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Phase transitions of civil unrest across
countries and time
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Phase transitions, characterized by abrupt shifts between macroscopic patterns of organization, are
ubiquitous in complex systems. Despite considerable research in the physical and natural sciences,
the empirical study of this phenomenon in societal systems is relatively underdeveloped. The goal of
this study is to explorewhether thedynamics of collective civil unrest canbeplausibly characterized as
a sequence of recurrent phase shifts, with each phase having measurable and identifiable latent
characteristics. Building on previous efforts to characterize civil unrest as a self-organized critical
system, we introduce amacro-level statistical model of civil unrest and evaluate its plausibility using a
comprehensive dataset of civil unrest events in 170 countries from 1946 to 2017. Our findings
demonstrate that the macro-level phase model effectively captures the characteristics of civil unrest
data from diverse countries globally and that universal mechanisms may underlie certain aspects of
the dynamics of civil unrest.We also introduce a scale to quantify a country’s long-term unrest per unit
of time and show that civil unrest events tend to cluster geographically, with the magnitude of civil
unrest concentrated in specific regions. Our approach has the potential to identify andmeasure phase
transitions in various collective human phenomena beyond civil unrest, contributing to a better
understanding of complex social systems.

Phase transitions, which are marked by abrupt changes in the features of a
system, occur in both nature and society1,2. Understanding the transitions
between disordered and ordered system structures is a prevalent theme
underlying research in this field3.Over the past fewdecades, there has been a
growing trend towards utilizing statistical physics4, biology3, and ecology5 to
examine the dynamics of social phenomena6–10. These interdisciplinary
approaches have proven to be particularly useful in understanding phase
transitions within social systems. As a result, significant attention has been
devoted to investigating phase transitions exhibited by models that attempt
to capture the essential characteristics of specific social phenomena. The
demonstrability of phase transitions in stylized models of social systems is
wide in scope6, encompassing diverse fields such as traffic flow11, agent-
based models in econophysics10,12, evolutionary game theory8, opinion
dynamics7,13, cultural dynamics7,14, crowd behavior7, language dynamics7,
criminology6, and social collapse15, to name just a few examples.

Recent studies6,7,16 have drawn attention to a gap between the theore-
tical modeling of phase transitions in social systems and their empirical
verification. While empirical research on this topic is limited, self-
organization and phase transitions have been proposed in various
domains, including human dynamics7,17,18, financial markets10,19–22, experi-
mental econophysics23, opinion dynamics16, and elections and voting

behavior6,24. Noteworthy to our investigation are empirical findings related
to patterns of protest recruitment bursts on the Twitter network25, oscil-
lating patterns of political instability26,27, and the use of Markov models28–30

to forecast different phases of armed conflict dynamics31. Although the
empirical exploration of phase transitions in social systems remains scarce,
these examples underscore the potential for further investigation and the
necessity for greater emphasis on empirical validation.

To fill the aforementioned gap, this study outlines statistical methods
designed to detect and assess the plausibility of phase transitions in large-
scale social systems. These methods are specifically applied to analyze civil
unrest, one of the most potent forms of collective human dynamics. Our
analysis utilizes a comprehensive dataset spanning 170 nations from1946 to
2017. The results shed light on the seemingly unpredictable onset of civil
upheaval, supporting the idea that large-scale collective civil unrest unfolds
in distinct recurring phase transitions that can be precisely identified and
measured. This finding aligns with prior efforts inmodeling civil unrest as a
self-organized process (see Supplementary Methods) and establishes a link
between phase shifts in civil unrest and other collective phenomena
observed in complex systems.

Civil unrest is a ubiquitous collective social phenomenon that has
affected every aspect of social life throughout history, including human
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rights32–36, economic issues37–46, independence movements47–50, and
religion51. Civil unrest is characterized by a sudden and spontaneous
eruption, resulting from an unintended chain of historical events, which
leads to a significant disruption of regional and global order, often followed
by periods of relative calm. Moreover, the interdependence among various
parts of society through communication and social networks facilitates the
spatial and temporal coordination of protest, riot, and rebellion events
across diverse communities, regions, and even countries52. Several promi-
nent instances of such widespread collective behavior comprise the African
American,Hispanic, andLatino civil rightsmovement during the 1950s and
1960s53, the series of political protests and revolutions that swept across
northern Africa and the Middle East in 2010 and 201154, the worldwide
demonstrations against the multinational corporation Monsanto held in
436 cities across 52 countries41, the 2011 Occupy Wall Street movement
against economic inequality that originated inNewYorkCity and spread to
cities worldwide37, and the independence movements of Eastern European
nations in the late 1980s that resulted in the dissolution of the Soviet Union
in 199147.

Although there has been a perceived rise in the frequency and intensity
of anti-government demonstrations over the past decade, with the GDELT
Project reporting an average annual increase of 5 to 19 percent across
different regions of the world55, there is no consistent pattern of disorder in
terms of the number of people expressing dissatisfaction with government
policies or authority, the level of violence in protests, the number of
casualties, or the extent of property damage52,56–58. Civil unrest in various
countries worldwide, like other collective phenomena in complex systems
such as earthquakes59, financial crises20, traffic jams11, and social collapse15,27,
is characterized by extended periods of relative calm that are punctuated by
sudden bursts or waves of high-intensity, large-scale civil disorders invol-
ving numerous participants and violent events56,60–63. The bursty behavior
observed during instances of civil unrest can be attributed, in part, to the
contagion and social influencemechanisms that operate among individuals
connected by communication and social networks across different
regions25,52,64–75. A close visual examination of civil unrest activity across
different parts of the world suggests a considerable association between a
country’s level of civil disturbance and that of its neighboring countries (see
“Results”). This phenomenon of geographic clustering of civil unrest can be
attributed, at least inpart, to themutual influence thatneighboring countries
have on each other’s civil unrest levels, which could potentially facilitate the
spread of unrest across international borders52.

The approach outlined in this paper for detecting regime changes of
civil unrest remains viable, evenwhen a comprehensive understanding of all
the mechanisms driving civil unrest is incomplete. This is especially perti-
nent given the difficulties in constructing precise mechanistic models for
human societies. This approach is in accordance with related research that
emphasizes specific early-warning signals preceding significant shifts in
complex systems1,2,20, even when facing challenges in constructing precise
mechanistic models for these intricate systems.While constructing detailed
quantitative mechanistic models for various complex systems, including
civil unrest, poses a significant challenge, formulating plausible and realistic
models that elucidate observed patterns in real-world systems and anchor
empirical research in theoretical foundations substantially enhances the
credibility of hypotheses.

The intermittent and complexnature of civil unrest couldbe accounted
for by alternative mechanistic models. One successful class of mechanistic
models for explaining the dynamics of a wide variety of complex systems,
including civil unrest, is self-organized criticality52,58,76–79. Such models
describe the dynamics of complex systems, including forest fires, earth-
quakes, and epidemics, as being governed by a slow driving force, either
physical or informational. This driving force gradually pushes the system
into a highly vulnerable state, leading to the dissipation of energy in ava-
lanches through the system’s spatial degrees of freedom80–82. For instance,
the mechanistic micro-dynamic model of civil unrest in52, which is an
expanded version of the forest-fire model81 of self-organized criticality, can
effectively replicate the dynamics observed in real-world civil unrest,

particularly the transitions between periods of calm and intense civil unrest.
The model, as detailed in Supplementary Methods, operates on a spatial
network that connects different regions within a country. Over time, social,
economic, and political stress builds up in geographic sites, making them
susceptible to unrest with an ‘unrest susceptibility’probability. Spontaneous
outbursts of social unrest may occur in susceptible regions with a ‘sponta-
neous outburst’ probability, which can quickly spread to nearby and distant
vulnerable sites with an ‘infectiousness’ probability. Such activity can trigger
instabilities within the network and cause avalanches of disturbances that
percolate throughout the country, leading to a cascading effect of further
unrest. Simulating the micro-dynamics mechanism described above has
demonstrated that this approach can effectively account for the observed
phenomenon where significant unrest events disrupt a calm state at irre-
gular intervals (see Supplementary Fig. 1). Moreover, the simulation faith-
fully reproduces both the scale and frequency of riots and protestswitnessed
globally over nearly a century52.

