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Highly drug resistant clone of Salmonella Kentucky ST198 in
clinical infections and poultry in Zimbabwe
Tapfumanei Mashe 1,2,3,16✉, Gaetan Thilliez 4,16, Blessmore V. Chaibva5, Pimlapas Leekitcharoenphon6, Matt Bawn4,7,15,
Moses Nyanzunda8, Valerie Robertson9, Andrew Tarupiwa2, Haider Al-Khanaq 4, Dave Baker4, Moishe Gosa8, Marleen M. Kock1,10,
Stanley Midzi3, Mwamakamba Lusubilo Witson11, Matheu Jorge12, Jacob Dyring Jensen6, Frank M. Aarestrup 6,
François-Xavier Weill13, Rene S. Hendriksen6, Marthie M. Ehlers1,10,17 and Robert A. Kingsley 4,14,17✉

A highly multidrug-resistant strain of Salmonella enterica serotype Kentucky (S. Kentucky) of sequence type (ST)198 emerged in
North Africa and has since spread widely. To investigate the genetic diversity and phylogenetic relationship of S. Kentucky in
Zimbabwe and identify potential sources of infection, the whole-genome sequence of 37 S. Kentucky strains isolated from human
clinical infections and from poultry farms between 2017 and 2020 was determined. Of 37 S. Kentucky isolates, 36 were ST198 and
one was ST152. All ST198 isolates had between six and fifteen antimicrobial resistance (AMR) genes, and 92% carried at least ten
AMRs. All ST198 isolates harbored the Salmonella genomic island K-Israel variant (SGI1-KIV) integrated into the chromosome with
aac(3)-ld, aac(6)-laa, aadA7, blaTEM-1, sul1, and tetA genes, with occasional sporadic loss of one or more genes noted from five
isolates. All ST198 isolates also had mutations in the quinolone resistance-determining region of the gyrA and parC genes. The
blaCTX-M-14.1 and fosA3 genes were present in 92% of the ST198 isolates, conferring resistance to extended-spectrum cephalosporins
and fosfomycin, respectively, were present on an IncHI2 plasmid with the aadA2b, aadA1, aph(3’)-Ib, aph(6’)-Id, cmlA1 and sul3 AMR
genes. S. Kentucky ST198 isolates from Zimbabwe formed a closely related phylogenetic clade that emerged from a previously
reported global epidemic population. The close genetic relationship and population structure of the human clinical and poultry
isolates of ST198 in Zimbabwe are consistent with poultry being an important source of highly resistant strains of S. Kentucky in
Zimbabwe.
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INTRODUCTION
The global spread of antimicrobial-resistant bacteria including high-
risk clones has been described as one of the greatest threats facing
humankind in the 21st century1, with an estimated 1.27 million
deaths per year attributable to bacterial antimicrobial resistance
(AMR)2. The prevalence of AMR in low-income countries is generally
greater than that in high-income countries3 and poor health care
provision in these countries contributes to their vulnerability to
infection. Factors leading to the spread of resistance are complex but
primarily attributed to the overuse of antibiotics in clinical and
agricultural practice4, and response, several national initiatives have
been implemented to promote the responsible use of antimicrobials
in animal production5. Antibiotics are commonly used therapeutically
or as growth promotors in intensive livestock production systems
resulting in the emergence of resistant bacteria that can rapidly
spread between animals and farms and into the food chain6. Food is
one of the most important transmission pathways for AMR
pathogens from livestock to humans6, although the direct transfer
to farm workers and veterinarians has also been described7.
Treatment of human clinical infections with antibiotics may also
select for AMR that can transmit to animal populations via sewage8.
To combat the threat to human health from antimicrobial resistance,
an understanding of the mechanisms of resistance and the drivers of
its emergence is needed4.

