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Social media platforms often assume that users can self-correct against misinformation. However,
social media users are not equally susceptible to all misinformation as their biases influence what
types of misinformation might thrive and who might be at risk. We call “diverse misinformation” the
complex relationships between human biases and demographics represented in misinformation. To
investigate how users’ biases impact their susceptibility and their ability to correct each other, we
analyze classification of deepfakes as a type of diversemisinformation.We chosedeepfakes as a case
study for three reasons: (1) their classification as misinformation is more objective; (2) we can control
the demographics of the personas presented; (3) deepfakes are a real-world concern with associated
harms that must be better understood. Our paper presents an observational survey (N = 2016) where
participants are exposed to videos and asked questions about their attributes, not knowing some
might be deepfakes. Our analysis investigates the extent towhich different users are duped andwhich
perceived demographics of deepfake personas tend to mislead. We find that accuracy varies by
demographics, and participants are generally better at classifying videos that match them. We
extrapolate from these results to understand the potential population-level impacts of these biases
using a mathematical model of the interplay between diverse misinformation and crowd correction.
Our model suggests that diverse contacts might provide “herd correction” where friends can protect
each other. Altogether, human biases and the attributes of misinformationmatter greatly, but having a
diverse social group may help reduce susceptibility to misinformation.

There is a growing body of scholarly work focused on distributed harm in
online social networks. From leaky data1, and group security and privacy2 to
hate speech3, misinformation4 and detection of computer-generated
content5. Social media users are not all equally susceptible to these harm-
ful forms of content. Our level of vulnerability depends on our own biases.
We define “diverse misinformation” as the complex relationships between
humanbiases anddemographics represented inmisinformation.This paper
explores deepfakes as a case study ofmisinformation to investigate howU.S.
social media users’ biases influence their susceptibility to misinformation
and their ability to correct each other. We choose deepfakes as a critical
example of the possible impacts of diversemisinformation for three reasons:
(1) their status of beingmisinformation is binary; they either are a deepfake
or not; (2) the perceived demographic attributes of the persona presented in

the videos can be characterized by participants; (3) deepfakes are a current
real-world concern with associated negative impacts that need to be better
understood. Together, this allows us to use deepfakes as a critical case study
of diverse misinformation to understand the role individual biases play in
disseminating misinformation at scale on social networks and in shaping a
population’s ability to self-correct.

We present an empirical survey (N = 2016 using a Qualtrics survey
panel6) observing what attributes correspond to U.S.-based participants’
ability todetectdeepfake videos. Surveyparticipants entered the studyunder
the pretense that they would judge the communication styles of video clips.
Our observational study is careful not to prime participants at the time of
their viewing video clips so we could gauge their ability to view and judge
deepfakes when they were not expecting them (not explicitly knowing if a
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video is fake or not is meant to emulate what they would experience in an
online social media platform). Our survey also investigates the relationship
between human participants’ demographics and their perception of the
video person(a)’s features and, ultimately, how this relationshipmay impact
the participant’s ability to detect deepfake content.

Our objective is to evaluate the relationship between classification
accuracy and the demographic features of deepfake videos and survey
participants. Further analysis of other surveyed attributeswill be explored in
future work. We also recognize that data used to train models that create
deepfakes may introduce algorithmic biases in the quality of the videos
themselves, which could introduce additional biases in the participant’s
ability to guess if the video is a deepfake or not. The Facebook Deepfake
Detection Challenge dataset that was used to create the videos we use in our
survey was created to be balanced in diversity in several axes (gender, skin-
tone, age).We suspect that if there are algorithmic-level biases in themodel
used resulting in better deepfakes for personas of specific demographics, we
would expect to see poorer accuracy across the board for all viewer types
when classifying these videos.Wedo see that viewer groups’ accuracy differs
based on different deepfake video groups. However, our focus is on the
perception of survey participants towards deepfakes’ identity and demo-
graphics to capture viewer bias based on their perception rather than the
model’s bias and classification of the video persona’s racial, age, and gender
identity. Our goal is to focus on viewers and capture what a viewer would
experience in the wild (on a social media platform), where a user would be
guessing the identity features of the deepfake and then interrogating if the
video was real or not with little to no priming.

This paper adopts a multidisciplinary approach to answer these
questions and understand their possible impacts. First, we use a survey
analysis to explore individual biases related to deepfake detection. There
is abundant research suggesting the demographics of observers and
observed parties influence the observer’s judgment and sometimes
actions toward the observed party7–11. In an effort to avoid assumptions
about any demographic group, we chose four specific biases to analyze
vis-à-vis deepfakes: (Question 1) Priming bias: How much does classifi-
cation accuracy depend on participants being primed about the potential
of a video being fake? Our participants are not primed on the meaning of
deepfakes and are not told to be explicitly looking for them prior to
beginning the survey. Importantly, we do not explicitly vary the priming
of our participants but we compare their accuracy to a previous study
with a similar design but primed participants5. Participants are debriefed
after the completion of the survey questions and then asked to guess the
deepfake status of the videos they watched. More information about our
survey methodology and why the study was formulated as a deceptive
survey can be seen in section 4.4. (Question 2) Prior knowledge: Does
accuracy depend on how often the viewer uses social media and whether

they have previously heard of deepfakes? Here, we ask participants to
evaluate their own knowledge and use their personal assessment to
answer this research question. (Question 3)Homophily bias: Are humans
better classifiers of video content if the perceived demographic of the
video personamatches their own identity? (Question 4)Heterophily bias:
Inversely, are humans more accurate if the perceived demographic of the
video persona does not match their own? We then use results from the
survey to develop an idealized mathematical model to theoretically
explore population-level dynamics of diverse misinformation on online
social networks. Altogether, this allows us to hypothesize themechanisms
and possible impacts of diverse misinformation, as illustrated in Fig. 1.

Our paper is structured as follows. We outline the harms and ethical
concerns of diverse misinformation and deepfakes in “Introduction.” We
explore the possible effects through which demographics impact suscept-
ibility to diverse misinformation through our observational study in
“Results.”We then investigate the network-level dynamics of diverse mis-
information using a mathematical model in “Mathematical Model.” We
discuss our findings and their implications in “Discussion.”Our full survey
methodology can be seen in “Methods.”

It is important to understand human biases as they impact the trans-
mission and correction of misinformation and their potential impacts on
polarization and degradation of the epistemic environment12. In social
networks, it has been shown that there are human tendencies toward
homophily bias13,14. Indeed, there are differences in user demographic
groups’ abilities to detect deepfakes and misinformation (e.g., age)15. Pre-
vious work has also shown that biases impact people’s accuracy as an eye-
witness through the own-race bias (ORB) phenomenon16–18. It is an open
question whether deepfake detection also demonstrates the own-race bias
(ORB) phenomenon.

