falls, as it may lead to incorrect inferences regarding the extent of
underlying generalization mechanism.

In this paper, we go beyond these limitations by proposing and
implementing a computational model in which differences in
generalization behaviours can arise as a result of differences in
learning, perception, and a generalization propensity or by a
combination of them. A flat gradient, previously thought to
reflect solely a propensity to overgeneralize can here stem from a
lack of learning, perceptual errors, and/or a large generalization
propensity. The computational model is, in essence, a formalized
theory of generalization that takes different behaviour-generating
mechanisms and their interactions into account. The basic tenet
of the model is that generalization behaviour should be con-
sidered as a dynamic (non-static) system involving numerous
variables (e.g., stimulus perception, US expectancy in learning
and generalization stages) and parameters (e.g., learning rate and
generalization rate), which are mathematically and computa-
tionally interconnected. We postulate that the conditioned
response to the CS is time-dependent and will be adjusted in
accordance with the learning process and that the extent to which
generalization occurs is governed by the individual’s inclination
for similarity-based generalization based on the perceptual or
physical resemblance of the encountered stimulus to the CS. The
use of time-resolved perceptual data opens the possibility to
investigate the influence of perceptual variability on general-
ization. With this model, an integrated analysis of data from
various cognitive and perceptual tasks relevant to generalization
behaviour is possible.

Before elaborating the computational model further, we first
discuss the data that are used to test our model. We used two fear
generalization data sets (Experiment 1: N= 40, Experiment 2 :
N= 40). Both experiments employed circles of varying sizes as CS
and TS, with a painful electric shock serving as US (for a detailed
account, see the Method section). During each trial in both the
learning and generalization phases of each experiment, partici-
pants had to estimate the stimulus size (i.e., perceptual data) and
provide US expectancy ratings (i.e., learning and generalization
data, see Fig. 1). Experiment 1 (mean age= 21.8 years, SD= 5.3,
26 females (65%)) used a simple fear conditioning (i.e., one cue
preceding a painful US) procedure with a lower reinforcement
rate (50%), while in Experiment 2 (mean age= 23.5 years,
SD= 8.9, 26 females (60%)), differential fear conditioning was
adopted (i.e., two cues, one preceding a painful US, one predictive
of the absence of pain) and a higher reinforcement rate (83%).
With Experiment 2 compared to 1 differing on aspects that
should foster learning, we can examine if the model can capture
different patterns of generalized behaviour of participants under
very different learning experiences.

Our computational model is implemented as a Bayesian mul-
tilevel mixture model on the collected multi-source data (i.e.,
learning, perception, and generalization) and contains four
important properties. First, given the complexity of generalization
that may emerge from multiple mechanisms, we employ Bayesian
statistics to characterize our uncertainty about the parameters as
probability distributions in a principled manner57,58. This
allowed us to assess the effect of different psychological processes
on human generalization, taking into account the available evi-
dence. Second, the multilevel structure is implemented to account
for the ubiquitous quantitative individual differences by inferring
parameter values from both the individual and group levels59–62.
Third, in the model, generalization behaviour is not restricted to a
single generating process but could emerge from several different

latent processes situated at different levels (e.g., learning, gen-
eralization). Fourth, we incorporate a mixture framework59,63,64

that allows us to allocate individuals into potential clinical-
relevant subgroups based on the malfunctioning of certain latent
processes. The specific pattern of generalized behaviour can be
the result of (1) problematic learning (i.e., Non-Learners), and
when learning occurred, (2) an extreme generalization tendency
(i.e., Overgeneralizers), or (3) a similarity-based generalization
process where perceptual variability does not impact stimulus
similarity (i.e., Physical Generalizers), or (4) a similarity-based
generalization process where differences in stimulus perception
influence the extent of stimulus similarity (i.e., Perceptual Gen-
eralizers). This tree-like structure naturally leads to four groups.

Figure 2 displays the general model structure. Associative
learning and similarity-based generalization are the two pre-
sumptive processes that lead to final generalization behaviour.
The two processes encapsulate how participants acquire the CS-
US associations and consequently generalize learning to newly
encountered stimuli according to their level of similarity based on
either their physical or perceptual distance. The two most
important parameters in the model that embedded psychological
processes are the learning rate αi and generalization rate λi. The
former represents how individuals constantly update their
expectations about the CS-US association, with higher values
indicating more learning occurs with every CS interaction. The
latter represents how individuals generalize their learning to novel
stimuli according to the distance between the CS and the novel
stimulus, with lower values indicating more generalization occurs
for a fixed stimuli distance. However, the degree to which these
two processes play a role in generalization behaviour can vary
among individuals. The model distinguishes between four groups.
The group membership parameter mi (mi= 1, 2, 3, 4 corresponds
to Non-Learners, Overgeneralizers, Physical Generalizers, and
Perceptual Generalizers, respectively) indicates the latent group of
participants according to their behaviour patterns in learning,
perception, and generalization.

The proposed model not only examines the impact of distinct
latent processes on generalized responses but also identifies
potential clinical subgroups among participants by accounting for
specificities in their latent processes. Furthermore, it para-
meterizes the latent similarity-based generalization process (in
straightforward index for generalization propensity) in such a
manner that it enables the comparison between individuals
despite their differences in learning and perceptual sensitivity.
Focusing on the behaviour-generating process, the model inves-
tigates how different presumptive mechanisms combined (i.e.
learning, perception, generalization) influence the generalization
behaviour patterns of different individuals.

Methods
To disentangle the influence of learning, perception, and gen-
eralization propensity on generalization behaviour, we used the
data of two pre-registered experiments with similar designs but
different conditioning paradigms. Experiment 1 used a simple
conditioning paradigm in which participants learned the asso-
ciation between a single cue (CS+) and the occurrence of an
electric shock (US) with a 50% reinforcement rate. In Experiment
2, participants learned not only the association between the CS+
and US, but also the disassociation between another cue (CS-)
and US (i.e., differential conditioning). We expected more
learning to occur in Experiment 2 due to a higher reinforcement
rate (83%)65 and the additional safety cue66.

The two data sets used in the experimental study are taken
from two studies that were pre-registered on the Open Science
Framework at 2017 (OSF; Experiment 1: https://osf.io/b4ngs;
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Experiment 2: https://osf.io/t4bzs). These studies focused on
different hypotheses and research questions and used different
methodologies than those of the current study, so the plans for
descriptive statistical analyses included in the protocol are not

relevant for the current study. As the current research questions
and corresponding analysis method, which is based on compu-
tational modelling, were not included in this, or any other, pre-
registration protocol, the current study should be considered as
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Fig. 1 Experimental design and data. Overview of the experimental paradigms, stimulus, and size estimation, acquisition, and generalization data of two
experiments.
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being non-preregistered, as far as hypotheses and analyses are
concerned. The raw data for the two experiments, codes for the
computational model and analysis, and supplementary informa-
tion, which contain more modelling details, are available at
another OSF repository: https://osf.io/sxjak/.