Non-typhoidal Salmonella (NTS) serotypes are associated with a
significant public health burden worldwide. Although commonly a
self-limiting gastroenteritis with low case fatality rate and
antibiotic treatment is contraindicated, infections resistant to
ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracy-
cline, and quinolone antibiotics were associated with increased
morbidity and mortality in Denmark9. A severe invasive non-
typhoidal Salmonella (iNTS) disease may occur in immunocom-
promised people due to coinfections or at the extremes of age
requiring treatment with antibiotics10. Multidrug-resistant (MDR)
strains of Salmonella enterica serotype Typhimurium (S. Typhimur-
ium) and S. Enteritidis are commonly associated with iNTS disease
in sub-Saharan Africa11–13. There are no specific recommendations
for the treatment of iNTS, but in sub-Saharan Africa infections are
commonly treated with Fluoroquinolones or extended-spectrum
cephalosporins, where available14. The recent emergence of
strains resistant to fluoroquinolones due to mutations in the gyrA
and parC genes or extended-spectrum cephalosporins through
the expression of extended-spectrum beta-lactamase has reduced
the treatment options for human infections15,16.
S. Kentucky infections have been commonly linked to the

consumption of contaminated poultry globally17 and may acquire
resistance particularly easily in response to selection pressure
exerted by the use of antibiotics18. S. Kentucky was first isolated
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from a chicken in the United States of America (USA) in 193719.
Although most infections produce mild gastroenteritis, life-
threatening disseminated infections are atypically common
among elderly and immune-compromised patients compared to
other serotypes20. Antimicrobial resistance has been particularly
associated with a clone of sequence type (ST) ST198 that emerged
in Egypt around the year 1989 and spread across Africa, into
Europe, the Middle East and Asia17. Multidrug resistance in ST198
is encoded on Salmonella genomic island 1 (SGI1)21, an integrative
mobilizable element that harbors a gene cluster22 conferring
resistance to ampicillin, chloramphenicol, streptomycin, sulpho-
namides, and tetracyclines23. SGI1 with variable gene complement
and arrangement such as SGI1K17 and SGI1-KIV24 has been
identified in multiple Salmonella serotypes and strains. S. Kentucky
ST198 has continued to evolve ever greater resistance, notably to
fluoroquinolones then to extended-spectrum cephalosporins.
Resistance to fluoroquinolone antibiotics due to mutations in
the gyrA and parC genes was first reported in France by a traveler
returning from Egypt in 200217,25. Subsequently, 74% of S.
Kentucky isolates from 12 countries between 2007 to 2012 were
resistant to ciprofloxacin26. Extended-spectrum β-lactamase (ESBL)
producing ST198 was originally imported to Europe via travelers
returning from North Africa20 and may have been established in
some regions of Europe18.
The molecular epidemiology and extent of ESBL-producing S.

Kentucky has been reported in several European countries18,27 but
remain unknown for Zimbabwe. In this, study, the population
structure of isolates recovered from human clinical infections, farm
workers, poultry, the poultry farm environment, and poultry feed in
Zimbabwe using whole-genome sequencing (WGS) were investi-
gated. Furthermore, we investigated the distribution and genetic
flux of AMR determinants of strains identified in Zimbabwe.

RESULTS
S. Kentucky is a common serotype isolated from poultry and
human clinical infections in Zimbabwe
To identify S. enterica strains associated with poultry and human
clinical infection in Zimbabwe, the whole-genome sequence for
245 non-typhoidal Salmonella strains isolated during routine
clinical diagnostics surveillance or from a chicken farm surveil-
lance study, was determined. In silico prediction of serotype using
whole-genome sequence revealed a total of 44 distinct serotypes,
included 42 S. Enteritidis (17%), 37 S. Kentucky (15%), 22 S.
Heidelberg (9%), and 17 S. Typhimurium (6.9%), together
accounting for approximately half of all isolates (Supplementary
Fig. 1). S. Kentucky represented the most commonly isolated
serotype from poultry and farm environment and the fifth most
common from human clinical cases of infection. Of 37 S. Kentucky
isolated, 11 were from human clinical infections from Harare city
(7/11, 64%), and one each from Kadoma, Chitungwiza, Mutare and
Chiredzi, from the years 2017 to 2019 (Supplementary Data).
Seven cases (64%) were female and four (36%) male, ranging in
age from nine months to 76 years, with the majority of cases
(55%) in persons under 15 years of age. In all cases, isolation of the
bacteria was from stool. Among the 26 isolates from chicken
farms, 15 were from chickens, eight from the chicken farm
environment, two from farm personnel and one from chicken feed
(Supplementary Data).