According to the abovemicro-dynamic civil unrestmodel52, the spatial
interactions among a country’s elements, including people or regions, can
have an intriguing implication: they can predict the presence of a narrow
transition region that separates two distinct macroscopic phases of social
instability (see Supplementary Fig. 1). These phases encompass low- and
high-intensity unrest and turmoil events, and the identification of such a
transition region can be an indicator of the likelihood and severity of social
instability within a country. The two-phase behavior of civil unrest can be
further explained by considering the time scale separation that often char-
acterizes riots, unrest, and revolutions40,52,83. That is, the rate at which unrest
propagates from disrupted regions to adjacent susceptible areas is sig-
nificantly faster than the rate at which susceptible regions become vulner-
able to unrest due to social, economic, and political stress. Additionally, the
rate at which civil unrest is spontaneously triggered in susceptible regions is
markedly slower than the first two rates. When the density of susceptible
regions falls below a critical threshold (a low-intensity latent phase), civil
disturbance is unlikely to spread, and collective disorder will quickly dis-
sipate, even in the presence of spontaneous triggering events and high
infectiousness rates between the nearest and most distant susceptible geo-
graphic regions. However, once the critical threshold is exceeded (a high-
intensity latent phase), a vast cluster of connected regions forms, and
spontaneous hostile outbursts would likely spread to many parts of society,
with the severity of thedisorder swiftly increasing and thensubsiding.When
new susceptible regions emerge, this pattern tends to repeat itself, with social
tensions building up within the society. If the critical threshold is exceeded
again, collective disorder may ensue, perpetuating the cycle (see Supple-
mentary Methods).

The micro-model discussed above proposes a phenomenological
perspective on civil unrest, framing it as a collective phenomenon under-
going self-organization and giving rise to recurring phase transitions. The
initial phase is characterized by a gradual shift in societal attitudes toward
hostility against the established social order. This phase, which can last for
several years, is marked by the accumulation of social, economic, and
political stress in certain segments of the population, making them more
susceptible todifferent formsof collective unrest. The secondphase typically
begins with one or more triggering events, followed by mobilization, mass
formation, and the emergence of widespread protests and civil unrest.
During this second phase, communication channels, such as rumors, social
networks, and, more recently, social media, help disseminate shared grie-
vances among various communities, inciting further mobilization and
expanding the intensity and scope of civil disorder.

It is crucial to emphasize that observing civil unrest following a dis-
continuous phased pattern could be explained by various alternative
mechanisms and does not definitively confirm self-organized criticality; it
merelyposits it as a plausible explanation consistentwith empirical research.
Rather than presenting a precise representation of civil unrest mechanisms,
models of this nature simulate the gradual accumulation of tensions (or
vulnerabilities) during a relatively calm state, eventually released through
sudden transitions into widespread civil unrest. Given the intricate
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dynamics of civil unrest, we regard the presented mechanistic model as a
phenomenological representation, offering plausible insights into the
potential for recurrent critical transitions in real-world civil unrest data—an
aspect that necessitates empirical investigation. The latter is the focus of
this paper.

This paper aims to investigate the hypothesis of repeated latent phase
shifts in civil unrest across nations and time periods, by addressing several
questions: Is it plausible to characterize the dynamics of collective civil
unrest as a sequence of repeated phase shifts, with each phase displaying
identifiable and measurable latent characteristics? Does the hypothesis of
phase shifts imply that certain aspects of civil unrest are controlled by
universal mechanisms, despite the unique characteristics of individual
countries and geographic regions? To what extent do countries worldwide
share similarities or disparities in the intensity of civil disturbance? More-
over, the paper aims to explore the relationship between geographical
embeddedness and the intensity of a nation’s long-term civil unrest per unit
of time. To accomplish these objectives, the paper employs empirical data
from various nations and time periods.

It is important to note that the approach proposed in this paper for
investigating the discrete latent phases of civil unrest differs considerably
from the typical descriptive or ad hoc references to “waves,” “spikes,” and
“bursts” of civil unrest56,60–63,84. Our approach entails identifying latent
phases that are inherent in the dynamics of civil unrest and can be accurately
measured and detected. Importantly, each latent phase type represents the
same underlying phenomenon, regardless of when it occurs, and transitions
between latent phases are characterized by well-defined probabilities. To
illustrate this concept, we draw an analogy between “latent phases” and
“climate,” and “bursts” and “weather.” Whereas weather refers to rapidly
changing short-term atmospheric conditions, climate describes long-term
patterns and trends in those conditions over time. Similarly, a seemingly
significant burst of civil unrest may occur during a low-intensity phase,
while a string of peaceful activitiesmayoccur during ahigh-intensity period.
The methods put forth in this paper present a rigorous and systematic way
of detecting and analyzing these distinct latent phases of civil unrest,
potentially leading to a deeper understandingof theunderlyingmechanisms
behind civil disturbance.

In this study, we examine civil unrest incidents reported in
newspapers85 from 170 countries spanning the years 1946 to 2017 (see
Methods). To address our research questions, we employ a macro-level
statistical model of civil unrest that leverages a statistical hidden Markov
model86–95 to test the central hypothesis of whether recurring latent phases
underlie civil unrest events across countries and time. Our study provides
compelling evidence supporting the central hypothesis of this paper,
demonstrating the existence of quantifiable latent phases of civil unrest in
the vast majority of countries. Using our macro-level phase model, we can
accurately gauge the expected magnitude and variability of civil unrest
across different latent phases in each country, as well as the likelihood of
transitioning between these latent phases. Moreover, the macro-level phase
model enables us to assess the long-term proportion of time that a country
spends in low- or high-intensity civil unrest phases, as well as its long-run
magnitude scale of civil unrest, which extends beyond the noise inherent in
the data. Our findings also highlight the worldwide implications of civil
unrest that transcend national boundaries. This is demonstrated by the
identification of regional clustering of civil unrest events across the world.
While this phenomenon does not necessarily imply causation, it suggests
that the tendency for civil unrest in one nation to influence those in
neighboring countries may partially explain the observed clustering effect.

Results
Overview of methodology
Wepropose amacro-level phasemodel, which is a statisticalMarkovmodel
(see “Methods”), to describe the macroscopic behavior of civil unrest.
Similar methods have been applied in a variety of fields, including
bioinformatics92, geophysics93, finance94, ecology95, and armed conflicts28–30.
In this study, we utilize the statistical Markovmodel not as a predictive tool

(though see its potential for forecasting in Discussion), but as a rigorous
means to assess the viability of our central hypothesis using a Monte Carlo
Kolmogorov-Smirnov two-sample testing (see “Methods”).