Experiment. To reach the pre-registered sample size of 40
complete data sets in both experiments we had to recruit 43 and
40 participants, respectively, as three participants in the first
experiment did not complete the task due to technical problems
(Experiment 1: mean age= 21.8 years, SD= 5.3, 26 females
(65%); Experiment 2: mean age= 23.5 years, SD= 8.9, 26 females
(60%)). The final data set used in the analysis for both experi-
ments comprised 40 participants. All participants were recruited
via the KU Leuven’s Sona Systems and received either course
credits or a monetary compensation (€12 for Experiment 1 and
€16 for Experiment 2). Informed consent was provided by par-
ticipants at the beginning of both experiments. Participants were
instructed in English. They were asked to report their gender. The
study was approved by the KU Leuven’s Social and Societal Ethics
Committee (G-201610641).

In both experiments, the conditioned stimuli (CSs) and test
stimuli (TSs) were circles varying in size with white outlines
against a black background. The size dimension of circles has
been widely employed to test the generalization of a trained fear
response in both healthy volunteers and clinical
populations2,22,23,26,67–69. The stimulus set as a whole consisted
of ten circles (S1–S10) ranging in diameter from 50.80 to 119.42
mm, with steps of 7.624 mm in between. Experiment 1 used seven
circles (S4–S10), with the middle one (S7; 96.54 mm) serving as
the CS+ and the remaining six stimuli serving as TSs. Experiment
2, with a differential learning paradigm, employed the whole
stimulus set (S1–S10). The CS+ and the CS- were counter-
balanced between individuals, with the smallest (S1; 50.8 mm)
and biggest (S10; 119.42 mm) circles serving as either the CS+ or

the CS-. The remaining nine stimuli served as TSs and were only
presented during the generalization phase.

Both experiments involved a noxious electrocutaneous stimulus
as the unconditioned stimulus (US). Electrocutaneous stimuli were
delivered through an electrocutaneous stimulation device (Con-
stant Current Stimulator, model DS7) through two Ag/AgCL
electrodes (8mm), filled with K-Y gel on the wrist of the non-
dominant hand. In the calibration phase, the US intensity was
adjusted to pain tolerance levels for each participant using the
Ascending Method of Limits approach70. Participants were
instructed that the stimulation should be painful but tolerable.
The targeted rating for each stimulus was 8 on a visual analog scale
(VAS; 0= no pain, 10=worst imagined pain). For Experiments 1
and 2, the average intensity of the electrical stimuli was 19.4 mA
(SD= 9.49) and 22.7 mA (SD= 7.72), respectively.

Both experiments comprised four phases: calibration, practice,
acquisition, and generalization. Before the experiment started,
participants were given oral and written instructions and
informed consent was obtained. After calibrating the intensity
of the US, participants completed six practice trials to habituate to
the task. In the practice trials, the CS(s) were displayed on the
computer screen for 10 seconds while a size Visual Analogue scale
(VAS, labels: 0–200 millimeters) was displayed at the bottom for
participants to indicate the perceived size of the presented
stimulus. Participants were not given feedback on their size
estimations. Exactly 5 seconds after the onset of the size-VAS, it
was replaced by an expectancy-VAS (labels: no shock= 1,
definitely a shock= 10) on which participants rated their
expectation of being shocked given the presented stimulus. After
an additional 5 s, the stimuli and the expectancy-VAS disap-
peared and a fixation cross appeared for 7–10 s (intertrial interval,
ITI). Acoustic startle probes (105dB noise for 0.05s) were here
presented on each trial either within 6–9 s after trial onset or
within 4–7 s after ITI onset to habituate to the startle probe.

Following the practice phase, the acquisition phase started,
with 14 CS+ trials for Experiment 1 and 24 trials (12 CS+ trials
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Fig. 2 The Directed Acyclic Graph representing the Bayesian computational model. The relationship among different variables and parameters in the
model is displayed. The data for modelling includes US expectancy ratings, denoted as yij. These ratings follow a normal distribution with a mean of θij and a
variance of σ2. The mean US expectancy, θij, is obtained by applying a sigmoid function to the generalized associative strength gij. The generalized
associative strength encompasses learning and similarity-based generalization processes.
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and 12 CS- trials) for Experiment 2. Trial structure was identical
to the previous phase, apart from US administrations at CS(s)
offset in either 50% (Experiment 1) or 83% (Experiment 2) of the
CS+ trials and the frequency of startle probes (only in 44% and
48% of the trials in Experiment 1 and 2). CS- trials were never
paired with the US. The generalization phase in Experiment 1 and
2 comprised 4 and 3 blocks, respectively, separated by a 3-minute
break. The US was never paired with the CS- or the TS trials.
Each block in Experiment 1 comprised 22 CS+ trials and 24 TS
trials and always started with 10 consecutive CS+ trials (i.e.,
reacquisition) to prevent extinction of the conditioned response.
Experiment 2 had 14 CS+ trials, 8 CS- trials, and 32 TS trials in
each block, starting with 6 consecutive CS+ trials. In both
experiments, the initial block of the generalization phase did not
include any reacquisition trials, as it immediately followed
the acquisition trials. Consequently, the generalization phase
of the two experiments encompassed a total of 174 (i.e., (22 + 24)
4 − 10) and 156 (i.e., (14 + 8 + 32)3 − 6) trials, respectively.

Startle eyeblink responses, US expectancy ratings, and size
estimations were collected during acquisition and generalization
phases in both experiments. However, the learning component in
the model has a time-dependent structure that considers informa-
tion from all the previous trials, and we had sparse assessment for
the startle data, resulting in varying quantities of available responses
across individuals. Therefore, startle data were not evaluated and
only US expectancy data were used to represent fear responses to
avoid drawing biased conclusions for inter-individual differences.

Model. In this paper, we use a Bayesian multilevel mixture model
that incorporates several psychological mechanisms underlying
human generalization behaviour. Specifically, the goal of the
model is to explain the observed US expectancy ratings during
acquisition and generalization phases by a combination of
learning and generalization processes. The statistical inference is
done using Bayesian statistics. Figure 2 provides a graphical
representation of our model using a Directed Acyclic Graph71,72.
The model contains several components, which will be discussed
in detail in the following sections. In this section, we will explain
the assumptions and the general structure of the model.

The relevant data for modelling are the US expectancy ratings,
denoted as yij (where i= 1, . . . , n refers to the participant and
j= 1, . . . , k to the trial). As shown in Fig. 2, they are assumed to
be normally distributed with mean θij and variance σ2. The mean
US expectancy θij is a nonlinear transformation (by the sigmoid

function) of the generalized associative strength gij, that
represents two core processes: learning and (similarity-based)
generalization.