Phylogenetic relationship and molecular epidemiology of S.
Kentucky in Zimbabwe
To investigate the phylogenetic relationship of 37 strains, we first
determined the sequence type. A total of 36 strains belonged to
ST198 (97.3%) and a single isolate belonged to ST152 (2.7%) (Fig. 1).
To investigate the phylogenetic relationship of the isolates from
Zimbabwe in the context of fifteen serotypes of Salmonella enterica

subspecies I, a maximum likelihood tree was constructed based on
sequence variation in the core genome (Fig. 1). All 36 of the
ST198 strains isolated in Zimbabwe clustered together in a clade
along with the ST198 reference strain 201001922. In contrast, the
ST152 strain belonged to a distinct lineage with a similar level of
genetic divergence to other serotypes investigated, indicating that
ST198 and ST152 acquired the same O-antigens by convergent
evolution (Fig. 1). As ST198 is the main sequence type found in
Zimbabwe and an epidemic clone of this ST was previously
reported17, further analysis was focused on the 36 ST198 strains.

ST198 strains isolated in Zimbabwe from human clinical
infection are closely related to poultry isolates
Pairwise comparison of single-nucleotide polymorphisms (SNPs)
of the 36 ST198 strains from Zimbabwe indicated a mean root-to-
tip distance of ~12 SNPs, consistent with a recent common
ancestor (Fig. 2a). The population structure based on shared and
unique SNPs indicated three first-order clades, eight second order
and ten third-order clades (Fig. 2b). First-order clade 1 comprised
three basal-rooted human clinical isolates, clade 2 contained
isolates from chickens, the chicken farm environment and farm
workers and clade 3 contained human clinical isolates in addition
to farm isolates. Several poultry and human isolates differed by
fewer than five SNPs, consistent with potential recent transmission
events28. However, these were from a different geographical
location within Zimbabwe or different years of isolation,
consistent with recent spread within Zimbabwe. For example,
clade 2.4.4 contained four isolates from chickens, a farm
environment, and two farm workers. Isolate ZM19-4 from a
chicken had one and two SNPs compared with strains ZM4054
and ZM835, respectively, that were isolated from farm workers.
Similarly, a clinical isolate, NM18-63 in clade 3.7.8 differed from the
two chicken isolates, ZM75 and ZM1151, by two and five SNPs,
respectively (Fig. 2a). Closely related poultry, environmental and
human isolates come from different times and geographical
locations in Zimbabwe, was consistent with recent spread of the
epidemic strain rather than direct transmission. In addition, strain
NM17-20 in clade 3.6.5, was isolated from a dining table in
Marondera and was identical to three human clinical isolates from
Harare in the same year, suggesting contamination from a shared
source (Fig. 2b). The population structure is also consistent with
inter-farm transmission of S. Kentucky, as evidenced by four
identical strains in clade 3.8.10 that originated from chickens on
farms in Nyabira, Marondera, and Mt Hampden (Fig. 2b).