Specifically, we investigate the presence of recurring latent phases that
underlie civil unrest events throughout different countries and historical
periods. Our analysis encompasses a wide range of events, including
assassinations, general strikes, guerrilla warfare, government crises, purges,
riots, revolutions, and anti-government demonstrations, which are incor-
porated in a comprehensive long-term event dataset from 1946 to 2017 for
170 countries (see “Methods”). For each country, the various civil unrest
events are aggregated, and a ‘weighted conflict metric’ time series is
obtained. The magnitudes of civil unrest were then calculated by taking the
logarithm of the weighted conflict metric. The macro-level phase model
(outlined in “Methods”) postulates, for any particular country, that the
distribution generating the observed level of civil unrest magnitude at any
given time is a function of the current latent phase of anunobservedMarkov
process. The macro-level phase model consists of two components: an
unobserved m-state Markov chain that governs the dynamics of the
underlying latent phases of civil unrest, and a phase-dependent process that
characterizes the probability density functions generating the observable
civil unrestmagnitudes at any given time.The latter process is contingent on
the current latent phase of civil unrest. More specifically, the macro-level
phase model posits that the magnitude of civil unrest in any given year is
drawn from one of m normal distributions. The normal distributions
chosen are dependent on the current latent phase of the underlyingMarkov
chain, which governs the transitions between the m latent phases. By
employing phase-dependent normal distributions to represent the magni-
tudes of civil unrest, we suggest that the associatedweighted conflictmetrics
adhere to lognormal distributions. This approach enables the development
of a flexible macro-level phase model that effectively captures both heavy-
tailed and thin-tailed distributions of civil unrest events52. Our proposed
model involves m mþ 2ð Þ parameters and is estimated by maximizing the
likelihood of the observed civil unrest magnitude data (see “Methods”). To
determine the appropriate number of latent phasesm for each country, we
estimated models with varying numbers of latent phases and applied the
Bayesian information criterion (BIC) (see “Methods”) to determine the
appropriate number of latent phases. Once a hypothesized macro-level
phase model has been selected, we assess the model’s suitability to the
observed unrest dataset using a range of goodness-of-fit Monte Carlo tests
(see “Methods”). The overall methodology is summarized in Fig. 1.

Assessing theplausibilityof the recurringphaseshiftshypothesis
Figure 2 illustrates the results of the macro-level phase model estimated on
civil unrest time series for a representative sample of countries (for com-
prehensive results, refer to Supplementary Figures and Tables). The model
discerns distinct latent phases of civil unrest across countries, with 81
countries exhibiting two latent phases labeled “low” and “high” (see
Methods), five countries showing three latent phases labeled “low,” “inter-
mediate,” and “high,” while 64 countries demonstrate a single arbitrary
phase. A single latent phase represents a phase model where the magnitude
of unrest in a given year is drawn independently fromanormal distribution,
or equivalently, the weighted civil conflict metrics are drawn from a log-
normal distribution.

To illustrate, consider the dynamics of civil unrest in Spain, which can
be classified into two distinct latent phases. The first latent phase is marked
by high-intensity civil unrest, while the second latent phase is associated
with lower-intensity unrest. During the high-intensity latent phase, the
magnitude of civil unrest is distributed normally with a mean of 8.37 and a
standard deviation of 0.35, whereas in the low-intensity latent phase, the
unrest magnitudes follow a normal distribution with a mean of 6.84 and a
standard deviation of 0.96. There is a 94% probability that another high-
intensity latent phase will follow a year characterized by a high-intensity
phase. Following a low-intensity latent phase, there is an 87% likelihood that
the following year will also be a low-intensity latent phase. By combining
these probabilities with the corresponding phase-dependent normal
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distributions specified above, an alternating sequence of latent phases can
generate observablemagnitudes of civil unrest. This characterization of civil
unrest draws attention to the distinction between latent phases and obser-
vable phenomena such as waves, spikes, or bursts of civil unrest activity. For
instance, during a low-intensity latent phase, an observed activity with a
magnitude of 8.76, which is two standard deviations above the mean, may
seem like a sudden spike or wave of civil unrest activity. However, it could
also be a random fluctuation, underscoring the importance of exercising
caution when interpreting observedmagnitudes of civil unrest. This insight
provides a more nuanced understanding of the complex dynamics of civil
unrest and highlights the need for robust statistical methods, such as the
macro-level phase model, for analyzing and interpreting civil unrest data.

Figure 3 presents the results of the goodness-of-fit tests conducted on a
representative sample of countries to evaluate the plausibility of the pos-
tulated macro-level phase model as a representation of the unrest data (for
comprehensive results, see Supplementary Figures and Tables). Themacro-
level phase model effectively captures crucial aspects of the civil unrest
magnitude data. Specifically, it accurately reproduces the marginal dis-
tribution of civil unrest magnitudes (the marginal distribution is defined in
“Methods”). Moreover, it successfully captures key summary statistics such
as the mean, median, standard deviation, lower and upper quartiles, and
minimum andmaximum values of the civil unrest magnitude, highlighting
its ability to represent the overall behavior of the data. The goodness-of-fit

tests indicate that thehypothesis of recurring latent phases, as a fundamental
feature of collective civil unrest dynamics, is nicely supported by real-world
civil unrest data from a diverse range of countries. These results suggest that
themacro-level phasemodel is a credible framework for understanding civil
unrest dynamics in various contexts.

Universal characteristics of civil unrest
In our earlier discussion, we explored the hypothesis of recurrent latent
phase shifts in civil unrest, which is prompted by previous micro-level
modeling studies of civil unrest (e.g., see Supplementary Methods).
These studies suggest that there are universal mechanisms governing
civil unrest dynamics. This raises the interesting question of whether
certain elements of the macro-level phase model exhibit universality
across diverse countries and regions, despite their inherent idiosyn-
crasies. To investigate this possibility, we analyze several features that
describe themacro-level phasemodel and examine their behavior across
countries and continents. The first two features we utilize are dimen-
sionless quantities that capture the relationships between the phase-
dependent distributions associated with the low- and high-intensity
latent phases. Specifically, we focus on the relative values of the mean
civil unrest magnitudes (and variances) corresponding to the high- and
low-intensity latent phases. Additionally, for countries experiencing
multiple phases of civil unrest, we calculate the average duration of time

Fig. 1 | Overview of methodology. The research methodology proposes a
macro-level model governing the dynamics of unobserved latent phases of civil
unrest, inspired by self-organized micro-level mechanisms of civil disorder
(refs. 52,58,76–79; see example in Supplementary Methods). Using ‘weighted
conflict metric’ time series data from 1946 to 2017 for 170 countries, we define civil
unrest magnitude as the logarithm of this metric. Subsequently, we utilize the
Baum-Welch algorithm to estimate parameters of the macro-level phase model,
such as transition probabilities and phase-dependent probability distributions of
civil unrest magnitudes. The algorithm calculates parameter values that maximize
the likelihood of the observed civil unrest magnitude data. Detailed estimates of
these parameters for each country are presented in Supplementary Figures and

Tables. To validate the model against the unrest dataset, we conduct various
goodness-of-fit Monte Carlo tests. The parameter aHL represents the transition
probability from the high-intensity to the low-intensity phase. Parameters μH and
σH denote the unobservedmean and standard deviation respectively, associatedwith
the phase-dependent normal probability density function of civil unrest magnitudes
during the high-intensity latent phase H. Other parameters are defined in a similar
fashion. The vector ðx1; x2; � � � ; xT Þ represents actual civil unrest magnitude values
collected over T periods (years). Correspondingly, the vector ðex1;ex2; � � � ;exT Þ
represents synthetic data generated by the macro-level phase model. Further ela-
boration on this methodology is provided in the “Methods” section.
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that a country spends in the heightened (or lowered) latent phase before
transitioning to the other phases (see “Methods”).