Our model uses stimulus size estimation (perception) and US
expectancy data collected from both the acquisition and
generalization stages in the experiment and specifies the data-
generating process by which participants first learn to expect
the US after the CS(s) and then generalize it to the TS(s), based
on stimuli similarity. This similarity can either be physical or
perceptual, thus making room for perception in generating
generalization behaviour. There are several sets of qualitatively
different plausible assumptions regarding how learning and
similarity-dimension influence generalization, and they may
lead to different models. As a consequence, we need to use
model selection to decide which model is the best representa-
tion for the underlying generalization process of an individual.
In this paper, model selection is considered as a parameter
estimation problem for the latent group membership parameter,
by creating a mixture model that has several alternative models
as sub-models. The parameter estimation procedure will
allocate individuals to the four latent groups (in a probabilistic
fashion) and thus create a posterior distribution of the group
membership, informing for every individual which model is
supported by the data the most. The mixture framework in our
model enables the identification of sub-response patterns within
the entire population. In Fig. 2 and Table 1, some equations and
prior distributions are conditioned on the discrete latent
variable mi (mi= 1, 2, 3, 4), where mi indicates the group
membership for individual i. The four latent groups are: Non-
Learners, Overgeneralizers, Physical Generalizers, and Percep-
tual Generalizers (corresponding to the labels 1, 2, 3, and 4,
respectively). There are different mechanisms at play in each
group that ultimately lead to the final response, implying
multiple sources for generalized responding.

As depicted in Fig. 2, the model consists of several
parameters. Some are general (i.e., they apply to all individuals),
while others are person-specific and intended to represent
quantitative individual differences. In this study, the parameters
αi and λi characterize the two latent processes that influence the
generalization behaviour of participants in the two experiments:
learning and generalization, respectively. In a Bayesian frame-
work, prior distributions are assigned to all model’s parameters
and they represent the relevant information about these
parameters prior to the observation of the data. Table 1
contains the prior specification for both general and person-

Table 1 Priors specification

Parameter Prior Hyperprior

Learning rate αi ¼ 0; for mi ¼ 1
αi � Betaðaα; bαÞ; otherwise

aα ¼ μακα
bα ¼ ð1� μαÞκα
μα � Beta ð1; 1Þ
κα � Uniform ð1; 10Þ

Generalization rate λi ¼ 0; formi ¼ 1
λi � Nðμλ; σ2λÞTð0; :0052Þ; formi ¼ 2
λi � Nðμλ; σ2λÞTð:0052;1Þ; otherwise

λμ � Nð:1; 1ÞTð0;1Þ
λσ � Uniform ð10�9; 1Þ

Baseline response w0i � Nðμw0
; σ2w0

Þ μw0
� Nð0; 102Þ

σw0
� Half-Cauchy ð0; 2Þ

Scaling w1i � Gamma ðaw1
; bw1

Þ aw1
� Half-Cauchy ð0; 2Þ

bw1
� Half-Cauchy ð0; 2Þ

Response noise σ1 � Uniformð10�9; 1:5Þ; for mi ¼ 2; 3;4
σ2 � Uniformð1:5; 3Þ; otherwise

Latent group allocation mi ~Multinomial(1, π1, π2, π3, π4)
Group probability π1, π2, π3, π4 ~ Dirichlet(c(1, 1, 1, 1)) with ∑4

i¼1 πi ¼ 1

The notation T(s,t) denotes truncation that limits the probability distribution to the range between s and t.
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specific priors. The multilevel structure in this study implies
that person-specific parameters are assumed to come from an
overarching population distribution. Such a population dis-
tribution can be considered as a prior distribution with
unknown parameters. For these parameters governing the
population distribution, we assign weakly informative hyper-
priors (representing a lack of knowledge). After observing the
data, the (hyper)priors are updated to the posterior distribu-
tions of parameter values, reflecting the adjusting of our prior
beliefs in light of the newly acquired information. In what
follows, we will explain the several major components of the
model (indicated by a background color in Fig. 2).

The first major component of the model is associative
learning, which reflects the changing associative strengths of
the CS-US relationship at different time points. In our model, we
assume that the establishment of associative strength is
determined by the error-driven Rescorla-Wagner learning rule73.
According to the rule, the associative strength of the CS at the

current time point, which captures the expectation that it will be
followed by a certain outcome (US), is determined by a learning
rate parameter (α) and the discrepancy between what was
expected and experienced at the previous CS presentation (i.e.,
prediction error). The larger the prediction error, the larger the
adjustment of one’s expectation; the larger the learning rate, the
greater the amount of learning for a given prediction error (see
Fig. 3, panel a). In Experiment 2, participants learned to predict
the US when encountering the CS+ (i.e., excitatory learning) and
to predict US absence when encountering the CS- (i.e., inhibitory
learning), whereas Experiment 1 only involves excitatory
learning. Mathematically, the applied learning rule in our model
postulates that:

vi;jþ1 ¼
0 for mi ¼ 1ð i.e., the nonlearners Þ;
vij þ αiðrij � vijÞkij otherwise (i.e., the 3 other groups).

(

ð1Þ
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Fig. 3 Simulation of different latent mechanisms. This figure illustrates the role of the several mechanisms in the computational model that contribute to
the observed generalization behaviour. In panel a, it is shown how the learning rate parameter influence the learning patterns. The higher the learning rate
αi, the more learning happens after the CS trials. In panel b, the influence of the generalization rate parameter λi is depicted. The lower the generalization
rate λi, the more generalization happens for the same stimulus (i.e., given a constant stimuli distance). In panel c, the influence of perceptual variation is
illustrated. More perceptual variations will result in more erroneous similarity judgments between the CS+ and TSs. The solid black curve represents the
generalization gradient with perceptual variations, and the dashed gray curve represents the generalization gradient with perfect perception. Noted that
perceptual sd is not a parameter in the model, we assessed perceptual variability from the size estimation task in the experiments.
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where vij is the associative strength of the CS in trial j for
participant i, inferring the time-dependent learned expectation of
the CS(s) - US association (vþij for the CS+ and v�ij for the CS- in
the differential learning experiment); kij is a dummy variable to
control the occurrence of updating, kij ∈ {0, 1}, where 1 indicates
updating to happen and 0 otherwise. The role of the dummy
variable kij is to ensure that learning only happens during the CS
trials; rij is a variable with trial outcomes (i.e., US or no US),
rij ∈ {0, 1} for the CS+ and rij ∈ {− 1, 0} for the CS-. The
parameter αi corresponds to the learning rate and regulates the
amount of value learning adaptation for individual i (αi ∈ [0, 1],
with higher values representing more learning from the
prediction error). As implied above, it is assumed that the
associative strength updating process only happens during the
CS trials. When neither the CS+ nor the CS− is presented,
neither the associative strengths for the CS+ nor the CS− will
change.