S. Kentucky ST198 from Zimbabwe encode resistance to a
broad range of antimicrobials
All ST198 strains isolated in Zimbabwe contained at least six AMR
genes, and 92% contained a total of between ten and fifteen AMR
genes. Most strains (86%) had an aadA7, blaTEM-1, sul1, and tetA
gene known to be associated with SGI-1 in S. Kentucky
ST198 strains17 and 92% also had aadA, aph(6)-ld, blaCTX-M-14.1,
cml, fosA3, and sul3 genes. Together these AMR genes were
predicted to confer resistance to diverse classes of antibiotics
including aminoglycosides, β-lactams, fosfomycin, phenicol, qui-
nolones, sulphonamides, and tetracycline. In addition, fluoroqui-
nolone resistance was due to point mutations in the chromosomal
genes gyrA and parC (Fig. 2b).
A wide range of plasmid replicons were present in both clinical

and poultry farm strains, of which ColpVC and IncHI2/ IncHI2A
were the most abundant (36/36 or 100% and 33/36 or 92%
isolates, respectively). The presence of the aadA, aph(6)-ld,
blaCTX-M-14.1, cml, fosA3, and sul3 in 92% of strains coincided with
the presence of an IncHI2 origin of replication. The presence of
these resistance genes in deeply rooted lineages was consistent
with their acquisition by a common ancestor of ST198 strains
from Zimbabwe and occasional sporadic loss of between one
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and eight genes in three strains (ZM19-82, ZM-46, and NM17-56)
(Fig. 2b).
Strain NM17-56 contained a blaCMY-2 gene that coincided with

the presence of an IncI plasmid origin of replication. Strain
ZM1151 contained the qnrB gene conferring decreased suscept-
ibility to fluoroquinolone antibiotics that was also the only strain
in this collection that did not have mutations in the gyrA gene
which is associated with resistance to these antibiotics. Finally,
strain ZM20 had the dfrA14 and sul2 genes that was not
accompanied by additional plasmid replicons in available
databases (Fig. 2b).

Antimicrobial resistance is associated with plasmids and an
integrative mobilizable element SGI1 in the Zimbabwe S.
Kentucky ST198
To further investigate the co-occurrence of IncHI2 replicon genes
with aadA, aph(6), blaCTX-M-14.1, cml, fosA3, and sul3 AMR genes
and an IncI plasmid carrying the blaCMY gene, the complete and
closed whole-genome sequence of strains NM17-19 and NM17-56
was determined using long-read sequencing. A contiguous
assembled sequence of approximately 157 kb containing an
IncHI2 replicon (PTU-HI2) and the aadA, aph(6)-ld, blaCTX-M-14.1,
cml, fosA3 and sul3 resistance genes, present on a composite
transposon was identified and designated pGTZIM1 (Fig. 3).
Alignment of the sequence to the PLSDB plasmid database

indicated that a plasmid pF218CHI2 (accession NZ_CP043545.1)
from an E. coli strain as the closest known relative. Plasmid
pF2_18C_HI2 also carried the aadA, aph(6), cml and sul3
resistance genes found in plasmid pGTZIM1, but lacked the
blaCTX-M-14.1 and fosA3 genes. The blaCTX-M gene present in
pF2_18C_HI2 differed from blaCTX-M-14.1 by a non-synonymous
mutation resulting in a predicted I17F substitution in the primary
amino acid sequence (Supplementary Fig. 2).
A second contiguous assembled sequence of 92.5 kb from

NM17-56 contained an IncI replicon (PTU-I1) and carried a blaCMY

gene and was designated pGTZIM2 (Fig. 4). Alignment of the
sequence to the PLSDB plasmid database indicated that plasmid
p92 (RefSeq NZ_023376.1) first identified in an E. coli strain was
the closest known relative. Three other plasmids from S. Kentucky
strains in the database were also close relatives, sharing the same
backbone, but only one had a blaCMY gene (GCA_006339875.2), a
second carried the tetC, tet, and tetR tetracycline resistance genes
(GCA_011480175.2), while the third lacked resistance genes
(GCA_007862665.2). The long-read assembly of both NM17-19
and NM17-56 revealed the presence of a 3.3 kb ColpVC plasmid
(PTU-E1), which also shares similarities with an E. coli plasmid
(pCFS3313-4, RefSeq accession number NZ_CP053654.1), that we
designated pGTZIM3 (Supplementary Fig. 3). Alignment of the
sequence to available databases failed to identify known AMR or
virulence genes in pGTZIM3.
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ST198 from Zimbabwe carry SGI1-KIV
Mapping of short-read sequence of S. Kentucky ST198 strains from
Zimbabwe to SGI-1K (accession AY463797.8) indicated the
presence of an SGI1-K-like element. Most isolates had >98%
coverage of SGI-1K and the remaining six had greater than 73%