Subsequently, these biases impact how social ties are formed and,
ultimately, the shape of the social network. For example, in online social
networks, homophily often manifests through triadic closures19 where
friends in social networks tend to form new connections that close triangles
or triads. Understanding individuals’ and groups’ biases will help under-
stand the network’s structure and dynamics and how information and
misinformation spread on the network depending on its level of diversity.
For example, depending on the biases and the node-specific diversity of the
connections it forms, one may have a system that may be more or less
susceptible towidespreaddissemination as itwould in aMixedMembership
Stochastic Block Model (MMSBM)20. A Mixed Membership Stochastic
Block Model is a Bayesian community detection method that segments
communities into blocks but allows communitymembers tomixwith other
communities.Assumptions in anMMSBMinclude a list of probabilities that
determine the likelihood of communities interacting. We explore these
topics in more detail in “Mathematical Model.”

Fig. 1 | Illustration of the problem considered in
this work. Populations are made of individuals with
diverse demographic features (e.g., age, gender, race;
here represented by colors), and misinformation is
likewise made of different elements based on the
topics they represent (here shown as pathogens).
Through their biases, certain individuals are more
susceptible to certain kinds of misinformation. The
cartoon represents a situation where misinforma-
tion is more successful when it matches an indivi-
dual’s demographic. Red pathogens spread more
readily around red users with red neighbors, thereby
creating a misinformed echo chamber whose
members can not correct each other. In reality, the
nature of these biases is still unclear, and so are their
impacts on online social networks and on the so-
called “self-correcting crowd.”

https://doi.org/10.1038/s44260-024-00006-y Article

npj Complexity |             (2024) 1:5 2



Previous work has demonstrated that homophily bias towards content
aligned with one’s political affiliation can impact one’s ability to detect
misinformation21,22. Traberg et al. show that political affiliation can impact a
person’s ability to detect misinformation about political content21. They
found that viewers misclassified misinformation as being true more often
when the source of information aligned with their political affiliation.
Political homophily bias, in this case, made them feel as though the source
was more credible than it was.

In this paper, we investigate the accuracy of deepfake detection based
onmultiplehomophily biases in age, gender, and race.Wealso exploreother
bias types, such as heterophily bias, priming, and prior knowledge bias
impacting deepfake detection.

Misinformation is information that imitates real information but does
not reflect the genuine truth23. Misinformation has become a widespread
societal issue that has drawn considerable recent attention. It circulates
physically and virtually on social media sites24 and interacts with socio-
semantic assortativity. In contrast, assortative social clusters will also tend to
be semantically homogeneous25. For instance, misinformation promoting
political ideologymight spreadmore easily in social clusters basedon shared
demographics, further exacerbating political polarization and potentially
influencing electoral outcomes26. This has sparked concerns about the
weaponization of manipulated videos for malicious ends, especially in the
political realm26. Thosewithhigherpolitical interests aremore likely to share
deepfakes inadvertently, and thosewith lower cognitive ability are alsomore
likely to share deepfakes inadvertently. The relationship between political
interest and deepfakes sharing is moderated by network size27.

Motivations vary broadly to explain why people disseminate mis-
information, whichwe refer to as disinformationwhen specifically intended
to deceive. Motivations include (1) purposefully trying to deceive people by
seeding distrust in information, (2) believing the information to be accurate
and spreading it mistakenly, and (3) spreading misinformation for mone-
tary gain. In this paper, we will primarily focus on deepfakes as mis-
information meaning the potential of a deepfake viewer getting duped and
sharing a deepfake video. Disinformation is spreadingmisinformation with
the intent to deceive. In this paper, we do not assume that all deepfakes are
disinformation sincewedonot consider the intent of the creator.Adeepfake
could be made to entertain or showcase technology. We instead focus on
deepfakes as misinformation meaning the potential of a deepfake viewer
getting duped and sharing a deepfake video, regardless of intent.

There are many contexts where online misinformation is of concern.
Examples include misinformation around political elections and
announcements (political harms)28; such deepfake videos can, in theory,
alter political figures to say just about anything, raising a series of political
and civic concerns28; misinformation on vaccinations during global pan-
demics (health-related harms)29,30; false speculation to disrupt economies or
speculative markets31; distrust in news media and journalism (harms to
newsmedia)4,32. People aremore likely to feel uncertain than to bemisled by
deepfakes, but this resulting uncertainty, in turn, reduces trust in news on
social media33; false information in critical informational periods such as
humanitarian or environmental crises34; and propagation of hate speech
online3 which spreads harmful false content and stereotypes about groups
(harms related to hate speech).

Correction ofmisinformation: There are currentlymanyways to try to
detect andmitigate the harms ofmisinformation online35.Onone endof the
spectrumare automateddetection techniques that focuson the classification
of content or on observing anomaly detection in the network structure
context of the information or propagation patterns36,37. Conversely, crowd-
sourced correction of misinformation leverages other users to reach a
consensus or simply estimate the veracity of the content38–40.Wewill look at
the latter form of correction in an online social network to investigate the
role group correction plays in slowing the dissemination of diverse mis-
information at scale.

Connection with deepfakes: The potential harms of misinformation
can be amplified by computer-generated videos used to give fake authority
to the information. Imagine, for instance, harmful messages about an

epidemic conveyed through the computer-generated persona of a public
health official. Unfortunately, deepfake detection remains a challenging
problem, and the state-of-the-art techniques currently involve human
judgment5.

Deepfakes are artificial images or videos in which the persona in the
video is generated synthetically. Deepfakes can be seen as false depictions of
a person(a) thatmimics a person(a) but does not reflect the truth.Deepfakes
should not be confused with augmented or distorted video content, such as
using color filters or digitally-added stickers in a video. Creating a deepfake
can involve complex methods such as training artificial neural networks
known as generative adversarial networks (GANs) on existing media41 or
simpler techniques such as facemapping. Deepfakes are deceptive tools that
have gained attention in recent media for their use of celebrity images and
their ability to spread misinformation across online social media
platforms42.

Early deepfakes were easily detectable with the naked eye due to their
uncanny visual attributes and movement43. However, research and tech-
nological developments have improved deepfakes, making them more
challenging to detect4. There are currently several automated deepfake
detection methods44–48. However, they are computationally expensive to
deploy at scale. As deepfakes become ubiquitous, it will be necessary for the
general audience to identify deepfakes independently during gaps between
the development of automated techniques or in environments that are not
always monitored by automated detection (or are offline). It will also be
important to allow human-aided and human-informed deepfake detection
in concert with automated detection techniques.