In our model, we also allow for the possibility that no learning
occurs. We do this by including the parameter mi for each
individual i. For Non-Learners (i.e., mi= 1), no associative
strength is acquired.

In the model, it is assumed that the learned response to a
particular stimulus generalizes to another stimulus based on the
similarity between these stimuli in mental space, denoted as sij for
individual i at trial j. Unlike most generalization research where
the individual variability in learning is not considered, we
assumed that the amount of the generalized response is time-
dependent and will be adjusted in accordance with the current
associative strength as defined in Eq. (1):

gij ¼ vijsij: ð2Þ
For differential learning, in line with the notion that response

gradients are congruently affected both by excitatory and
inhibitory learning, the final associative strength to a certain TS
is the summation of the generalized excitatory strength and the
generalized inhibitory strength74: vþij s

þ
ij þ v�ij s

�
ij .

The similarity sij is assumed to decrease exponentially as the
distance dij between stimuli increases, in accordance with
Shepard’s law11,12:

sij ¼ e�λidij : ð3Þ
The decay parameter λi reflects the generalization propensity of

the i individual: Larger values of λi lead to a faster decay of
similarity with increasing distance (see Fig. 3, panel b). Note that
a flat response will be independent of λi if learning did not
happen in the first place (i.e., when vij= 0).

The vast majority of contemporary research on human
generalization analyzes generalized responses along the physical
dimension of the manipulated stimulus features, completely
ignoring the potential influence of mental (or perceptual)
representations. In that case, dij in Eq. (3) is the physical distance
between the TS and the CS at trial j for individual i, which is
invariant between and within individuals.

Recent research on generalization22–26 has demonstrated the
existence of perceptual variation between and within individuals.
Hence, perceptual variation may affect inter-stimulus similarity if
perception, rather than physical characteristics, determines the
coordinates of stimulus representations in a multidimensional
psychological space. As a consequence, the similarity between two
stimuli will no longer be constant, but will instead vary according
to the perception of the individual. Depending on the nature of
the warping of the physical dimension through perception, the
mental similarity between a pair of stimuli along the continuum
either decreases or increases, with corresponding effects on the
extent of generalized responding (see Fig. 3, panel c).

The current model entertains two qualitatively distinct
possibilities of how similarity-based generalization can occur
and both are represented as components in the mixture model.
First, it may be the case that generalization occurs as physical
stimulus distances decrease. This is the case for individuals with
mi= 3, who are classified into the Physical Generalizers group.
Second, it assumes that generalization occurs in conjunction with
inter-stimulus distances depending on the stimulus perception of
individuals. These individuals have mi= 4 and are classified into
the Perceptual Generalizers group.

Mathematically, the similarity-based generalization process in
our model can be written as:

sij ¼
1 for mi ¼ 1 or vij ¼ 0;

e�λidij for mi ¼ 2; 3; 4:

(
ð4Þ

In the model, an individual i whose response data demonstrate both
learning and similarity-based generalization can be assigned to
either the Physical Generalizers (mi= 3) or Perceptual Generalizers
(mi= 4) groups. The learned CS-US associative strengths (vþij or
v�ij ) of these individuals will decrease as the physical or perceptual
distance between the CS and a TS increases, with a ratio dictated by
the generalization rate parameter λi (see Fig. 3, panel b). Hence, if
mi= 1 (where learning is absent), the similarity is set to 1.
Otherwise, the similarity is a function of the distance between the
CS and the TS. When mi= 2, λi takes an extremely small value,
ensuring that the similarity remains higher than 0.7 for all physical
distances in the experiment. We set the upper boundary for λi for
the Overgeneralizers (mi= 2) group based on the criterion that the
learned response (vij) remains at least 70%, even when encountering
the most physically distant stimulus to CS(s) (i.e., distance= 68.62).
This criterion returns λi= . 0052 and it also serves as the lower
boundary for both the Physical Generalizers (mi= 3) and
Perceptual Generalizers (mi= 4). Therefore, λi∈ [0, . 0052] and
λi > . 0052 for Overgeneralizers and Physical Generalizers or
Perceptual Generalizers, respectively (see Supplementary Figs. 1
and 2). When mi= 3, the distance is defined as an absolute
(invariant) difference between the coordinates of the CS and the TS:

dij ¼ xCS � xTSj

��� ���; ð5Þ

with xCS the coordinate of the CS and xTSj the coordinate of the TS
on trial j, both on the physical dimension. In contrast, when mi= 4
we have:

dij ¼ ~xCSi;1;¼ ;j � ~xTSij

��� ���; ð6Þ

with ~xCSi;1;¼ ;j the cumulative mean of the repeated presentations of

the CS (i.e., the perceived CS up until trial j) and ~xTSij the perceived
TS at trial j.

As shown in Eq. (2), all of the latent processes in the model are
integrated into the generalized associative strength, gij (gij∈ [−
1, 1] for differential conditioning and gij∈ [0, 1] for simple
conditioning), with smaller values leading to lower generalized
responses and vice versa. The scale of gij does not correspond to
the scale of the observed behaviour (US expectancy VAS, 1–10
range) and thus a scale transformation is necessary. The non-
linear sigmoid function with the base rate response and scaling
parameters is used to map the latent generalized associative
strength to the observed response:

θij ¼ Aþ K � A

1þ e�ðw0i
þw1i

gijÞ
; ð7Þ

where A and K are the lower and upper limits of the sigmoid
function so that θij is commensurable with the measurement scale
(yij∈ [1, 10]) employed in this study. Therefore, we have chosen
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A= 1 and K= 10. w0i is the baseline response parameter that
governs the response in the absence of CS associative strengths.
w1i is the scaling parameter that governs the mapping between
the latent and observed responses (see Supplementary Fig. 3). The
new value θij is taken as the mean of the observed response:

yij � N θij; σ
2
mi

� �
; ð8Þ

with θij and σmi
the mean and standard deviation of the normal

response distribution.
The parameter σmi

regulates the amount of response noise
which depends on the group. To avoid over-fitting and
confounding the effect of other parameters, we only asserted
group level priors for σmi

, which differs between non-learners
(mi= 1) and learners (mi= 2, 3, 4). One characteristic of the
Non-Learners group is that their final response is completely
random and unrelated to the learning or generalization processes.
Consequently, two uniform priors are provided for the Non-
Learners group and other groups with the criterion that σmi

for
the former group is bigger than 1.5, and that σmi

for the
remaining groups is smaller than 1.5 (Table 1).