coverage with various potential deletions (Fig. 2b). Alignment of
the long-read genome assemblies of NM17-19 and NM17-56
revealed a genomic structure of SGI1 different from the canonical
SGI1-K and identical to a previously reported SGI1K variant,
designated SGI1-KIV (SGI1-K Israeli Version, Fig. 5)24. Unlike SGI1-K

Fig. 2 Genetic diversity and population structure of S. Kentucky ST198 strains isolated in Zimbabwe. a Pairwise single-nucleotide
polymorphism (SNP) matrix of 36 S. Kentucky ST198 isolates from human and animal sectors isolated from 2016 to 2020 in Zimbabwe.
bMaximum likelihood phylogenetic tree constructed based on nucleotide sequence variation in the shared genome sequence with reference
to the whole-genome sequence of strain 201001922 (GenBank accession number CP028357). The tree was rooted on S. Typhimurium SL1344
as the outgroup (not shown). The population structure organized into eleven clades based on three orders are indicated by integers and
colored blocks, and the source, location, year of isolation and the presence of antimicrobial or plasmid replicon genes are color coded as
indicated in the inset key. The presence of mutations resulting in S83F and D87Y substitutions in gyrA (*) or S80I in parC (#) are indicated.
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which is present as a single contiguous insertion in the trmE/ydiY
locus, SGI1-KIV was present in two sections inserted into the rbsK
locus and trmE/ydiY loci separated by 50 kb of the core genome
sequence. Furthermore, SGI1-KIV lacked the aph(6’) and aph(3’)
resistance genes present on the canonical SGI1-K, although in
strains NM17-19 from Zimbabwe, the aph(6’) and aph(3’) were
present on the IncHI2 plasmid pGTZIM1 (Fig. 5).

ST198 strains from Zimbabwe are part of an internationally
dispersed MDR clone
The phylogenetic relationship of 36 S. Kentucky ST198 strains
isolated in Zimbabwe were investigated in the context of 364
ST198 strains isolated in 33 countries on five continents between
1937 and 2020. A maximum likelihood phylogenetic tree
constructed based on recombination-purged sequence variation
in the core genome revealed a population structure with multiple
deeply rooted clades (Fig. 6a). Most of the deeply rooted branches
consisted of a single isolate on long extended branches that were
predominantly isolated from the US or Southern and East Asia
(gray lineages in Fig. 6). A single deeply rooted lineage gave rise to
a clade containing the majority of S. Kentucky ST198 strains. This
large clade contained strains isolated from many countries
worldwide, but strains present in a basal clade and therefore
most closely related to the hypothetical ancestor were predomi-
nantly from Egypt. ST198 strains isolated in Zimbabwe formed a
distinct subclade that was nonetheless closely related to consist-
ing of 29 closely related ST198 strains from UK (33 strains), India
(5 strains), Denmark (2 strains), Pakistan (1 strain), Netherlands
(1 strain), US (1 strain) and Belgium (1 strain) (Fig. 6b). However, 25
of the strains isolated in the UK were associated with travel to
India or Pakistan, while travel information for six isolates was not
known. Therefore 31 of 45 (68%) of strains were isolated from or
known to be associated with travel to South Asian Countries,
implicating spread from these countries to Zimbabwe. A S.