Figure 4 displays kernel density distributions of the various model
features, computed for four different continents. A Kruskal-Wallis test
showed no statistically significant differences between continents for any of
the evaluated features, indicating that no region tends to yield higher
observed values than others. To further test the hypothesis that feature
distributions are comparable across continents, we ran pairwise
Kolmogorov-Smirnov testswithBonferroni-adjusted alpha values of 0.0083
per test (0.05/6). These comparisons revealed no statistically significant
differences between any of the four distributions.

The findings of our analysis are particularly intriguing because they
suggest that universal distributions may govern the duration of a country’s
latent phases of lowest and highest intensity, despite the diversity of factors
that drive civil unrest in different geographic regions. Additionally, our
analysis reveals that the distributions of unrest intensity and fluctuation
ratios do not significantly vary across geographic regions. These observa-
tions lend further credence to the notion that general mechanisms may
underlie the dynamics of civil unrest, irrespective of the unique character-
istics of nations and geographic regions.

The geographic clustering of civil unrest
Interactions among nations on both regional and global scales suggest that
civil unrest is influenced not only by the internal dynamics of individual
countries but also by their geographic context. It is therefore important to
examine whether the macro-level phase model of civil unrest exhibits any
spatial clustering patterns. Such patterns can offer insights into how civil
unrest in one countrymay be linked to neighboring countries or regions, as
well as help identify the underlying causes and factors that contribute to civil
unrest.

In our geographic analysis below,we use a numerical scale to evaluate a
country’s long-termcivil unrestmagnitude per unit of time. Thismagnitude
scale of civil unrest captures the intensity of civil unrest over an extended
period and enables cross-country comparisons (see Methods for more
information). Figure 5 displays color-codedmaps of the world’s continents,
depicting the magnitude scale of civil unrest in countries with plausible
macro-level phasemodels. The data presented indicates that themagnitude
scale of civil unrest varies significantly across diverse geographic regions.

This observation is substantiated by the application of a Kruskal-Wallis test,
which reveals a statistically significant variation in the magnitude scale of
civil unrest between continents (χ2(3) = 14.48, p = 0.002). This finding
suggests that while the universal distributions related to various aspects of
the macro-level phase model (as illustrated in Fig. 4) remain unaffected by
geographic location, the long-term intensity of civil unrest per unit of time
may indeed be influenced by a country’s geographic embedding. Taken
together, these observations propose that civil unrest can arise from
mechanisms that are independent of geography as well as mechanisms
whose intensity varies depending on a country’s unique circumstances and
geographic context, including the frequency of various event types.
Alongside the color-coded maps presented in Fig. 5, the figure exhibits the
most probable sequence of latent phases of civil unrest for representative
countries from each continent. These sequences were derived by applying
the Viterbi algorithm to observable historical time series data on civil unrest
magnitudes, as outlined in theMethods section. Themost likely sequence of
latent phases of civil unrest underscores the differentiation between inter-
mittent spikes in unrest behavior and latent phases. For instance, the peaks
in political violence witnessed in Egypt during 1954, 1986, 1992, and 1993
actually constitute a phase of low intensity, in contrast to the upsurge in late
2010. This particular escalation marked the transition into a high-intensity
latent phase, characterizing the onset of the EgyptianArab Spring. Likewise,
the noticeable surge during the 2009 Iranian presidential election protests
was in fact amanifestation of a low-intensity latent phase of civil unrest that
extended from 1982 to 2015.

To analyze and detect the regional patterns of civil unrest suggested in
Fig. 5, we employed a variety of geographic statistical methods. Firstly, we
conducted a random permutation test of spatial autocorrelation using
Moran’s I statistic96,97. The test revealed a statistically significant geographic
correlation between a nation’s own scale of civil unrest magnitude and the
levels of its neighboring countries within a distance band of 100 kilometers
from each country’s outermost borders (Moran’s I = 0.15, p = 0.04). To
compile the list of neighboring countries, we also considered a contiguity
spatial weightmatrix, which indicateswhether two countries share a border.
We obtained similar results utilizing this analysis (Moran’s
I = 0.185, p = 0.01).

The Moran’s I statistic reveals that the regional distribution of high
and/or low civil unrest magnitude scales is more geographically clustered

Fig. 2 | Directed graphs of themacro-level phase model for a sample of countries.
The unobserved low- intermediate- and high-intensity latent phases are denoted by
‘L,’ ‘M’ and ‘H’, respectively. Each directed graph shows the transition probabilities
of the underlyingMarkov chain and the parameters of the phase-dependent normal
distributions. Here, we label the latent phases (high, intermediate, or low) according

to the mean values of the corresponding normal distributions. The Unrest Intensity
Ratio (UIR) is defined as μH=μL , and the Unrest Fluctuation Ratio (UFR) is defined
as σ2H=σ

2
L . Supplementary Figures and Tables contains the estimated parameters of

the macro-level phase model for all countries.
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than what one would expect by chance. However, it does not capture
unexpected spikes of high or low civil unrest magnitude scales. To identify
such patterns, we conducted random permutation tests of spatial clustering
using the Getis-Ord General G* statistic98,99. Our analysis found that the
observedGeneralG*was significantly higher than the expectedGeneralG*,
indicating that the spatial distributionofhighcivil unrestmagnitude scales is
more geographically concentrated than what one would predict by chance
(G* = 0.038, p = 0.047). This result provides strong evidence that there are
spatial hotspots of civil unrest that cannot be explained by random spatial
processes alone.

To identify the locations where large or small magnitude scales of civil
unrest cluster spatially, as suggested by the Getis-Ord General G* statistic,
we conducted a randompermutation test of local clustering using theGetis-
Ord Local G�

i statistic98,99. Low p-values from the test indicate statistically
significant high levels of civil unrest in a country and its neighboring
countries (hotspots), while high p-values indicate statistically significant low
levels of civil unrest in a country and its neighbors (coldspots). As stated
previously, we consider nations to be neighbors if they are within 100
kilometers of each other. Figure 6 shows a map of abnormal geographical
concentrations of high or low values (hotspots or coldspots) of civil unrest
magnitude scales around the globe.

The global hotspot analysis of civil unrest magnitude scale reveals a
geographic cluster of countrieswith statistically significanthigh levels of civil
unrest magnitude (hotspots). These countries are primarily located in
North-Central Africa (Algeria, Tunisia, Libya, Chad, Sudan, and Egypt), the
Middle East (Israel, Lebanon, Syria, Jordan, and Saudi Arabia), Eastern
Europe (Belarus andMoldova), SouthAsia (India, Pakistan, and Sri Lanka),
Southeast Asia (Myanmar), and Central Asia (Tajikistan). In contrast, the
majority of clusters with low values of civil unrest magnitudes (coldspots)
are located in Southern Europe (Albania, Bosnia andHerzegovina, Croatia,
Montenegro, North Macedonia, Republic of Serbia, Kosovo), Eastern
Europe (Czech Republic), Western Europe (Austria, Belgium, Germany,
Netherlands), Northern Europe (Denmark, Sweden), Eastern Asia (South
Korea), South America (Suriname), Middle Africa (Angola), and Southern
Africa (South Africa).