Several issues currently hinder automated methods: (1) they are
computationally expensive; (2) there may be bias in deepfake detection
software and training data—credibility assessments, particularly in video
content, have been shown to be biased49; (3) As we have seen with many
cybersecurity issues, there is a “cat-and-mouse” evolution that will leave
gaps in detection methodology50.

Humans may be able to help fill these detection gaps. However, we
wonder towhat extent human biases impact the efficacy of detecting diverse
misinformation. If human-aided deepfake detection becomes a reliable
strategy, we need to understand the biases that come with it and what they
look like on a large scale and on a network structure. We also posit that
insights into human credibility assessments of deepfakes could help develop
more lightweight and less computationally expensive automated
techniques.

As deepfakes improve in quality, the harms of deepfake videos are
coming to light51. Deepfakes raise several ethical considerations: (1) the
evidentiary power of video content in legal frameworks4,52,53; (2) consent and
attribution of the individual(s) depicted in deepfake videos54; (3) bias in
deepfake detection software and training data49; (4) degradation of our
epistemic environment, i.e., there is a large-scale disagreement between
what communitymembers believe tobe real or fake, including an increase in
misinformation and distrust4,32; and (5) possible intrinsic wrongs of
deepfakes55.

It is important to understand who gets duped by these videos and how
this impacts people’s interaction with any video content. The gap between
convincing deepfakes and reliable detection methods could pose harm to
democracy, national security, privacy, and legal frameworks4.Consequently,
additional regulatory and legal frameworks56 will need to be adopted to
protect citizens from harms associated with deepfakes and uphold the
evidentiary power of visual content. False light is a recognized invasion of
privacy tort that acknowledges the harms that come when a person has
untrue or misleading claimsmade about them.We suspect that future legal
protections against deepfakes might well be grounded in such torts, though
establishing these legal protections is not trivial52,57.

The ethical implications of deepfake videos can be separated into two
main categories: the impacts on our epistemic environment and people’s
moral relationships and obligations with others and themselves. Consider
the epistemic environment, which includes our capacity to take certain
representations of the world as true and our taking beliefs and inferences to
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be appropriately justified. Audio and video are particularly robust and
evocative representations of the world. They have long been viewed as
possessing more testimonial authority (in the broader, philosophical sense
of the phrase) than other representations of the world. This is true in
criminal and civil contexts in the United States, where the admissibility of
video recordings as evidence in federal trials is specifically singled out in
ArticleXof theFederalRulesofEvidence58 (State courts have their own rules
of evidence, but most states similarly have explicit rules that govern the
admissibility of video recordings as evidence). The wide adoption of
deepfake technology would strain these rules of evidence; for example, the
federal rules of evidence reference examples of handwriting authentication,
telephone conversation authentication, and voice authentication but do not
explicitly mention video authentication. Furthermore, laws are notorious
for lagging behind technological advances59, which can further complicate
and limit how judges and juries can approach the existence of a deepfake
video as part of a criminal or civil case.

Our paper asks four primary research questions regarding howhuman
biases impact deepfake detection. (Q1) Priming: How important is it for an
observer to know that a video might be fake? (Q2) Prior knowledge: How
important is it for an observer to knowabout deepfakes, andhowdoes social
media usage affect accuracy? (Q3−Q4) Homophily and heterophily biases:
Are participants more accurate at classifying videos whose persona they
perceive to match (homophily) or mismatch (heterophily) their own
demographic attributes in age, gender, and race?

To address our four research questions, we designed an IRB-approved
survey (N = 2016) using video clips from theDeepfake Detection Challenge
(DFDC) Preview Dataset60,61. Our survey participants entered the study
under the pretense that theywould judge the communication styles of video
clips (they were not explicitly looking for deepfake videos in order to
emulate the uncertainty theywould experience in an online social network).
After the consent process, survey participants were asked to watch two 10-
second video clips. After each video, our questionnaire asked participants to
rate the pleasantness of particular features (e.g., tone, gaze, likability, con-
tent) of the videoona 5-point Likert scale. Theywere also asked to state their
perception of the person in the video by guessing the video persona’s gender
identity, age, and whether they were white or a person of color.

After viewing both videos and completing the related questionnaire,
the participantswere then debriefed on the deception of the survey, given an
overview of what deepfakes are, and then asked if they thought the videos
they just watched were real or fake. After the debrief questions, we collected
information on the participants’ backgrounds, demographics, and expres-
sions of identity.

Ourproject investigates featuresorpairings of features (of the viewer or
the person(a) in the video) that are the most important ones needed to
determine an observer’s ability to detect deepfake videos and avoid being
duped.Conversely, we also askwhat pairings of features (of the vieweror the
person(a) in the video) are important to determine an observer’s likelihood
of being duped by a deepfake video.

Our null hypothesis asserts that none of the features or pairing of
features wemeasure in our survey produce biases that show strong evidence
of the importance of a user being duped by a deepfake video or being able to
detect a deepfake video. We then measure our confidence in rejecting this
null hypothesis bymeasuring a bootstrap credibility interval for a difference
in means test between the accuracy of two populations (comparing Mat-
thew’s Correlation Coefficient scores). In all tests, we use 10,000 bootstrap
samples and consider a comparison significant (having strong evidence) if
the difference is observed in 95% of samples (i.e., in 9500 pairs). With this
method, our paper aims to better understand how potential social biases
affect our ability to detect misinformation.

Results
Our results can be summarized as follows. (Q1) If not primed, our survey
participants are not particularly accurate at detecting deepfakes (accu-
racy = 51%, essentially a coin toss). (Q3−Q4) Accuracy varies by some
participants’ demographics and perceived demographics of video persona.

In general, participants were better at classifying videos that they perceived
as matching their own demographic.

Our results show that of the 4032 total videos watched, 49% were
deepfakes, and 1429 of those successfully duped our survey participants. A
confusionmatrix showing theTruePositive (TP), FalseNegative (FN), False
Positive (FP), and True Negative (TN) rates can be seen in Fig. 2. We also
note that the overall accuracy rate (where accuracy = (TP+TN)/(TP+FP
+FN+TN)) of our participants was 51%. This translates to an overall
Matthew’s CorrelationCoefficient (MCC) score of 0.334 for all participant’s
guesses vs. actual states of the videos.MCC62,63 is a simple binary correlation
between the ground truth and the participant’s guess. Regardless of the
metric, our participants performed barely better than a simple coin flip
(credibility 94%). All summary statistics for our study and all confusion
matrices for our primary and secondary demographic groups can be found
in Appendix SI2 and Appendix SI3, respectively. Next, we explain our
findings in detail.