Kentucky ST198 strain isolated in Israel in which SGI1-KIV was first
reported was present in a more deeply rooted clade than the
Zimbabwe clade (Fig. 6a).
Determination of the presence of AMR genes in the global

collection of S. Kentucky ST198 indicated that isolates from
Zimbabwe contained more AMR genes in part due to the
acquisition of pGTZIM1 (Supplementary Fig. 4, Fig. 6b, and
Supplementary Data). The aadA7, blaTEM-1, sul1 and tetA genes,
commonly associated with SGI1, were present in most
ST198 strains from the global collection, consistent with its
acquisition immediately prior to clonal expansion and spread as
previously reported. In contrast, the aph(6), blaCTXM-14.1, cml, fosA3,
and sul3 genes present in the majority of ST198 strains from
Zimbabwe on the IncHI2 plasmid pGTZIM1, were generally absent
from strains isolated from elsewhere, consistent with recent
acquisition potentially within Zimbabwe or an unsampled
population giving rise to the Zimbabwe subclade. Sporadic
distribution of a subset of aph(6), blaCTXM-14.1, cml, fosA3, or sul3
genes were present in individual strains or clusters of strains
isolated from outside of Zimbabwe, and all but three of strains
lacked an IncHI2 origin of replication. Conversely, three strains
isolated from outside of Zimbabwe had the IncHI2 origin of
replication and at least one of the aph(6), blaCTXM-14.1, cml, or sul3
genes while six had none of these genes.

DISCUSSION
Diverse NTS serotypes were isolated through routine surveillance
of human clinical infections and poultry-associated sources
between 2016 and 2020 in Zimbabwe. A total of 45 different
serotypes were represented among 245 isolates. Overall, S.
Kentucky was the second most frequently isolated serotype,
representing 15.1% (37/245) of the total isolates. Over-
representation of poultry-associated sources in this study is likely
to have contributed to elevating the frequency of isolation of the
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S. Kentucky that is particularly common in this host species29.
Nonetheless, S. Kentucky was the 5th most frequently isolated
serotype from human clinical infection in this strain collection
from Zimbabwe and is therefore a serotype of significant concern
to public health. With the notable exception of invasive disease

where S. Typhimurium and S. Enteritidis dominate, few studies
have reported the relative frequency of NTS serotypes in clinical
infection or from livestock in sub-Saharan Africa and S. Kentucky
has not been reported as common10. S. Kentucky was reported as
relatively common in gastroenteritis NTS infections in North Africa
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and the Middle East30. This study is therefore the first to report
WGS analysis of ESBL-producing S. Kentucky strains of human and
poultry origin in Sub-Saharan Africa.
All but one of the NTS strains from Zimbabwe investigated in

this study belonged to ST198, with a single strain belonging to
ST152. The presence of these sequence types on distinct long
basally rooted lineages in the population structure of S. enterica
subspecies I indicated that the serotype is polyphyletic, with the
antigens used to define serotypes emerging independently as
observed for some serotypes such as S. Derby and S. Paratyphi
B31,32. The low number of SNPs within the ST198 cluster was
consistent with a recent common ancestor within the past decade
based on published molecular clock rates of ~1–2 SNPs per
genome per year for Salmonella epidemic clades12,33,34. This lack
of genetic diversity and wide geographical distribution within
Zimbabwe suggests that the clone has spread rapidly to many
farms across the country. The presence of strains of S. Kentucky
ST198 in feed that were closely related to strains isolated from
poultry implicates this as a potential source of transmission.
Nonetheless, the relative contribution of livestock transfer, other
animal species or environmental factors and feed in the
transmission of S. Kentucky ST198 between farms in Zimbabwe
cannot be assessed with these data. The close genetic distance
between isolates are also consistent transmission of S. Kentucky
from poultry to humans, but due to a small dataset and the
limitation of sampling, no case of direct transmission could be
inferred with high confidence.
Strains isolated in Zimbabwe formed a distinct clade within a