The aforementioned four latent groups can be regarded as four
competing models to generate generalized responding. For mi= 1
(i.e., Non-Learners), it depicts that generalized responding is
solely determined by the base rate parameter and the response
noise parameter and that neither learning nor similarity-based
generalization is relevant. Added to mi= 1, mi= 2 (Over-
generalizers) illustrates that learning processes can influence
generalized responding, but that generalized responses remain
high with at least 70% of the CS response even for most physically
different TS. Both mi= 3 (Physical Generalizers) and mi= 4
(Perceptual Generalizers) models assume that individuals learned
the CS-US associations to some extent and subsequently
generalize them to other stimuli (TS) based on the similarity
between the CS(s) and the TS. The distinction between the two
groups is whether generalization happens along a physical or
perceptual dimension. To allocate participants to latent groups,
we employ a categorical distribution to represent the possible
outcomes of a random variable that could belong to one of the
four groups, with the probability of each category being sampled
from the Dirichlet distribution (Table 1).

Individuals are classified into four latent groups based on their
response patterns. To avoid erroneous allocation of participants
with less certainty about their latent group membership, those
who did not satisfy the strict criterion that at least 75% of their
posterior samples of the group allocation variable mi have the
same value are being assigned as belonging to an Unknown
category. We assessed the sensitivity of our conclusions with
respect to more strict and lenient criteria and they did not alter
our overall findings (see Supplementary Figs. 4–8 and Supple-
mentary Table 1).

Simulation study. Before modelling the data gathered from real
experiments, we conducted a simulation study in which we stu-
died the parameter recovery to check if the parameter values are
identifiable by the model. We simulated the generalization
behaviour of 50 hypothesized participants for each latent group
(mi= 1,…, 4) with corresponding data-generating processes and
parameter values (total sample size N= 4 × 50= 200). The
experimental structure (i.e., stimuli order, feature estimation, and
US presentation) of the simulation is identical to the first parti-
cipant in Experiment 2.

The parameter values are simulated by the following rules: the
learning rate parameter (controlling the amount of learning from
a prediction error) αi= 0 for Non-Learners, and αi ~ Beta(1,1) for

other groups; the generalization rate parameter (controlling the
response decay rate given a fixed stimuli distance) λi= 0 for Non-
Learners, λi ~N(0.0026,0.001)T(0,0.0052) for Overgeneralizers,
and λi ~N(0.1537,0.1)T(0.0052,0.3022) for other groups; the
response noise parameter σ1= 2.5 for Non-Learners and σ2=
σ3= σ4= 0.5 for other groups; the baseline response parameter
w0i ~N(0,5) for Non-Learners and w0i ~N(−2,1) for other
groups; the scaling parameter w1i ~ Gamma(10,1) for all groups.

Statistical inference. Parameter estimation is performed by
Markov Chain Monte Carlo (MCMC) with the Gibbs sampling
method through JAGS75. The statistical computing language R76

and the R package jagsUI77 are implemented to perform the
analysis. Four MCMC chains were run for the model, with
100,000 iterations, 75,000 burn-ins, and a thinning factor of 10
for each chain (i.e., only each 10-th sample was retained). This
returns 10,000 samples in total for each parameter. To assess
convergence, we use the R̂ statistic. MCMC chains are considered
as stabilized and have reached the target distribution when the R̂
value based on Gelman and Rubin diagnostics78,79 is close to 1.

The model has a parametric structure that aims at explaining
generalized responses. Therefore, it is necessary to ensure that,
before drawing any conclusions from parameter estimation, the
model fits the data well enough. In this regard, we conducted
posterior predictive checks72,80 to examine the model’s fit to the
data. The basic idea behind posterior predictive checks is that if
the model fits the data, simulated data from the model should
resemble the observed data in all possible aspects. In a Bayesian
statistical inference framework, data sets are being simulated
based on the so-called posterior predictive distribution80. If the
actual data is unrepresentative of or deviates from the simulated
data sets, it can be regarded as a signal that the model does not
adequately fit the observed data from the experiment and model
modification is needed. For this study, we decided to look at the
mean of the observed generalization data (which entails a weak
test because it is rather easy to get it right) and a set of quantiles
(10%, 30%, 50%, 70%, and 90%) across the test stimulus
dimension. Checking deviations between the quantiles of the
actual and model-based simulated data allows for a more
stringent test because it is a check on the distributional
characteristics of the data.

As demonstrated in Fig. 4, in general, the model-based
simulated data (i.e., the posterior predictive samples) fit the
actual data to a great extent. The posterior predictive of 10% and
90% quantiles show that the model would sometimes generate
values outside the observed response scale. This comes from the
unconstrained Gaussian likelihood distribution, which is not a
problem considering the current research questions. In addition,
a satisfactory model fit can also be observed at the individual level
(see Supplementary Figs. 9 and 10).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
We start the result section with a simulation experiment to test
whether we can recover the model’s parameters from simulated
data. Next, the two experimental data sets are used to demon-
strate the ability of the model to identify various generalization-
generating mechanisms across individuals. For both simulated
and empirical data, the R̂ values for most of the parameters are
close to 178,79, indicating a good convergence for our Bayesian
inference algorithm (see Supplementary Figs. 11–36 and Sup-
plementary Tables 2–5).
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Simulation study. We generated a total of 200 synthetic parti-
cipants, with 50 belonging to each of the latent groups, and
assigned them varying combinations of parameter values (see the
“Method” section for more details). Subsequently, we employed
the simulated data to fit the model and investigate the extent of
parameter recovery (see Supplementary Fig. 37), which enabled
us to establish the relationship between the true parameters - that
were utilized to generate the synthetic data of the 200 participants -
and the estimated parameters obtained from fitting the model to the
simulated data. Our findings indicated that the mixed model is
capable of identifying the parameter of interest, specifically, the
person-specific generalization rate (λi) and learning rate (αi)
simulated by distinct sub-models. Additionally, 95.5 % of synthetic
participants are allocated to the correct latent groups (see Supple-
mentary Fig. 38).

In this section, we utilize the synthetic data to provide insights
into the underlying generative mechanisms governing the
generalization behaviour of the 200 synthetic participants.
Furthermore, we demonstrate the implications of overlooking
certain mechanisms that are intrinsically linked to the behaviour.
Specifically, we investigate how neglecting such mechanisms can
lead to biased inferences of the generalization rate parameter,
which represents the tendency to generalize.

The group generalization gradient for the simulated data (the
average of all individual gradients) is depicted in panel a of Fig. 5.
Traditionally, the group gradient has been the primary object of
analysis in generalization research. Visually, the group gradient of

the simulated data appears rather flat, indicating a high degree of
generalization.

Applying the model to the simulated data allows us to classify
the synthetic individuals into four latent groups. By allocating
individuals to these latent groups, as illustrated in panel b of
Fig. 5, the general patterns of variation in individual responses
can be observed. Individuals in Non-Learners and Overgenera-
lizers groups are the primary contributors for the flatness of the
averaged response gradient in panel a of Fig. 5.