Q1 Priming bias: Our results suggest that priming bias may play a role
in a user’s ability to detect deepfakes. Compared with notable prior
works5,64,65, our users were not explicitly told to look for deepfake videos
while viewing the video content. Our survey takers participated in a
deceptive studywhere they thought they answered questions about effective
communication styles. They were debriefed only after the survey was
completed and then asked if they thought the video clips were real or fake.
Priming, on the contrary, would mean that when the user watched the two
video clips, they would be explicitly looking for deepfakes.

Other works measured primed human deepfake detectors to compare
themtomachines andhumanswithmachine aid. For example, in a study by
ref. 64, humanswere deployed as deepfake evaluators. The participantswere
explicitly asked to view images and look for fake images. Participants in the
study were also required to pass a qualification test where they needed to
correctly classify 65% real and fake images to participate in the study64 fully.
In a more recent study by ref. 5, participants viewed video clips from the
Facebook Deepfake Detection Challenge Dataset (DFCD), as in our study.

Fig. 2 | A confusionmatrix showing our participant guesses about the state of the
videos vs. the real state of the video. Participants in our study watched two videos
followed by a questionnaire and a debriefing on deepfakes. They were then asked to
guess whether the videos were deepfakes or real. Out of 2016 participants and 4032
total videos watched, 1429 videos duped our participants, meaning they saw a fake
video they thought was real. The top right panel shows the participants who were
duped by deepfakes. The confusionmatrix is defined by the number of true positives
in the top left, false negatives in the top right, false positives in the bottom left, and
true negatives in the bottom right.
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They were asked to explicitly look for deepfake videos and then tested
regarding how this compared to machines alone and machines aided by
humans. Groh et al. reported an accuracy score of 66% for primed humans,
73% for a primed human with a machine helper, and 65% for the machine
alone. In another study, ref. 65 also showed that hybrid systems that com-
bine crowd-nominated and machine-extracted features outperform
humans and machines alone.

In comparison, a previous study by ref. 5 uses the same benchmark
video data but in their study subjects were informed beforehand and
explicitly looked for deepfakes. We compare our participant’s accuracy to
this study in Table 1. The section of the Groh et al. study where they gather
human accuracy of deepfakes was conducted through a publicly available
website (participant demographics were not gathered for this study). This
website collected organic visitors from all over the world, the participants
could view deepfakes from the DFCD dataset and guess if they could spot
the deepfake or not (the specific question asked “Can you spot the deepfake
video?”), the study participants were asked on a slider how confident they
were in their answers as a percentage between 50% and 100%. In the human
detection section of the study, they evaluated the accuracyof 882 individuals
(only those who viewed at least 10 pairs of videos, note they did not find
evidence that accuracy improves as the participants watch more videos) on
56 pairs of videos from the DFCD dataset. They compare the accuracy rate
of participants (66% for humans alone) in this studywith the accuracy of the
leading model from the DFDC Kaggle challenge (65% accuracy for the
leadingmodel). In the second part of their experiment, they look at how the
leading model (e.g., machine model) can help human accuracy. In this part
of the study, after participants (N = 9492) submit their guesses regarding the
state of the videos they are given the likelihood from themachinemodel and
then told they can update their scores (resulting in a 73% accuracy score).

Our results show that the non-primed participants were only 51%
accurate at detecting if a video was real or fake. One important takeaway
fromprevious studies is that human-machine cooperation provides the best
accuracy scores. The previously mentioned prior studies were performed
with primed participants. We believe a more realistic reflection of how
deepfake encounterswouldoccur “in thewild”wouldbewithobserverswho
were not explicitly seeking out deepfakes. Ecological viewing conditions are
important for this type of study66. Future work is needed to investigate how
non-primed human deepfake detectors perform when aided by machines.

Q2 Prior knowledge effect: We also ask if participants are better at
detecting a deepfake if they have prior knowledge about deepfakes or more
exposure to social media.

Our results show that there was only weak evidence that prior
knowledge or frequent social media usage impacts participants’ accuracy.
Therefore, we cannot draw any strong conclusions as to the compatibility
with our data for this particular question, given that our credibility score for
this metric fell below 95% credibility.

We see that participants who are frequent social media users (i.e., use
socialmedia onceaweekormore)had ahigherMCCscore (MCC= 0.0396)
than those who used social media less frequently (MCC=−0.0110). Par-
ticipants who knew what a deepfake was before taking the survey
(MCC= 0.0790) also had a higher score than those unfamiliar with

deepfakes (MCC = 0.0175). However, in both comparisons, the difference
was only deemed to have a weak effect given that bootstrap samples reject
the null only with 83% and 94% credibility, respectively.

Q3-4 Homophily versus heterophily bias: We then focus on the
potential impacts of heterophily and homophily biases on a participant’s
ability to detect if a video is real or a deepfake. We look at the Matthew’s
Correlation Coefficients (MCC) for all user groups and compare their
guesses on videos that either match their identity (homophily) or do not
match their own identity (heterophily). Results of theseMCC scores related
to homophily and heterophily bias can be seen in Fig. 3.

Ourdata shows strong evidence that oneof ourdemographic subgroups,
namelywhiteparticipants,wasmoreaccuratewhenguessing the stateof video
personas that match their own demographic. We test our null hypothesis by
comparing the answers given by a certain demographic of participants when
looking at videos that match and do notmatch their identity. In doing so, we
only observed evidence of a strong homophily bias for white participants,
which can be seen in Table 2. In that case, the null hypothesis that they are
equally accurate on videos of white personas and personas of color falls
outside of a 99% credibility interval, which can be seen in Fig. 3.

We further break down this potential bias in two dimensions (overall
demographic classes of the participants and video persona) in Table 2. We
then see more evident results. Here we compare subgroups of our survey
participants (e.g., male vs. female viewers, persons of color vs. white viewers,
and young vs. old viewers) to see which groups perform better when
watching videos of a specific sub-type (e.g., videos ofmen, videos of women,
videos of persons of color, videos of white people, videos of young people,
and videos of old people).

By gender, we find evidence that male participants are more accurate
than female participants when watching videos with a male persona.
Similarly, by race,wefind strong evidence that participants of color aremore
accurate than white participants when watching videos that feature a per-
sona who is a person of color. Lastly, young participants have the highest
accuracy score overall for any of our demographic subgroups. Of course,
these results may be confounded with other factors, such as social media
usage, which can bemore prominent in one group (e.g., young participants)
than another (e.g., older participants). More work needs to be done to
understand the mechanisms behind our results.

In summary, results that satisfy a threshold of credibility above 95%
(rejecting the null hypothesis with 95% credibility) on human biases in
deepfake detection are as follows.
• We find strong evidence that white participants show a homophily

bias, meaning they are more accurate at classifying videos of white
personas than they are at classifying videos of personas of color.

• We find strong evidence that when viewing videos of male personas,
male participants in our survey are more accurate than female
participants.