Figures 5 and 6 demonstrate that civil unrest tends to occur in con-
centrated areas, similar to other geographically localized events100. However,
it is important to note that the spatial clustering analysis employed in these
figures cannot differentiate between cases where the geographical clustering
of civil disorder results from an “apparent contagion” and cases where the
clustering results from a “true contagion” process101. For instance, patterns
of civil unrest may result from geographical contagion processes, such as

Fig. 3 | Goodness-of-fit tests of the macro-level phase model. The left panels
display the cumulative distribution functions (CDFs) of civil unrest magnitudes
generated by the macro-level phase model (orange solid line) alongside the CDFs of
the empirical civil unrest data (blue solid line), for a representative sample of
countries (see Supplementary Figures and Tables for a complete list of countries).
Additionally, 95% confidence bands (blue dashed lines) are shown for kernel density
estimates of the empirical civil unrest data, whichwere generated using the bootstrap
method averaged over 1000 replications. For each country, we report the
Kolmogorov-Smirnov (KS) statistics obtained through aMonte Carlo procedure, as
well as the corresponding p-values for the fit to the macro-level phase model (see
“Methods”). Our analysis reveals that the p-values for all distributions are greater
than the α = 0.05 significance level threshold, indicating that the macro-level phase
model is a plausible hypothesis for the civil unrest data. Since our statistical
hypothesis testing is performed at the individual country level and does not involve

controlling for multiple comparisons, there is no necessity to utilize the Bonferroni-
adjusted alpha. The right panels of Fig. 3 display box plots that compare the
empirical civil unrest distributions with the marginal distributions of civil unrest
magnitudes generated by the macro-level phase model. The outer edges of the box
represent the first quartile Q1 (the 25th percentile) and the third quartile Q3 (the
75th percentile). The middle black line of the box indicates the median (or the 50th
percentile), while the length of the box (Q3–Q1)measures the spread in the data (i.e.,
the interquartile range or IQR). The dashed line (“upper whisker”) that extends from
Q3 represents the smallest value between the maximum sample value and
Q3þ 1:5× IQR, while the dashed line (“lower whisker”) that extends from Q1
represents the largest value between the minimum sample value and
Q1� 1:5× IQR. Overall, the differences between the summary statistics are small
across all cases.
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cross-border influence during the Arab Spring or Eastern Europe 1989-91,
or external factors like shared regional economic and political conditions.
Although the spatial correlations presented in Figs. 5 and 6 cannot establish
causal contagion mechanisms, exploring richer datasets can shed light on
spillover and social diffusion effects thatmay account for these correlations.

Importantly, the variable examined in Figs. 5 and 6 is derived directly
from the macro-level phase model. Specifically, the civil unrest magnitude
scale is computedbasedon the equilibriumdistributionof theMarkov chain
governing the transitions between the latent civil unrest phases and their
expected magnitudes (see “Methods”). Furthermore, despite separately
estimating the macro-level phase model parameters for each country, the
collective hotspot pattern depicted in Fig. 6 aligns with historical records of
civil unrest worldwide. A notable example is the Arab Spring, characterized
by a series of protests, uprisings, and revolutions that began in late 2010 and
continued into the early 2010s across several countries in the Middle East
and North Africa region. Key countries associated with the Arab Spring
include Tunisia, Libya, Egypt, and Syria. Ongoing uprisings and protests in
Algeria, Sudan, Lebanon, and Egypt since late 2018 have been seen as a
continuation of theArab Spring. The persistent conflicts in Syria, Libya, and
Lebanon are viewed as aftermaths of the Arab Spring, resulting in political
instability, economic hardships, and crises. The hotspot pattern illustrated
in Fig. 6 suggests that, although each country had its distinctive context and

specific triggers for the protests, several shared factors contributed to the
broader wave of uprisings andmovements associated with the Arab Spring.
Consequently, the observed geographical clustering of civil unrest in the
figures, an emergent characteristic of the macro-level phase model, aligns
with historical records of civil unrest on a global scale. This alignment
reinforces the idea that recurring latent phases are a fundamental feature of
civil unrest behavior.

Discussion
The study of complex systems generally entails exploring the underlying
laws that govern the phase transitions of self-organized phenomena, as
observed in awide range of complex systems (e.g., refs. 1,3,82). In this study,
we analyze a large dataset of civil unrest events from 1946 to 2017 in 170
countries to investigate the phenomenology of phase transitions that
underpin the severity of collective civil unrest. History has shown that civil
unrest is characterized by a wide range of intensities, and there is no such
thing as a “normal” level of violence or discontent expression. Although
there has been a notable surge in high-intensity anti-government demon-
strations in thepast twodecades, themajorityof civil unrest events are of low
tomoderate intensity. To shed light on this seemingly unpredictable pattern
of phase transitions, our study introduces a macro-level statistical model of
civil unrest, which enables us to better understand and quantify this

Fig. 4 | Distributions of model features by continent. Panel (a) displays kernel
density estimates of the unrest intensity ratio distributions for Africa (AF; gray solid
line), America (AM; yellow-green solid line), Asia (AS; red solid line), and Europe
(EU; olive-green solid line). Each country’s unrest intensity ratio, defined as the ratio
of the mean civil unrest magnitude during the high-intensity phase to the mean civil
unrest magnitude during the low-intensity phase, is determined using the estimated
macro-level phase model. The Kruskal-Wallis test’s p-value of 0.97 suggests that the
null hypothesis, which states that the unrest intensity ratio distributions across the

four continents are identical, cannot be rejected at the 5% significance level. This
finding is further supported by two-sample Kolmogorov-Smirnov pairwise tests
with Bonferroni-adjusted alpha values of 0.0083 for each test. Comparable results are
also observed for the unrest fluctuation ratio (Panelb) and the durations of high- and
low-intensity phases (Panels c and d). Panel (c), for example, shows that the esti-
mated length of time that a nation spends in the phase of highest intensity varies
significantly, with amode of about 4 years and possible durations exceeding 50 years.
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Fig. 6 | Global hotspot and coldspot analysis of the civil unrest magnitude scale.
The map displays the significance (p-value) of the local concentration of civil unrest
in each country. The p-values were calculated using the Getis-Ord Local G�

i statistic
and a random permutation test for local clustering. We used a contiguity spatial
weight matrix to determine whether the boundaries of two countries are within 100
kilometers of each other. The magnitude scale for civil unrest is defined in

“Methods”. Low p-values (p-value ≤ 0.1) indicate statistically significant levels of
civil unrest in a country and its neighboring countries (hotspots), while high p-values
(p-value ≥ 0.9) indicate statistically significant low levels of civil unrest in a country
and its neighbors (coldspots). Country maps were generated from freely available
1:10 m shapefiles sourced from Natural Earth, accessible to the public at
naturalearthdata.com.

Fig. 5 | Geographical distribution of civil unrest magnitude scale around
the world. The maps display a color-coded representation of the world’s continents
based on the level of civil unrest magnitude scale, with excluded countries displayed
in white. The magnitude scale is calculated as explained in “Methods”. The ampli-
tude of the top 5% of civil unrest behavior varies between 8.259 and 8.89 in America,
7.73 and 11.99 in Europe, 9.13 and 10.39 in Africa, 9.59 and 11.09 in Asia, and
between 7.2 and 7.29 in Oceania. For each representative country of a continent, we
present a plot depicting the most likely sequence of civil unrest latent phases based

on the historical observable dataset of civil unrest magnitudes (i.e., the logarithm of
the weighted civil conflict metrics). The Viterbi global decoding algorithm was used
to establish the most probable latent phase sequence (see “Methods”), with the
phase-dependentmeans represented by the horizontal lines on the graphs. Themost
probable sequence of civil unrest latent phases highlights the distinction between
spiky unrest behavior and latent phases. Country maps were generated from freely
available 1:10 m shapefiles sourced from Natural Earth, accessible to the public at
naturalearthdata.com.
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behavior. The macro-level phase model posits that collective civil unrest
occurs in recurring, discontinuous latent phases that can be detected and
quantified. To capture this phenomenon, the phase model utilizes an
underlying Markov chain that governs the transitions between different
latent phases, with the current latent phase determining the magnitude of
civil unrest at any given time. The primary finding of this study is that the
dynamics of collective civil unrest can be considered a discontinuous pro-
cess characterized by unique, measurable, repeating latent phases. The
macro-level phase model statistically represents the transitions between
these latent phases as a Markov process, where moments of relative peace
alternate with large-scale civil unrest. These latent phase changes may stem
from various phenomenological origins. Economic disparity, governmental
instability, social injustice, and ethnic or religious tensions, among other
factors, can contribute to tensions building up during the low-intensity
latent phase of civil unrest32,37,47,51. Individuals are more likely to take action
and demand change when societal and political tensions reach a tipping
point. However, when tensions are low or there are no specific triggering
events, the transition to the high-intensity latent phase of civil unrestmay be
less likely. It is important to note that a triggering event or series of events,
such as contentious election results or high-profile acts of police brutality,
may appear as a suddenand intense burst of civil unrest activity butmay not
necessarily indicate a transition to or the presence of a high-intensity latent
phase. In other words, spiky behavior in observable civil unrest time-series
data may be the result of noise that could mask the undetected latent phase
of civil unrest if not properly understood.