globally dispersed ST198 population that emerged in Egypt in
1989 and was associated with multidrug resistance conferred by
the acquisition of SGI-1 and resistance to fluoroquinolones due to
mutations in the gyrA and parC genes17,35–42. The Zimbabwe clade
was distally rooted within the phylogeny of globally sourced
strains of ST198, suggesting that this clone spread to Zimbabwe
later than those in other countries represented in the global
collection. Consistent with this idea, all the Zimbabwe strains
contained resistance genes present in SGI-1 and mutation
substitutions in the gyrA and parC genes known to confer
resistance to ciprofloxacin36.
The prevalence of ESBL-producing S. Kentucky in Zimbabwe is

concerning as extended-spectrum cephalosporins are currently
the first-line antimicrobials for the empiric therapy of acute
salmonellosis43. Furthermore, resistance of these strains to other
therapeutic options including chloramphenicol and fluoroquino-
lones, leaves limited options for clinical management of severe
infections. Our data were consistent with a distinct origin of an
ESBL gene in Zimbabwe, unrelated to recent emergence of other
ESBL genes in S. Kentucky DST198 in Europe and China. Similar
blaCTX-M genes to that identified in the Zimbabwe isolates
reported previously were present in phylogenetically distinct
clades and in a different genomic context. Most ESBL-producing
strains from outside of Zimbabwe were associated with the blaCTX-
M-14b gene that differ from blaCTX-M-14.1 gene of some Zimbabwe
isolates by a single amino acid substitution (I17F). The European
center for disease control and prevention (ECDC) recently
launched an Urgent Inquiry (UI-464) on a ciprofloxacin-resistant
ST198 strain carrying a blaCTX-M-14b gene conferring cephalosporin

resistance integrated adjacent to the hcp1 gene on the
chromosome18. This MDR clone of S. Kentucky ST198 is already
widespread and has been declared a high-risk global MDR clone17.
The strain spread to several EU countries18,27 but to date has only
been reported in human infections18. In contrast, in China and
ST198 clone carrying a chromosomally integrated blaCTX-M-14b

gene was isolated from a poultry slaughterhouse44. A second
chromosomally encoded gene blaVEB-8 was identified in a S.
Kentucky ST19827 and blaCTX-M-15 and blaCMY genes carried on
plasmids have also been reported in S. Kentucky ST198 isolates
from Europe27,28. Further plasmid-mediated antibiotic resistance is
concerning as plasmids may be more easily acquired during
bacterial evolution, but may also be easily lost45.
A limitation of this study was the relatively small sample size of

37 S. Kentucky isolates analyzed. However, it already demon-
strated the role that animals and humans in Zimbabwe play in the
circulation of this emerging antimicrobial-resistant enteric patho-
gen. As far as we are aware this is the first study originating from
Africa reporting on the presence of the epidemic ciprofloxacin-
resistant ST198 with a novel ESBL blaCTX-M-14.1 gene located on an
IncHI2 plasmid. Zimbabwe strains of ST198 exhibited a consider-
able increase in the number of genes from a median of nine to 18
AMR genes and conferring additional resistance to phenicols,
phosphonic and extended-spectrum β-lactam antibiotics com-
pared to MDR S. Kentucky reported previously17,18. The resistance
profile is comparable to that described previously as extensively-
drug resistance (XDR) in S. Typhi46 and has potentially significant
implications to the clinical management of severe infections. The
spread of ESBL-producing Salmonella serotypes is of great concern
in many countries and the CTX-M family is the most common
globally disseminated gene in a broad spectrum of microbial
species47. The data highlight the need of an increased surveillance
incorporating genomic epidemiology of NTS in both human and
animal populations through a One Health approach. The
information generated by continuous monitoring can be fed into
policies and intervention to prevent the spread of this highly
resistant clone and prevent the emergence of new ones.