• Wefind strong evidence that when viewing videos of personas of color,
participants of color are more accurate than white participants.

• We find strong evidence that when viewing videos of young personas,
participants between the ages of 18−29 are more accurate than par-
ticipants above the age of 30; surprisingly, participants aged 18−29 are
also more accurate than participants aged 30−49 even when viewing
videos of personas aged 30−49.

Mathematical model
In essence, the results shown in Table 2 illustrate how there is no single
demographic class of participants that excels at classifying all demographics
of video persona. Different participants can have different weaknesses. For
example, a whitemale participantmay bemore accurate at classifyingwhite
personas than a female participant of color, but the female participant of
colormay bemore accurate on videos of personas of colors. To consider the
implications of this simple result, we take inspiration from our findings and
formulate an idealized mathematical model of misinformation to better
understand howdeepfakes spread on social networkswith diverse users and
misinformation.

Table 1 | Accuracy of deepfake detection

Type Accuracy

Non-Primed Human 51%

Primed Human5 66%

Machine Only5 65%

Primed Human with Machine Helper5 73%

Accuracy scores of machine deepfake detectors versus primed human deepfake detectors versus
non-primed human deepfake detectors. We compare primed and non-primed survey participants
and their abilities to detect deepfakes. Our results show that humans who are not primed to find
deepfakes reach an accuracy of 51%. The accuracy scores of our survey participants are 15%
points below those of primed human deepfake detectors from previous work5.

https://doi.org/10.1038/s44260-024-00006-y Article

npj Complexity |             (2024) 1:5 5



Models ofmisinformation spread often draw from epidemiological
models of infectious diseases. This approach tracks how an item of fake
news or a deepfake might spread, like a virus, from one individual to its
susceptible network neighbors, duping them such that they can further
spread misinformation67–74. However, unlike infectious diseases, an
individual’s recovery does not occur on its own through its immune
system. Instead, duped individuals require fact-checking or correction
from their susceptible neighbors to return to their susceptible state75–82.
In light of these previous modeling studies, it is clear that demographics
can affect who gets duped by misinformation and who remains to
correct their network neighbors. We therefore integrate these
mechanisms with the core finding of our study: Not all classes of
individuals are equally susceptible to misinformation.

Our model uses a network with a heterogeneous degree distribution
anda structure inspiredby themixed-membership stochastic blockmodel20.
Previousmodels have shown the importanceof community structure for the
spread of misinformation71,74 and the stylized structure of the mixed-
membership stochastic block model captures the known heterogeneity of
real networks and itsmodular structure of echo chambers and bridge nodes
with diverse neighborhoods83. We then track individuals based on their
demographics. These abstract classes, such as 1 or 2, could represent a
feature such as younger or older socialmedia users.We also track their state,
e.g., currently duped by a deepfake video (infectious) or not (susceptible).
We also track the demographics of their neighbors to know their role in the
network and exposure to other users in different states.

The resultingmodel has two criticalmechanisms. First, inspired by our
survey, individuals get duped by their dupedneighbor at a rate λi dependent
on their demographic class i. Second, as per previous models and the
concept of crowd-sourced approaches to correction of misinformation
basedon the “self-correcting crowd”38–40, duped individuals canbe corrected
by their susceptible neighbors at a fixed rate γ. The dynamics of the resulting
model are tracked using a heterogeneous mean-field approach84 detailed in
Box 1 and summarized in Fig. 4.

This model has a simple interesting behavior in homogeneous popu-
lations and becomesmuchmore realistic oncewe account for heterogeneity
in susceptibility. In a fully homogeneous population, λi = λ ∀ i, if mis-
information can, on average, spread from a first to a second node, it will
never stop. The more misinformation spreads, the fewer potential fact-
checkers remain. Therefore, misinformation invades the entire population
for a correction rate γ lower than some critical value γc, whereas mis-
information disappears for γ > γc.

The invasion threshold for misinformation is shown in Fig. 4a. In
heterogeneous populations, where different nodes can feature different
susceptibility λi, the discontinuous transition from amisinformation-free to
a misinformation-full state is relaxed. Instead, a steady state of mis-
information can now be maintained at any level depending on the para-
meters of misinformation and the demographics of the population. In this
regime, we can then further break down the dynamics of the system by
looking at the role of duped nodes in the network, as shown in Fig. 4b. The
key result here is that very susceptible individuals with a homogeneous
assortative neighborhood (e.g., an echo chamber) are at the highest risk of
being duped. Conversely, nodes in the same demographic class but with a
mixed or more diverse neighborhood are more likely to have resilient sus-
ceptible neighbors able to correct them if necessary.

Consider now that diverse misinformation spreads. We assume just
two types of misinformation (say young or older personas in two deepfake
videos) targeting each of our two demographic classes (say younger and
older socialmedia users).We show this thought experiment in Fig. 4cwhere
we use two complementary types of misinformation: One with λ1 = λ2/
2 = 1.0 and amatching typewith λ02 ¼ λ01=2 ¼ 1:0.We run the dynamics of
these two types of misinformation independently as we assume they do not
directly interact, and, therefore simply combine the possible states of nodes
after integrating the dynamical system. For example, the probability that a
node of type 1 is duped by both pieces of misinformation would be the
product of the probabilities that it is duped by the first and duped by the

second. By doing so, we can easily study a model where multiple, diverse
pieces of information spread in a diverse network population.

For diversemisinformation in Fig. 4c, wefind two connectivity regimes
where the role of network structure is critical. For low-degree nodes, a
diverse neighborhood means more exposure to diverse misinformation
than a homogeneous echo chamber, such that themisinformation that best
matches the demographics of a low-degree user ismore likely tofind them if
they have a diverse neighborhood. For high-degree nodes, however, we find
the behavior of herd correction: Adiverse neighborhoodmeans a diverse set
of neighbors that is more likely to contain users who are able correct you if
you become misinformed34,85,86.

In the appendix, we analyze the robustness of herd correction to the
parameters of the model. We show mathematically that the protection it
offers is directly proportional to the homophily in the network (our para-
meter Q). By simulating the dynamics with more parameters, we also find
that herd correction is proportional to the degree heterogeneity of the
network. As we increase heterogeneity, we increase the strength of the
friendship paradox. “Your friends have more friends than you do,”87 which
means they get more exposed to misinformation than you do but also that
they have more friends capable of correcting them when duped.

Our stylized model is meant to show how one can introduce biases in
simple mathematical models of diverse misinformation. A first-order effect
is that individuals with increased susceptibility should be preferentially
duped, but this effect exists only if misinformation can spread (above a
certain contagion threshold) but not saturate the population (below certain
transmissibility such that the heterogeneity has impact). A second-order
effect is that individuals with a diverse neighborhood are alsomore likely to
have friendswhocancorrect themshould they bedupedbymisinformation.