The approachoutlined in this paper for detecting phase changes in civil
unrest remains effective, even in cases where a comprehensive under-
standing of all the mechanisms driving civil unrest is lacking. However, to
establish theoretical foundations for our empirical research and enhance its
credibility, we grounded the primary hypothesis (and subsequently the
macro-level phase model) of this paper—civil unrest following a dis-
continuous phased pattern—on models that view civil unrest as a self-
organized critical phenomenon (refs. 52,58,76–79; see example in Supple-
mentary Methods). Instead of providing an exact representation of civil
unrest mechanisms, these models simulate the gradual accumulation of
tensions or vulnerabilities during a relatively peaceful period. These tensions
are then released through sudden transitions into widespread civil unrest,
offering plausible insights into the possibility of recurrent critical shifts in
real-world civil unrest data. This aspect necessitates additional empirical
investigation, which is the current focus of our work. The micro-dynamic
spatial mechanisms in this class of self-organized critical models are foun-
ded on the concept that groups of individuals, connected via a spatial net-
work of closely interlinked geographic regions, partake in collective civil
unrest owing to shared long-term social, economic, and political stress, as
well as peer influence52,70–73. The progression of civil unrest within this
network of affected individuals and locations may then exhibit a dis-
continuous phased pattern as a plausible outcome of these micro-dynamic
mechanisms (see Supplementary Methods). More precisely, a threshold
effect in the form of slowly changing intrinsic parameters—such as the
count of regions susceptible to social, economic, and political stress—may
give rise to the discontinuous nature of civil unrest and the accompanying
latent phases. Once a specific threshold is exceeded, civil disturbance
activities are prone to extensive expansion, rapidly escalating the levelof civil
disorder. This escalation leads to the widespread dissemination of civil
unrest across social networks and geographic regions. In this case, we
anticipate a shift in the dynamics of collective civil unrest from small-scale,
low-intensity civil disorder to large-scale, high-intensity civil disorder. The
primary objective of this study was to examine whether the hypothesized
latent phases of civil unrest, as anticipated by such theoretical models,
correspond to actual civil unrest events across various countries and time
periods. To accomplish this objective, we conducted a comprehensive
evaluation of themacro-level phasemodelusing large-scale civil unrest data,
maximum-likelihood estimation, and Monte Carlo Kolmogorov-Smirnov
two-sample testing (see Methods). Our findings provide evidence sup-
porting the null hypothesis that the macro-level phase model and its

proposed discontinuous nature of civil unrest accurately reflect the char-
acteristics of civil unrest data from various countries worldwide.

After establishing the statistical plausibility of the macro-level phase
model, we proceeded to examine its consistency with the presence of a
significant positive spatial correlation between a country’s own levels of civil
unrest and those of its neighbors. This correlation is anticipated by both the
historical account of civil unrest events and the spatial localizedmechanisms
(i.e., the rapid spread of civil unrest in one region to neighboring regions)
employed in self-organized critical models of civil unrest (ref. 52, see Sup-
plementary Methods). To assess the consistency of the macro-scale phase
model with the geographical clustering effect of civil disorder, we utilized
various spatial statistical analysis methods that incorporated a numerical
scale determined directly by the phase model’s parameters. This scale
quantified the magnitude of a country’s long-term unrest per unit of time.
Our findings revealed that this civil unrest magnitude scale is correlated
across neighboring countries, indicating that civil unrest events worldwide
are spatially clustered. Furthermore, further analysis demonstrated that the
magnitude of civil unrest is concentrated in specific geographic regions. The
observed geographical clustering of civil unrest can be attributed to either
‘apparent contagion’ or ‘true contagion’ processes101. ‘Apparent contagion’
arises when countries sharing socio-cultural backgrounds are prone to
similar civil unrest due to similarities in grievances and expressions. It can
also occur among countries with strong economic or political ties, given the
influence of these factors on protests and uprisings. On the other hand, ‘true
contagion’ involves countries influencing each other’s civil unrest through
communication and social networks, facilitating the spread of unrest
between nations. Extensive media coverage of protests in one country, for
instance, can inspire similar events in others. A prospective future study
could focus on investigating whether contagion processes (‘true contagion’)
play a role in explaining the global dissemination of civil unrest, leading to
geographic clustering. One approach involves detecting hotspots and
coldspots of civil unrest through a contiguity matrix, wherein nations are
deemed ‘neighbors’ if they share comparable socio-cultural variables,
without regard for geographical proximity. If our analysis reveals clusters
that encompass countriesnot contiguous in geography, it implies that socio-
cultural similarities are the probable driving force behind the clustering. On
the contrary, if we identify a cluster primarily based on geographical
proximity that doesn’t align with socio-cultural similarities, it suggests the
presence of a contagion process influencing geographic clustering.

The methodology presented in this paper has a dual purpose: it can
validate theoretical models against empirical findings and independently
detect potential critical transitions, even when a thorough understanding of
all the pertinent mechanisms underlying real-world civil unrest is lacking.
This latter facet offers several promising applications and policy
implications.

A key application of the macro-level phase model lies in forecasting.
For example, estimating the parameters of the macro-level phase model (as
detailed in Supplementary Figures and Tables) allows for immediate com-
putation of the conditional distribution of observed civil unrest magnitudes
for a specified forecast horizon. Moreover, the model facilitates ‘phase
prediction,’ allowing for the determination of the conditional distribution of
the phase for a future horizon. This goes beyond the application of the
Viterbi algorithm (as described in “Methods”) used to establish the most
probable sequence of latent phases of civil unrest for past and present
phases. Additionally, forecasting can be accomplished by integrating the
macro-level phase model with classification-based methodologies, such as
multinomial logistic regression. After determining the most probable
sequence of latent civil unrest phases (as described in “Methods”), multi-
nomial logistic regression can be utilized to predict transition probabilities
between these phases basedona set of independent factors (suchas country-
specific socio-economic data). Continuousmonitoring of the parameters of
the macro-level phase model using high-resolution and comprehensive
ongoing unrest data, and utilizing the aforementioned forecasting techni-
ques, could operate as an early warning system for heightened susceptibility
to social instability.
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Ourmethodology for detecting phase transitions is closely alignedwith
research on early-warning signals for critical transitions in highly complex
systems1,2,20,24. Drawing from simplemodels of catastrophic bifurcations and
analyses of simulation models subject to stochastic forcing, this research
suggested the existence of generic indicators of impending transitions that
can manifest in highly complex systems, even without a complete under-
standing of all the underlying mechanisms2. Specifically, it was posited that
as the system gradually approaches a catastrophic bifurcation, there is a
noticeable increase in lag-1 autocorrelation1,2, heightened variance1,2,20,24, or
other relevant indicators1,2. Similar signals may appear as the system
approaches a critical threshold that is not associated with catastrophic
bifurcations1,2. Furthermore, these indicators may appear not only in basic
models but also in complex, detailed models that closely represent spatially
intricate systems1,2. An intriguing aspect of our research involves employing
the macro-level phase model to investigate the resilience of these signals
within the realm of civil unrest dynamics. One particular objective is to
ascertain if there is a discernible increase in autocorrelation or variance as
society steadily approaches a phase transition (as independently detected
through the Viterbi algorithm, see “Methods”). Analyzing civil unrest time-
series collected on shorter time scales (days instead of years) could provide
insights into this question. Finally, as pointed out in2, the challenge of early-
warning signal detection in real data introduces a significant hurdle,
potentially yielding both false positives and false negatives. For instance, it
might fail to identify early-warning signals even when a sudden transition
has indeed taken place. In such scenarios, there is a need for a robust set of
statistical procedures to ascertain the significance of an increase in auto-
correlation or variance2. Our approach to detecting and quantifying phase
transitions, based on a latent statistical model, demonstrates reduced sen-
sitivity to data fluctuations. Consequently, it can effectively address and
complement the limitations associated with the earlier-mentioned early-
warning signal methodologies.