In addition, the learning and generalization patterns for each
latent group are shown in panels c and d of Fig. 5. Starting with
learning, it is demonstrated that Non-Learners do not acquire any
associative strengths in the learning trials, whereas the other three
groups gain some amount of CS-US associative strengths based
on the prediction error in each trial. Non-Learners have never
developed a particular differential response to the CSs, which
explains why their response gradients are flat across all stimuli.
The simulation setting that covers the full range of learning rates
for all learner groups explains the comparable learning patterns
observed among the groups. Moving on to generalization,
Overgeneralizers regard each stimulus to be remarkably similar
to the CS, regardless of how physically or perceptually distinct the
encountered stimulus is from the CS. This implies that the
Overgeneralizers group has an exceptionally strong propensity for
generalization and generalizes most of the acquired CS-US
associative strengths to every stimulus they encounter. The
remaining two groups are both learners and non-
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Fig. 4 Posterior predictive checks. Comparisons between posterior predictive samples and generalization response data of simple conditioning (panel a)
and differential conditioning (panel b) experiments. The black curve is the mean, 10%, 30%, 50%, 70%, and 90% quantiles of observed responses across
different stimuli. The blue curve is the mean, 10%, 30%, 50%, 70%, and 90% quantiles of 5000 replicated data across different stimuli.
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overgeneralizers. Their generalization gradients are less flat
compared to Non-Learners and Overgeneralizers. The most
notable difference between the two groups is whether or not
perceptual variation influences generalization behaviour. As
shown in panel d of Fig. 5, similarity to the CS+ declines
gradually for the Physical Generalizers group as the encountered
stimulus becomes increasingly physically distinct from the CS+.
For Perceptual Generalizers, however, the similarity to the CS+
reduces only when they perceive the stimulus to be increasingly
distinct from the CS+. Consequently, the strongest response will
not always be observed with the CS+, but rather with stimuli that
are perceived as the CS+ at a certain time point. In this regard,
perceptual errors contribute to the broader generalization
gradient observed in the Perceptual Generalizers group compared
to the Physical Generalizers groups.

Ignoring other generalization-generating mechanisms can
lead to inaccurate estimation of the generalization tendency,

represented by the generalization rate parameter (λi) in our
model. To underscore this point, we fitted two simplified
models to the simulated data. The first model (Simplified Model
1) omitted the perceptual variability for similarity general-
ization, while the second model (Simplified Model 2) neglected
the learning process. By comparing the parameter estimates
obtained from these two models with those derived from our
full mixed model, we further demonstrate the potential bias in
the estimation of the generalization rate parameter that arises
from ignoring related mechanisms.

Figure 6 depicts the λi recovery results of the two simplified
models, which conveys two important insights. First, Simplified
Model 1 has difficulties recovering the λi values of Perceptual
Generalizers, whereas it can recover the λi values of the remaining
groups to a great extent. This is because that Simplified Model 1
does not consider the possibility that generalized responding is
caused by inaccurately perceiving the CS and TSs, thus it has to
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Fig. 5 Response patterns of 200 synthetic individuals. Panels a and b: The dark line connecting with black points is the averaged response gradient of all
of the simulated participants (N= 200) and of different latent groups across different stimuli. The gray lines are individual response gradients. Panel c: The
bold and light curves are the averaged and individual CS+ (red) and CS- (blue) associative strengths in the learning stage. Panel d: The similarity decay
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infer a stronger generalization propensity (i.e., smaller λi) to
compensate for the generalized responses associated with
perceptual errors. In the simulation, individuals in the Perceptual
Generalizers group are those who generalize their responses based
on the perceptual distance between the CS and TS and thus their
λi would not be recoverable by Simplified Model 1. Second,
Simplified Model 2 fails to recover most of the λi values and the
inferred values are all biased toward smaller values. In accordance
with the assumptions for learners (mi= 2, 3, 4), learning is a
time-dependent process, therefore CS-US associations vary across
trials. Consequently, the same generalization rate can result in
distinct responses for the same individual at various time points
depending on their current learned CS-US association. Simplified
Model 2, without considering CS-US learning, has to infer a
stronger generalization propensity (i.e., smaller λi) to compensate
for the indistinguishable responses associated with weak
associative strengths. Consequently, if the impact of learning
and perception on generalization behaviour is not taken into
account, there is a risk of bias in inferences about generalization
tendencies.

Experimental study. In this section, we will present the outcomes
of the computational model analysis on the data from the two
experiments. To evaluate the model fit, we conducted posterior
predictive checks, and the results exhibited a noteworthy level of
prediction accuracy with various quantiles (Fig. 4).

Figure 7 shows the posterior distributions for the group
membership probability (Panel a), and group mean (Panel b) and
person-specific (Panel c) learning rate parameters αi and
generalization rate parameters λi, which are the two parameters
that modulate the two key processes in the model. With Bayesian
modelling, the parameter value is represented by a probability
distribution. Therefore, the uncertainty of the parameter
estimates is shown with a 95% credible interval (95% CI). In
general, the narrower the interval, the less uncertainty we have
about a parameter’s value (given both the prior knowledge and
the observed data).

The posterior probability that participants are allocated to
Non-Learners is much higher in the first experiment (95% CI
[0.21,0.48], 35% of participants) compared with the second (95%
CI [0.03,0.22], 10% of participants), suggesting our model is
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capable of picking up an experimental manipulation targeting this
specific latent process. Furthermore, we found a similar
probability to observe Overgeneralizers in both experiments
(Experiment 1: 95% CI [0.01,0.21], 5% of participants; Experi-
ment 2: 95% CI [0.03,0.22], 7.5% of participants), and Physical
Generalizers (Experiment 1: 95% CI [0.23,0.56], 27.5% of
participants; Experiment 2: 95% CI [0.18,0.46], 27.5% of
participants). The probability of being assigned to the Perceptual
Generalizers group is much higher in the second experiment
(95% CI [0.32,0.62], 12.5% of participants) compared with the
first (95% CI [0.07,0.33], 45% of participants). Based on the
posterior samples of the group membership variable mi, which
ranges from integer values 1 to 4, participants are assigned to
different groups. To address estimation uncertainty, we adopted a
strict criterion that requires at least 75% of the mi samples to have
the same value; otherwise, the participant is designated as
Unknown.

For the individuals who are effectively assigned to one of the
four latent groups, their estimated αi and λi values can be
interpreted in a meaningful manner. The greater the αi value, the
more learning will occur when the outcome of a stimulus differs
from what was anticipated. The greater the λi value, the greater
the response decay at a particular distance between the CS and a
TS. Both parameters contribute to the steepness of a

generalization gradient. Consider two participants in Experiment
2 displayed in panel c of Fig. 7, Participant 11 and Participant 4.
Participant 11 has a greater λi and a smaller αi than Participant 4.
Given a fixed distance, Participant 4 may generalize more
learning to TS. However, with a greater learning rate αi, his or her
acquired associative strength is much higher, and combined
results in a net steeper response gradient.