Future modeling efforts should also consider the possible interactions
between different kinds of misinformation88. These can be synergistic89,
parasitic90, or antagonistic91; which all provide rich dynamical behaviors.
Other possiblemechanisms to consider are the adaptive feedback loops that
facilitate the spread of misinformation in online social networks92.

Discussion
Understanding the structure and dynamics of misinformation is important
as it can bring a great amount of societal harm. Misinformation has nega-
tively impacted the ability to disseminate important information during
critical elections, humanitarian crises, global unrest, and global pandemics.
More importantly, misinformation degrades our epistemic environment,
particularly regarding distrust of truths. It is necessary to understandwho is
susceptible to misinformation and how it spreads on social networks to
mitigate its harm and propose meaningful interventions. Further, as
deepfakes deceive viewers at greater rates, it becomes increasingly critical to
understand who gets duped by this form of misinformation and how our
biases and social circle impact our interaction with video content at scale.
We hope this work will contribute to the critical literature on human biases
and help to better understand their interplay with machine-generated
content.

The overarching takeaways of our results can be summarized as fol-
lows. If not primed, humans are not particularly accurate at detecting
deepfakes. Accuracy varies by demographics, but humans are generally
better at classifying videos thatmatch them. These results appear consistent
with findings of the own-race bias (ORB) phenomenon18, where overall, we
see that participants are better at detecting videos that match their own
attributes. Consistent with ORB research93, our study results also show that
white participants display a greater accuracy when presented with videos of
white personas. We also see strong evidence that persons of color are more
accurate than white participants when viewing deepfakes of personas of
color andmore accurate overall thanwhite participants (see Supplementary
Information). Our study adds several extra dimensions of demographic
analysis by using gender and age. We see strong evidence that male parti-
cipants are better at detecting videos of male personas than female viewers.
With age, we see strong evidence that when viewing videos of young per-
sonas, participants between the ages of 18−29 are more accurate than
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participants above the age of 30; surprisingly, participants aged 18−29 are
also more accurate than participants aged 30-49 even when viewing videos
of personas aged 30−49. Combining these results, more work needs to be
done to understand better how interventions such as education about
deepfakes, cross-demographic experiences and exposure, and exposure to
the technology impact a user’s ability to detect deepfakes.

In this observational study, we also explored the potential impacts of
these results in a simple mathematical model and extrapolated from our
survey to hypothesize that a diverse set of contacts might provide “herd
correction”where friends can correct each other’s blind spots. Friends with
different biases can better correct each other when duped. This modeling
result is a generalization of the self-correcting crowd approach used in the
correction of misinformation38.

In future work, we hope to investigate how non-primed human
deepfake detectors perform when aided by machines. We want to investi-
gate themechanismsbehindwhy somehumanviewers arebetter at guessing
the state of videos that match their own identity. For example, do viewers
have a homophily bias because they are more accustomed to images that
match their own, or do they simply favor these images?We also would like
to empirically investigate our survey via a more robust randomized con-
trolled experiment and model results on real-world social networks with
different levels of diversity tomeasure the spread of diverse misinformation
in the wild. Consequently, we would be interested in testing possible edu-
cational or other intervention strategies to mitigate adversarial mis-
information campaigns. Our simple observational study is a step towards
understanding social biases’ role and potential impacts in an emerging
societal problem with many multilevel interdependencies.

Methods
Survey methodology
We first ran a pilot stage of our observational study.We conducted a simple
convenience sample of 100participants (aged18+) to observe the efficacy of
our survey.We then ranphase 1 (April−May2022)of the full surveyusing a

Qualtrics survey panel of 1000 participants who matched the demographic
distribution of U.S. social media users. We then ran phase 2 (September
2022) of the full survey, again using Qualtrics and the same sampling
methodology. The resulting full study from phases 1 and 2 is a 2016-
participant sample.

Towards ensuring that our experiment reflects the real-world context
as closely as possible, survey participants did not knowbefore the start of the
survey that the videos couldpotentially bedeepfakes. The surveywas framed
for participants as a study about different communication styles and tech-
niques that helpmake video content credible. Participants were told that we
were trying to understand how aspects of public speaking, such as tone of
voice, facial expressions, and body language, contribute to the effectiveness
and credibility of a speaker. The survey’s deceptiveness allowed us to ask
questions about speaker attributes, likeability, and agreeableness naturally
without priming the participants to look specifically for deepfakes94. We
chose to make our survey deceptive not to prime the participants but also
because this more closely replicates the deceptiveness that a social media
user would encounter in the real world. Furthermore, Bröder95 argues that
“in studies of cognitive illusions (e.g., hindsight bias ormisleading postevent
information effect), it is a necessity to conceal the true nature of the
experiment.” We posit that our study clearly involves cognitive illusions,
specifically in the form of deepfakes, and as such deception is an
important tool.

We designed our survey using video clips (as seen in Fig. 5) from the
Deepfake Detection Challenge (DFDC) Preview Dataset60,61. In our survey,
we ask the participants to view two random video clips, which are
approximately 10 s in length each. Each video clipmay be viewed unlimited
times before reading the questions but not again after moving to the
questions. The information necessary to answer these questions relies solely
on the previously shown video clip. A link to the full survey and survey
questions is available in Appendix 1.

After viewingboth videos, the participants are thenasked to complete a
related questionnaire about the communication styles and techniques of the
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Fig. 3 | Bootstrap samples from observed confusion matrices to compare MCC
scores of user and video feature pairs. Categories that satisfy a threshold of
credibility above 95% are as follows all bootstrap samples can be seen in the Sup-
plementary Information. aWhite users were found to have a homophily bias and are
better at classifying videos of a persona they perceive as white. b Consequently,
videos of personas of color are more accurately classified by participants of color.
c Similarly, videos of male personas are better identified by male users. Across

multiple age classes, we find that participants aged 18−28 years old are better at
identifying videos that match them than older participants (d, e) or even better at
classifying videos of persona perceived as 30−49 years old than participants from
that same demographic (f). In addition we reproduce our findings from boot-
strapping and conduct a Bayesian logistic regression to explore the effects of
matching demographics on the detection accuracy which can be seen in our Sup-
plementary Information.
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videos. The questions ask about attributes of the video, such as pose, tone,
and style and are asked to rate them on a Likert scale from very pleasant to
very unpleasant.We also asked them to rate their agreement with the video
content and credibility. We also ask participants to identify the perceived
gender expression of the person(a) in the video, to identify what age group
they belong to, and to ask if they perceive the person in the video to be a
person of color or not.