One of the primary challenges in practical policy implementation lies
in the capacity to anticipate phase transitions of civil unrest in advance,
enabling timely initiationof preventivemeasures and adequate preparations
before the transition takes place. The discussed forecasting techniques could
be valuable in this regard. From the perspective of government and relevant
authorities engaged in risk management, they can formulate strategies to
effectively mitigate the risk of undesired transitions. Mechanistic models,
like the one outlined in SupplementaryMethods, could provide insights for
organizing social systems to reduce vulnerability to widespread, high-
intensity civil unrest. An effective strategy to attain this objective involves
creating an environment that fosters the resolution of social, economic, and
political grievances prevalent among different segments of the population.
Disregarding the root causes that nourish these resentments and being
deceived by a prolonged period of apparent calm over several years could
significantly heighten these grievances to a critical point. In such a state, a
minor spark could easily ignite a widespread conflagration. Several inter-
national organizations, including the United Nations (UN) and the Orga-
nization for Security and Co-operation in Europe (OSCE), focus on
monitoring civil unrest and related concerns. These organizations could
make use of the indicators outlined in this paper, including the magnitude
scale of civil unrest (refer to Figs. 5, 6), to assess and categorize countries and
regions on a spectrum from vulnerability to resilience. Such evaluations can
subsequently guide policy development and decision-making. Finally, from
the viewpoint of civil society, identifying opportunities to facilitate desired
phase transitions in social systems, especially under totalitarian regimes, can
hold significant value. One strategy involves establishing interconnected
social or communication networks across diverse regions within a country,
which could trigger widespread unrest and subsequent phase shifts.

The shift from low-intensity to high-intensity civil unrest is a critical
sign of social instability within a country, and throughout history, this
transition has often coincided with rapid societal changes27,102. As a result,
comprehending the emergence of collective civil unrest, which canmanifest
abruptly and unpredictably, requires the creation of efficient early warning
systems that can detect and forecast phase transitions of civil disorder across

nations and throughout time. The identifiable macroscopic latent phases of
social unrest likely arise as a result of accumulating tensions and their rapid
release through spatial networks that link closely associated individuals or
regions within the country. Understanding the factors that contribute to
these spatial mechanisms, as well as employing methods to detect phase
transitions, can provide valuable insights for devising strategies aimed at
mitigating the impact of civil unrest. Finally, our approach for detecting and
measuring phase transitions in collective civil unrest has broad applications
beyond its immediate scope and can be utilized to analyze various other
collective human phenomena.

Methods
Domestic conflict event data
This research utilizes a long-term dataset from the Cross National Time
Series Dataset85 to track civil unrest events in 170 countries from 1946 to
2017. The New York Times is the primary source of information on civil
disorder. Assassinations, general strikes, guerrilla warfare, major govern-
ment crises, purges, riots, revolutions, andanti-governmentdemonstrations
are the eight domestic conflict event types analyzed85,103. Accordingly, the
weighted conflict (WC)metric was computed for each nation and each year
as follows85,103:

WC ¼ 25e1 þ 20e2 þ 100e3 þ 20e4 þ 20e5 þ 25e6 þ 150e7 þ 10e8
8

� �
100

ð1Þ

where ei represents the frequency of event type i. The magnitude of civil
unrestwas thendetermined as the logarithmof theweighted conflictmetric.

Basic definitions of the macro-level phase model
The civil unrest phase model is described in terms of two stochastic pro-
cesses: a stochastic process of unobserved latent phases Qt ; t ¼ 1; 2; . . .

� �
where Qt denotes the unobserved latent phase at time t; and a stochastic
process of observed civil unrest magnitudes Xt ; t ¼ 1; 2; . . .

� �
. Here, each

Qt can take values in the set 1; 2; . . . ;mf g, where m is the number of
unobserved latent phases, and eachXt can take any real value.Thedynamics
of the model is captured by the following equations:

P Qt jX t�1ð Þ;Q
t�1ð Þ� �

¼ P Qt jQt�1

� 	
; t ¼ 2; 3; . . . ð2Þ

P XtjX t�1ð Þ;QðtÞ� 	 ¼ P Xt jQt

� 	
; t2N ð3Þ

Let aij denote the one-step transition probability P Qt ¼ jjQt�1 ¼ i
� 	

,
and let A be the matrix of one-step transition probabilities aij. That is, we
assume that the stochastic process underlying the dynamics of the unob-
served civil unrest latent phases is a Markov chain. We suppose that the
phase-dependent probability density function of Xt in latent phase i,
P Xt jQt ¼ i
� 	

is normalwithunobservedparametersμi andσ
2
i . Equivalently,

ifYt is the weighted conflict metric given latent phaseQt ¼ i, thenYt ¼ eXt

has a log-normal distribution. For all countries, we refer to i ¼ 1 for which
μ1 ¼ maxj2 1;2;...;mf g μj as the highest-intensity latent phase, and i ¼ m for

which μm ¼ minj2 1;2;...;mf g μj as the lowest-intensity latent phase. Finally, we

denote the initial distribution of the Markov chain by ρ ¼ ρ1; ρ2; . . . ; ρm
� 	

:

Marginal distributions of observed civil unrest magnitudes
Let pi xð Þ � P Xt ¼ xjQt ¼ i

� 	
and letPðxÞ denote thediagonalmatrixwith

the ith diagonal element pi xð Þ. Themarginal probability density function of
Xt is then given by P Xt ¼ x

� 	 ¼ ρAt�1PðxÞ10 where 10 is a column vector
of ones. Averaging the values of P Xt ¼ x

� 	
throughout all years yields the

marginal probability density function of observed civil unrestmagnitudes at
any arbitrary time point. Monte Carlo simulations are another method for
calculating the marginal density function of observed civil unrest magni-
tudes. Specifically, we produce synthetic data of simulated civil unrest
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magnitudes using the estimated macro-level phase model and then use the
synthetic data to obtain the kernel density estimate. This technique is
repeated with a new set of synthetic data to obtain an additional kernel
density estimate.Over 5000 kernel density estimate samples were calculated
in total. The marginal density function of simulated magnitudes of civil
unrestwas calculatedby averaging the samples. Bothmethodswere found to
yield similar results. In this paper (see Fig. 3), the marginal cumulative
distribution functions (CDFs) of civil unrestmagnitudes as predicted by the
macro-level phase model were obtained using the Monte Carlo method.