The posterior for the mean of learning rates μα is larger in
Experiment 2 (95% CI [0.19,0.32]) compared with Experiment 1
(95% CI [0.06,0.19]). This shows that, as expected, compared to
the first experiment (simple conditioning), individuals in the
second experiment (differential conditioning) generally better
picked up the CS-US associations. However, there is a notable
overlap between the two posterior distributions for the mean
generalization rates μλ, which makes it difficult to distinguish
between the group-level estimates for the generalization tendency
in the two experiments. At the individual level, αi and λi are
constrained to 0 for the Non-Learners. Overgeneralizers in both
experiments tend to have small values of αi (Experiment 1: 95%
CI [0,0.0785]; Experiment 2: 95% CI [0.0011,0.3688]) and λi
(Experiment 1: 95% CI [0.0001,0.026]; Experiment 2: 95% CI
[0.0005,0.1167]). A combination of low and high αi and λi values
can be observed in both the Physical Generalizers and Perceptual
Generalizers groups.
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Our results revealed that participants had difficulty forming the
CS-US association in a simple conditioning paradigm with a
lower reinforcement rate (50% of CS+ are followed by a US).
Specifically, we observed lower learning rates and a higher
proportion of participants (35%) classified as Non-Learners, for
whom there was insufficient evidence of learning. In contrast, a
differential conditioning paradigm with a higher reinforcement
rate (83% of CS+ are followed by a US) fostered stronger
learning, as indicated by higher learning rates and a lower
proportion of participants (10%) classified as Non-Learners.
These findings suggest that regarding learning, our model can
accurately attribute experimental manipulations to the intended
latent process. The observation of flat response gradients in Non-
Learners aligns with previous research investigating the impact of
learning paradigms on response gradients17–21. Moreover,
neglecting to distinguish Non-Learners can lead to bias in the
estimation of latent generalization tendency, as demonstrated in
the panel c of Fig. 6.

Assuming learning took place, the model explores the extent to
which learned CS-US associations are generalized to different TSs
based on their (physical or perceptual) distances to the CS. When
an individual’s generalized response remained at least 70% of the
response to the CS when confronted with the most physically
distinct stimulus (distance= 68.62 mm), the person was classified
as Overgeneralizers. In both data sets, there is only a small
proportion of participants being allocated to the group of
Overgeneralizers (Experiment 1: 5%; Experiment 2: 7.5%). These
individuals have an exceptionally small generalization rate
parameter λi and respond similarly to a wide range of TSs.

The remaining participants demonstrate a reasonable response
decay as stimulus distance increases. To investigate the nature of
this response decay, we further utilized the mixture model to
examine whether individual differences in perception accounted
for the observed variation in generalized responding (Perceptual
Generalizers) or if generalized responses were unaffected by
perception and thus solely attributed to the physical similarity
(Physical Generalizers). In the first data set, there are more
Physical Generalizers (27.5%) than Perceptual Generalizers
(12.5%), whereas, similar to learning, the reverse pattern is found
in the second data set, where Perceptual Generalizers are the
majority (45%) compared to Physical Generalizers (27.5%). The
inverse pattern between experiments was unexpected but may be
due to sampling bias where there are far fewer individuals in the
first data set classified to these two groups than in the second
(40% versus 72.5%). Comparing the response gradients of these
subgroups (Figs. 8, 9) reveals that, as expected, Perceptual
Generalizers exhibit broader response gradients due to increased
perceptual variability, which in turn leads to greater generalized
responding22–26. These behavioural differences are not indicative
of differences in the extent of a latent generalization tendency but
rather stem from differences in stimulus perception. Further-
more, neglecting to account for perceptual variability as an
intrinsic source of generalization behaviour, as exemplified in
Panel b of Fig. 6, could lead to biased inferences concerning the
latent generalization tendency, akin to disregarding the account-
ing learning process.

Discussion
In this research, we used Bayesian computational modelling
combined with multi-source data to distinguish among diverse
mechanistic processes and to draw more insightful conclusions
regarding inter-individual differences in human generalization
behaviour. Specifically, the learning and similarity-based gen-
eralization processes are specified as mathematical functions to
connect with data gathered from fear conditioning, stimulus

generalization, and stimulus perception tasks. This contrasts
favorably with the prevailing approach, which focuses only on the
group-level generalization gradient and a single data-generation
mechanism (the latent generalization mechanism). Our findings
highlight how similar patterns in generalization behaviour can be
explained by different mechanisms or how different patterns can
be explained by similar mechanisms.

In our model, generalized behaviour is determined by several
psychologically meaningful parameters. If a person is identified as
neither in the Non-Learners nor Overgeneralizers group, the
value for his or her generalization rate parameter λi reflects his
propensity to generalize as the decreasing (transferring) propor-
tion of response given the acquired associative strength (modu-
lated by the learning rate parameter αi) and the perceptual
(Perceptual Generalizers) or physical (Physical Generalizers) sti-
muli distance. Consequently, two participants may have the same
propensity for generalization (i.e., the same λi values) yet radically
different flatness of response gradients due to their distinct
learning and perceptual abilities.

The four latent groups provide a theoretical framework that
not only highlights the impact of diverse mechanisms on indi-
vidual generalization behaviour but also holds promising clinical
implications. Previous findings associating generalization-related
psychopathologies with learning30–32 and generalization
mechanisms1,2,4–6 underscore the importance of identifying Non-
Learners and Overgeneralizers in clinical practice. Given that trait
anxiety is typically low among healthy individuals37,38, it stands
to reason that the prevalence of Overgeneralizers would be low in
a healthy sample, as observed in the present study. Future
research could aim to investigate whether the prevalence of this
latent group increases in a clinical sample or whether member-
ship in this latent group has any predictive value for treatment
outcomes. The detection of Perceptual Generalizers is also note-
worthy, particularly when considered alongside previous research
indicating that anxiety patients exhibit deficits in perceptual
discrimination after fear learning33,34. Therefore, it is essential to
carefully consider the contribution of perceptual variability
(Fig. 1) to generalization behaviour in individuals, whether from
clinical or theoretical perspectives.

To obtain a comprehensive understanding of the latent gen-
eralization mechanism, it is crucial to assimilate all diverse
sources that exert an impact on generalization behaviour. By
doing so, the distinct contributions of each source can be dis-
entangled, leading to the derivation of a more meaningful gen-
eralization rate parameter value. Disregarding behaviour-related
mechanisms, such as learning and perception, which are integral
components in the generalization process, can engender biased
inferences of the mechanism. Our simulation study has unequi-
vocally shown that neglecting these mechanisms imposes a con-
siderable bias in the extent to which the observed behaviour is
attributed to a latent generalization mechanism. Consequently,
such distorted inferences of regarding a latent generalization
process potentially undermine the validity of subsequent analyses
(e.g., relating it to personality traits). Alternatively, if the gen-
eralization behaviour is of interest, it remains important to con-
sider all pertinent processes and mechanisms to understand how
such behaviour emerged.