In line with best practices in ethical research96,97, we debriefed the
participants following the viewing of both videos and completion of the
questionnaire on communication style and perceived demographics. The

participants are debriefed on the deception of the survey, given a short
explanation of deepfake technology, and then asked if they think the videos
were real or fake (as seen in Fig. 6).

Lastly, we collect demographic information on the survey participants’
backgrounds and expressions of identity. We also ask participants how
knowledgeable they already were on deepfakes, how often they use social
media, and their political and religious affiliations. We also asked partici-
pants if they knew that the survey was about deepfakes before taking the
survey (survey participants who were primed were subsequently dropped
from the analysis).

Box1 | Mathematicalmodelofdiversemisinformationandherdcorrectiononsocial networks

We wish to explore the potential impacts of our results on the spread of
diverse misinformation on social networks. We consider that multiple
independent streamsofmisinformation spread simultaneously; i.e., there
are multiple sets of deepfakes, each with its own demographical biases.
We also consider that social networks are often very heterogeneous with
a skewed distribution of contacts per user and modular with denser
connections among users of the same demographics.
We account for the above using three stylized patterns for the network
structure. First, we divide the network into two demographic classes of
equal size, simply labeled 1 and 2. Second, we assume a power-law
distribution pk of contacts k per user with pk∝ k−α regardless of demo-
graphics. Third, we use a mixed-membership stochastic block model to
generate the network structure: Half of the nodes of each demographic
always interact following their demographics, and half act as bridge
nodes connecting randomly. The probability that a contact falls within a
single demographic class is proportional to Q, while contacts across
classes occur proportionally to 1−Q; withQ > 0.5 for modular structure.
According to the above, we can write the fraction of nodes p1

k;‘ which are
of demographic class 1 with k contacts of class 1 and ℓ contacts of class
2:

p1
k;‘ /

1
2
ðkþ ‘Þ�α 1

2
kþ ‘

k

� �
Qkð1�QÞ‘ þ 1

2
kþ ‘

k

� �
ð1=2Þkþ‘

� �
: ð1Þ

We define a simple dynamical process where individuals are exposed to
misinformation through each of their duped network neighbors, and

themselves get duped at a rate λi based on their demographic class i. Non-
dupedneighbors can thencorrect their dupedneighbors at a rate γ38–40, e.g., we
assume that your network neighbors can fact-check something you diffuse
online and potentially correct your opinion. The fraction of individuals of a
certain type (i, k, ℓ) that are duped,Di

k;‘, can be followed in time using a set of
ordinary differential equations:

d
dt
Di
k;‘ ¼ λi pik;‘ � Di

k;‘

� �
kθi;1 þ ‘θi;2
� 	� γDi

k;‘ kϕi;1 þ ‘ϕi;2

� �
: ð2Þ

where θi,j and ϕi,j represent the probabilities that a connection from an
individual of demographic i to an individual of demographic j connects to a
duped or non-duped individual, respectively. They can be calculated, for
example, as

θ1;2 ¼
X
k;l

kD2
k;‘=

X
k0 ;l0

k0p2k0;‘0 or ϕ2;1 ¼
X
k;l

‘ p1k;‘ � D1
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� �
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X
k0;l0

‘0p1k0;‘0 :

ð3Þ
These quantities close the system of equations and allow us to simulate a
relatively simple model that manages to capture the heterogeneity (α) and
community structure (Q) of social networks, as well as demographic-specific
susceptibility to misinformation ({λi}) and fact-checking among the
population (γ). Our results are summarized in Fig. 4 and further analyzed
in Appendix SI4.

Table 2 | Significant differences in accuracy of deepfake detection

Video/User Demographics MCC of User N Credibility

White Viewer/Homophilic Videos 0.0518 1372 0.99

White Viewer/Heterophilic Videos −0.0498 1224

Male Persona/Male Viewer 0.0827 918 0.97

Male Persona/Female Viewer 0.0567 1188

POC Persona/POC Viewer 0.0858 708 0.99

POC Persona/White Viewer −0.0544 1143

Age 18−29 Persona/Age 18−29 Viewer 0.1475 303 0.99

Age 18−29 Persona/Age 30−49 Viewer 0.0354 264

Age 18−29 Persona/Age 50+ Viewer −0.0198 694

Age 30−49 Persona/Age 18−29 Viewer 0.1168 282 0.96

Age 30−49 Persona/Age 30−49 Viewer −0.0037 607

Categories that are considered to show strong evidence are ones that satisfy a threshold of credibility above 95%.Matthew’sCorrelationCoefficient (MCC) is a correlationmeasure between a participant’s
guess about the video being real or fake (0,1) versus the actual state of the video (real 0, fake 1). We use a bootstrap approach to then test the credibility of a superior accuracy (frequency of bootstrap pairs
that produce a superior accuracy). Bootstrap distributions can be seen in Fig. 3. Note that “heterophilic videos” (row 2) include video personas that the viewers classified as “maybe POC” or “uncertain”,
while POC persona (rows 5 and 6) did not.
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Fig. 6 | Question where survey participants are
asked after the debrief of the survey if they think
the videos they watched are real or fake. The per-
formance metric we use to measure participant
accuracy is the ratio of the correct guesses to the
entire pool of guesses where accuracy = (True
Positive (TP)+ True Negative (TN))/(True Positive
(TP)+ False Positive (FP)+ False Negative (FN)+
True Negative (TN)).

Fig. 5 | Example video clip from the Facebook
Deepfake Detection Challenge (DFDC) dataset.
The person depicted is fake.

Fig. 4 | Spread of diverse deepfakes with hetero-
geneous transmission rates λi across demographic
types 1 and 2 (in-group density is set to Q= 0.75,
degree heterogeneity to α= 3). Other parameters
are given in the figure, with (b) and (c) using the
correction rate highlighted in (a) at 1.7. c shows how
high degree nodes can be protected if they have a
diverse set of neighbors.
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Sampling
Survey responses from 2016 participants were collected through Qualtrics,
an IRB-approved research panel provider, via traditional, activelymanaged,
double-opt-in research panels6. Qualtrics’ participants for this study were
randomly selected stratified samples from the Qualtrics panel membership
pool that represents the average social media user in the U.S.98 Our survey
respondents represent the following categories and demographic break-
down in Table 3.

Secondary Data
For this project, we use the publicly available Facebook AI Research
Deepfake Detection Challenge (DFDC) Preview Dataset (N = 5000 video
clips)60,61. For our purposes, we filtered out all videos from the dataset that
featured more than one person(a). The video clips may be deepfake or real;
see Table 4. Additionally, some of the videos have been purposefully altered
in several ways. Here is the list of augmenters and distractors:
• Augmenters: Frame-rate change, Quality level, Audio removal,

Introduction of audio noise, Brightness or contrast level, Saturation,
Resolution, Blur, Rotation, Horizontal flip.