Parameter estimation of the macro-level phase model
The macro-level phase model has altogether m(m+ 2) parameters, which
are estimated by maximizing the likelihood of the observed civil unrest
magnitude data. The likelihood function is the joint density of the data, and
is given by the following:

LT θð Þ ¼ ρP x1
� 	

AP x2
� 	

AP x3
� 	 � � �AP xT

� 	
10 ð4Þ

Where θ ¼ fρi;aij; μi; σ2i ji; j ¼ 1; 2; . . . ;mg is the set of model’s para-
meters, T is the length of the civil unrest time series, and xðTÞ ¼
ðx1; x2; . . . ; xT Þ is the vector of observed civil unrest magnitudes. The log-
likelihood function is defined by ‘T θð Þ ¼ logLT θð Þ. The Baum-Welch
algorithmwas used in this paper to get themaximum likelihood estimatesof
the parameters86–91. The Baum-Welch algorithm is an iterative procedure
that begins with parameter estimates. The parameters are iteratively
adjusted until convergence is obtained. Although it is outside the scope of
this paper, we discuss the algorithm’s major steps briefly (see86–91 for more
information). The algorithm includes two quantities known as forward and
backward probabilities, which are as follows:

αt ¼ νP x1
� 	Yt

k¼2

AP xk
� 	

ð5Þ

β0t ¼
YT

k¼tþ1

AP xk
� 	 !

10; t ¼ 1; 2; . . . ;T � 1 ð6Þ

and β0T = 10. It can be shown that αt ið Þ ¼ P X tð Þ ¼ x tð Þ;Qt ¼ i
� 	

and
βt ið Þ ¼ P Xtþ1 ¼ xtþ1;Xtþ2 ¼ xtþ2; . . . ;XT ¼ xT jQt ¼ i

� 	
. We also

need the two following definitions:

ui tð Þ ¼ P Qt ¼ ijxðTÞ� 	 ¼ αt ið Þβt ið Þ=αtβ0t ð7Þ

vij tð Þ ¼ P Qt�1 ¼ i;Qt ¼ jjxðTÞ� 	 ¼ αt�1 ið Þaijpj xt
� 	

βt j
� 	

=αtβ
0
t ð8Þ

Having defined the above probabilities, the Baum–Welch iterative
estimation equations for ρi, aij, μi, and σ

2
i are calculated as follows, based on

the current parameter estimates:

ρ̂i ¼ ui 1ð Þ ð9Þ

âij ¼
XT
t¼2

vij tð Þ
.Xm

j¼1

XT
t¼2

vij tð Þ ð10Þ

μ̂i ¼
XT
t¼1

ui tð Þxt
.XT

t¼1

ui tð Þ ð11Þ

σ̂2i ¼
XT
t¼1

ui tð Þ xt � μi
� 	2.XT

t¼1

ui tð Þ ð12Þ

Macro-level phase model selection
We studied macro-level phase models with varying numbers of latent
phases. There are several approaches to determining the appropriate
number of latent phases. We use the Bayesian information criterion (BIC),
which is defined as follows91:

BIC ¼ �2‘T θð Þ þ n logT ð13Þ

where ‘T θð Þ is the estimated model’s log-likelihood, n ¼ mðmþ 2Þ is the
number of model parameters, and T is the number of civil unrest
observations.

The treatment of zero observations
Themagnitudeof civil unrest is representedas the logarithmof theweighted
civil conflict metric, making it difficult to directly apply the macro-level
phase model to any civil unrest time series with zero weighted civil conflict
values. However, the domestic conflict event data includes zero event
counts, and non-zero weighted civil conflict values appear to be a combi-
nation of lognormal distributions. It is important to note that the zero event
counts are likely due to the geographic bias and limited scope of the
newspaper reports from which the event data is derived. In this case, zero-
event data can be viewed as undetected civil unrest events with measured
values below the detection limit and therefore unavailable for statistical
analysis. To address this, it may be appropriate to use a conservative
approach that considers zero-event observations as missing values rather
thanmore sophisticated approaches, such as adding apositive constant to all
sample values or usingmore general phase-dependent distributions like the
zero-modified lognormal/normal distributions.

To account for missing values in the Baum-Welch algorithm, we
simply substitute the diagonal matrices PðxtÞ corresponding to missing
observations xt with the identity matrix104.

Phase model metrics: civil unrest magnitude scale and phase
durations
Letπ¼ðπ1; π2; . . . ; πmÞ represent the limiting probabilities associatedwith
the transition probability matrix A. Thus, πi equals the fraction of time a
country will spend in latent phase i in the long term. The civil unrest
magnitude scale is defined as the long-runmean unrest magnitude per unit
of time, provided by Σm

i¼1 πiμi where μi are the estimated parameters cor-
responding to the phase-dependent normal distributions. The average
length of time a country spends in the lowest and highest intensity phases
can be calculated as follows: �L ¼ 1=Σj≠mamj and H ¼ 1=Σj≠1a1j.

Global decoding and the Viterbi algorithm
The estimated parameters of the macro-level phase model are used to
determine themost probable sequence of latent phases, which is achievedby
finding the sequence of latent phases qðTÞ ¼ q1; q2; . . . ; qT

� �
that has the

highest conditional probability PðQðTÞ ¼ q
ðTÞjX Tð Þ ¼ xðTÞÞ. This problem,

known as global decoding, is solved by utilizing the dynamic programming
algorithm of Viterbi89,105. Figure 5 illustrates the predicted latent phases of
civil unrest for representative countries, as determined by the Viterbi
algorithm.

Assessing the goodness of fit of the macro-level phase model
After estimating the parameters of the civil unrest phase model through the
Baum-Welch maximum likelihood estimation procedure, we employed
Monte Carlo Kolmogorov-Smirnov two-sample tests to evaluate the plau-
sibility of the macro-level phase model. The analysis was conducted using
the observed civil unrest dataset, which comprised data from 170 countries
from 1946 to 2017. Our aim was to demonstrate that the macro-level phase
model is reasonable for many countries and cannot be rejected with a high
level of confidence.

The Monte Carlo goodness-of-fit test is based on comparing the
marginal distribution generated by the macro-level phase model to the
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empirical distribution of civil unrest data. In this study, we employed the
Kolmogorov-Smirnov (KS) statistic, which measures the largest vertical
difference between the empirical and postulated distribution functions. To
perform the test, we first estimated the parameters of themacro-level phase
model using the Baum-Welch algorithm and real unrest data. We then
compared the empirical distribution function of the civil unrest data with
themarginal distributionobtainedby the estimatedphasemodel to calculate
the empirical KS statistic. Next, we generated synthetic data based on the
estimated macro-level phase model and estimated a newmacro-level phase
model based on the generated synthetic data. This process was repeated
multiple times with additional sets of synthetic data, resulting in over
400 samples of KS statistics in total. We computed the p-value as the pro-
portion of simulated statistics that were greater than the empirical KS sta-
tistic. If the computed p-value was less than 0.05, we rejected the null
hypothesis that themacro-level phasemodel adequately describes the actual
unrest data. Our use of theMonte Carlomethod in conjunctionwith the KS
statistic provides a robust and reliable assessment of the core hypothesis that
there are recurring latent phase shifts in civil unrest across diverse nations
and time periods.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Data on civil unrest episodes are available from Databanks International’s
Cross-National Time-Series Data Archive (CNTS, ISSN 2412-8082) for
every country from 1946 through 2017. See https://www.cntsdata.com.

Code availability
The code used to generate results shown in this study is available from the
author upon request.
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