Understanding the cognitive mechanisms underlying psychiatric
disorders is essential for developing effective treatments and per-
sonalized protocols that target the underlying causes. Computa-
tional methods have gained prominence in exploring these
mechanisms81–83, particularly through parameterizing specific
psychological processes such as learning84,85. This approach enables
researchers to identify the etiology of psychiatric symptoms, which
is necessary for classifying individuals along symptomatic
dimensions86. Generalization-related psychiatric disorders often co-
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occur and display substantial heterogeneity, underscoring the need
for diagnostic tools and more effective treatments87. One promising
approach is the incorporation of meaningful parameters as beha-
vioural readouts in computational models, providing a fundamental
framework for investigating how generalization behaviour is formed
by different mechanisms. These cognitively interpretable para-
meters can serve as valuable psychomarkers (as opposed to bio-
markers), behavioural endophenotypes, and treatment outcome
predictors in clinical settings, which can be correlated with brain
activations or personality traits88. By capturing learning and gen-
eralization parameters in the proposed model, researchers can
develop informative indicators and classifiers for generalization-
related psychiatric symptoms in future research endeavors. Con-
sidering all pertinent processes and mechanisms can help us gain a
deeper understanding of how generalization behaviour is formed
and how it relates to psychiatric symptoms.

Future directions. Future research on developing more sophisti-
cated models of generalization behaviour should consider addi-
tional fundamental cognitive processes that may directly impact
these phenomena. For instance, attentional processes, which allow
for the selection and prioritization of relevant information, have
been highlighted as a crucial modulator of learning and
generalization89,90. Additionally, rule-based generalization based
on specific relational differences between stimulus features has
been shown to occur alongside distance-based generalization91,92.
Recent research has also explored the coexistence of these two types
of generalization processes and their interaction in producing
generalization behaviour16,24. In addition, future research should
aim to conduct more rigorous experimental studies that manip-
ulate specific psychological processes. This will enable us to
determine how much the model can accurately detect the manip-
ulation of the targeted latent process. Moreover, to improve the
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reliability and validity of our model, future research should con-
centrate on implementing it using various stimulus sets both in pre-
clinical and clinical populations.

The Bayesian approach renders an additional layer to construct
assumptions through the prior distributions. To reflect the
absence of information about parameters, we only specified
ambiguous and weakly informative priors to the hyperparameters
in this study. However, having informative priors is important for
capturing valuable theoretical and empirical information about
the parameters93. For example, we can construct priors for the
learning rate parameter αi in simple conditioning paradigms with
small values if similar results are systematically replicated. Such
prior constructions represent the current knowledge that people
tend to learn poorly in such context. The belief updating process
for both data generating functions and parameter priors can also

draw great interests for clinicians. On the one hand, the same
observed symptom (e.g., anxiety or fear generalization) can be
broken down into different mechanisms that potentially require
different therapeutic interventions, allowing for the development
of tailored treatments. The treatment performance, on the other
hand, can be examined by looking at how the prior distribution of
the targeted latent parameter evolved. In our model, for instance,
the prior value of the learning rate parameter αi will increase as a
result of an effective treatment aimed at reducing generalization
behaviour induced by problematic learning.

Limitations. The construction of perceptual distance in our model
did not incorporate the latest theories on memory and perception.
Instead, we employed size estimation data to directly depict TS
perception and formulated CS memory as a cumulative average of
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the size estimation in CS trials. By adopting this approach, we
essentially equated CS memory with encoding precision, overlooking
potential variations in retrieval processes. Nevertheless, it is impor-
tant to acknowledge that this simplified methodology might not fully
capture the intricate complexities inherent in the underlying pro-
cesses. For example, with the recent advancement of human per-
ception research, the possibility that the perceptual system operates
according to Bayes’ rule has been widely discussed42–48. Under this
framework, perception contains probabilistic representations that
incorporate a likelihood function and prior perceptual knowledge. In
such instances, the trial-based single percept representation we
provided to the model may be too simplistic to accurately portray
how individuals represent the presented stimulus (and its associated
uncertainty). Likewise, inter-individual differences during encoding,
retrieval or mechanisms acting hereupon may cause substantial
biases in memory that can greatly diverge from the objective94,95.
Furthermore, differences in memory retrieval have been linked to
differences in fear generalization patterns96. The advantage of the
adopted generative model and use of multi-source data is that
insights from other fields could be implemented within the existing
framework by altering or extending the model and the type of col-
lected data (e.g., memory data). Another limitation of the present
research is that our conclusions are based solely on self-report
responses. Future studies could overcome this limitation by incor-
porating multiple response channels, such as physiological and
neuronal responses, to investigate generalization behaviour. Previous
studies have demonstrated the influence of perceptual variability on
startle eyeblink responses, indicating the potential for generalizability
of our findings22,25,97. In addition, while the current model has been
only utilized in the context of fear conditioning paradigms with one-
dimensional stimuli, it would be beneficial for future research to
investigate the generalizability of the modelling conclusions to other
learning types, stimuli with higher levels of complexity and multiple
dimensions, and samples.

Conclusions
Our results emphasize computational (generative) modelling’s
adaptability for integrating advanced research from other fields
into generalization, as well as its ability to unify disparate theories
of generalization mechanisms through model comparison and
parameter estimation. The current model assumes a basic fra-
mework of how humans update CS learning with prediction error
and how they exponentially generalize their response to novel
stimuli based on either perceptual or physical distances between
CS and TS. To advance our understanding of the mechanisms
underlying human generalization behaviour, it is essential for
future research to extend the current computational framework in
parallel with developments in other fields of psychology.

Shepard12 defined generalization as psychology’s first law because
it enables us to adapt to the diverse contexts encountered in daily life.
Yet, like many other behaviours, generalization is the result of a
variety of cognitive and perceptual processes. The true generalization
mechanism, if it ever exists, can be discovered only after excluding all
other mechanisms that could result in the same behaviour.

Data availability
The raw and processed data for the two experiments in this study98 can be accessed at the
following Open Science Framework (OSF) repository: https://osf.io/sxjak/.

Code availability
The code for the computational model and analysis, as well as supplementary
information with additional information about the model and results, can be found at the
same repository as the data: https://osf.io/sxjak/. The Bayesian sampling is conducted

with JAGS (version 4.3.1), and the post-sampling analysis and visualization are
conducted with R (version 4.1.1).
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