• Distractors: Dog filter, Flower filter, Introduction of overlaid images,
shapes, or dots, Introduction of additional faces, Introduction of text.
A video’s deepfake status (deepfake or not) was not revealed to the

respondents during or after the survey. Many augmenters and distractors
were noticeable to the respondents but were not specifically revealed.

Original Data
We transformed all survey response variables of interest into numerical
form to analyze our survey results. All Likert survey questions were con-
verted from ‘Very unpleasant,’ ‘Unpleasant,’ ‘Neutral,’ ‘Pleasant,’ and ‘Very
pleasant’ to an ordinal scale of 1,2,3,4,5.

Participants selected education levels from ‘Some high school,’ ‘High
school diploma or equivalent,’ ‘Some college,’Associate’s degree (e.g., A.A.,
A.E.,A.F.A.,AS,A.S.N.),’ ‘Vocational training,’ ‘Bachelor’s degree (e.g., B.A.,
BBA BFA, BS),’ ‘Some postgraduate work,’ ‘Master’s degree (e.g., M.A.,
M.B.A., M.F.A., MS, M.S.W.),’ ‘Specialist degree (e.g., EdS),’ ‘Applied or
professional doctorate degree (e.g., M.D., D.D.C., D.D.S., J.D., PharmD),
‘Doctorate degree (e.g., EdD, Ph.D.)’was transformed to an ordinal scale of
1-11 respectively.

Participants selected income levels from ‘Less than $30,000’, ‘$30,000−
$49,999’, ‘$50,000−$74,999’, ‘$75,000+’ were transformed to an ordinal
scale of 1−4 respectively.

Participants selected their social media usage levels from ‘I do not use
social media,’ ‘I use social media but less than once a month,’ ‘Once a
month,’ ‘A few times amonth,’ ‘Once a week,’ ‘A few times a week,’ ‘Once a
day,’ ‘More than once a day’ were transformed to an ordinal scale of 1−8
respectively. Variables were split into the category of frequent social media
users 5−8 and infrequent socialmedia users 1−4.We combined the ordinal
scales into two categories in order to reduce the dimensionality of our data.

Participants selected their knowledge of deepfake from ‘I did not know
what a deepfake was,’ ‘I somewhat knewwhat a deepfake was,’ ‘I knewwhat
a deepfake was,’ ‘I consider myself knowledgeable about deepfakes’ was
transformed to an ordinal scale of 1−4 respectively.Variableswere split into
users who are knowledgeable about deepfakes 3−4 and users who are not
knowledgeable about deepfakes 1−2. We combined the ordinal scales into
two categories in order to reduce the dimensionality of our data.

All nominal and categorical variables were transformed into binary
variables. Categorical variables (some survey questions included write-in
answers) were combined into coarser-grained categories for analysis, such
as participant racial/ethnic identity (transformed to Person of Color or
White), U.S. state of residence (transformed to U.S. regions), employment
(transformed to occupational sectors), religious affiliation (transformed into
religious affiliations), and political affiliation (transformed tomajor political
affiliations).

We allowed survey participants to identify their gender identity, the
results of which were largely binary. Unfortunately, our sample was insuf-
ficient to perform meaningful analysis on a larger non-binary gender
identity spectrum. Primary variables with an N under 30 were dropped,
meaning the participant’s responses were not included in the analysis (this
was only applicable for non-binary gender responses where N = 13). Our
survey participants were given two video clips to view and critique; in our
analysis, we decided to analyze the first or second video in the same way.

Analytical methods
We use Matthews Correlation Coefficient to understand the relationship
between the participant’s guesses on the status of the video (fake or real) and
the actual state of the video (fake or real), we ran a Matthews Correlation
Coefficient (MCC)62,63 to compare what variables show strong evidence to
impact a participant’s ability to guess the actual state of the video correctly.
MCC is typically used for classification models to observe the classifier’s
performance. Here we treat human participant subgroups as classifiers and
measure their performance with MCC. MCC takes the participant sub-
group’s guesses and the actual answers and breaks them up into the fol-
lowing categories: number of true positives (TP), number of true negatives
(TN), number of false positives (FP), and number of false negatives (FN).
The MCC metric ranges from −1 to 1, where 1 indicates total agreement
between participant guess about the video and the actual state of the video,
−1 indicates complete disagreement between participant guess about the
video and the actual state of the video, and 0 indicates something similar to a
random guess. To calculate the MCC metric for our human classifiers, we
then use the following formula:

ðTP ×TNÞ � ðFP × FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð4Þ

MCC is considered a more balanced statistical measure than an F1, preci-
sion, or recall score because it is symmetric, meaning no class (e.g., TP, TN,
FP, FN) is more important than another.

To compare MCC scores, we bootstrap samples from pairs of confu-
sionmatrices and compare theirMCC scores. This process generates 10,000
bootstrapped samples of differences in correlation coefficients. We then
compare the null hypothesis (difference equal to zero) to the bootstrapped
distribution to measure the evidence level of biases and get a credibility
interval on their strength.

Table 3 | Descriptive demographics of survey partici-
pants (N = 2016)

Type Sub-Group % of Sample

Gender Female 45%

Gender Male 55%

Gender Non-Binary 0.5%

Ages 18−29 17%

Ages 30−49 27%

Ages 50−64 29%

Ages 65+ 27%

Demographic Non-Hispanic White 67%

Demographic Non-Hispanic Black 10%

Demographic Hispanic 14%

Demographic Other 9%

Table 4 | Descriptive statistics of video data (N = 5000)

Video Binary Number Percent

Real 0 2500 50%

Deepfake 1 2500 50%
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Logistic regression. To understand the relationship between matching
demographics and guess accuracy we run a Bayesian logistic regression
on matching demographics (age matches, gender matches, race mat-
ches). Logistic regression is a statistical analysis method used to model
and predict binary outcomes (the participant’s accuracy). Accuracy is
equal to 1 if the participant’s guess about the video was correct and 0 if it
was incorrect. It utilizes prior observations from a dataset to establish
relationships and make predictions based on specific variables.

Accuracy rate. The performance metric we use to measure participant
accuracy is the ratio of the correct guesses to the entire pool of guesses.
The accuracy is thus equal to the sum of true positives and true negatives
over the total number of guesses.

Data Availability
Our full survey questionnaire, code,data, and codebook canbe foundonour
GitHub repository. https://github.com/juniperlovato/
DiverseMisinformationPaper Due to the nature of this research, partici-
pants of this study did not consent for their personally identifiable data to be
shared publicly, so the full survey’s raw individual level supporting data is
not available. Aggregated and anonymized data needed for analysis can be
found in our repository.
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