METHODS
Bacterial isolates used in this study
A total of 245 NTS strains isolated during routine surveillance by
the National Microbiology Reference Laboratory of Zimbabwe
were investigated in this study. Strains were isolated from human
clinical infections (n= 162) during the period 2016 to 2020,
chicken farms (n= 82) isolated from the years 2018 to 2020,
crocodile meat (n= 1) and a dining table at a school (n= 1). The
human Salmonella isolates (n= 162) were from stool (157/162)
and blood samples (5/162) from clinical cases received from the
National Salmonella Surveillance sentinel sites. Chicken farm
isolates (n= 82) originated from chicken (n= 30), boot swab
(n= 1), environmental swabs (n= 34), rectal swabs from asympto-
matic farm workers (n= 10), litter (n= 1), and chicken feed pellet
(n= 6) samples. Ethics approval for the study was granted by the
University of Pretoria, South Africa (779/2018) and the Medical
Research Council of Zimbabwe (MRCZ/A/2369). Strains are

Fig. 6 Population structure of S. Kentucky ST198 strains isolated from Zimbabwe in the context of 364 globally sourced S. Kentucky
strains. a Maximum likelihood phylogenetic tree constructed based on recombination-purged SNPs in the shared genome with reference to
S. Kentucky strain 201001922 (GenBank accession number CP028357). The tree was rooted on S. Typhimurium SL1344 strain SL1344 as an
outgroup (not shown). The region (inner circle) and year (middle circle) and presence of a blaCTXM-14 gene (outer circle) are indicated by colors
(inset key). Deeply rooted lineages (gray lines), lineages of strains isolated from Zimbabwe (red lines) and closely related strains isolated
elsewhere (blue lines) are indicated to assist interpretation. b A subtree extracted from that shown above including strains isolated from
Zimbabwe (red lines) and closely related strains isolated elsewhere (blue lines). Colored boxes indicate the country of isolation and country
implicated through recent travel, if known (inset key), and the presence of AMR genes are indicated (inset key).
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available upon request subject to requirements of the Nagoya
Protocol.

Salmonella isolation, serotyping, and antimicrobial
susceptibility testing
Salmonella isolation, serotyping based on the
Kauffmann–White–Le Minor scheme according to ISO 6579-
1:201748. Briefly, the test strain was cultured on Mueller Hinton
(MH) agar and 2–3 colonies were suspended in sterile 0.45% saline
on a glass slide. Antiserum (Mast, UK) was added and agglutina-
tion monitored for two minutes on a rocking plate. A control
without antiserum was used to test for autoagglutination.
Serotype was determined based in antigenic formula49. Anti-
microbial susceptibility testing results using Kirby-Bauer disc
diffusion assays were used as described previously50. Briefly, 4–5
colonies were resuspended in sterile 0.45% saline, turbidity
adjusted to a 0.5 McFarland standard and inoculated onto MH
agar with a swab. Antimicrobial discs impregnated with anti-
microbial (Mast, UK) were placed on the surface and incubated at
35 °C for 18 h. The panel of antimicrobials tested comprised:
ciprofloxacin (5 μg), ceftriaxone (30 μg), chloramphenicol (30 μg),
tetracycline (30 μg), azithromycin (15 µg), ertapenem (10 µg),
ampicillin (10 μg), ceftazidime (30 μg), ceftazidime + clavulanic
acid (30 μg/10 μg), cefotaxime (30 μg), and cefotaxime + clavu-
lanic acid (30 μg/10 μg) (Oxoid, UK). Escherichia coli ATCC 25922
was used as internal quality control. Results were interpreted
using the Clinical and Laboratory Standards Institute (CLSI M100,
30th Edition) antimicrobial susceptibility testing standard (2020)
included in WHONET 5.6 version software51.

Whole-genome sequencing (WGS) and quality control
A volume of 1 mL of an overnight Salmonella culture in Tryptone
Soy Broth (Oxiod, Hampshire, UK) was harvested by centrifugation
for 2 min at 13,000 × g (ThermoScientific, Germany). Genomic DNA
was extracted from the 245 Salmonella isolates using a Maxwell®
RSC 48 automated nucleic acid purification instrument (Madison,
Wisconsin, USA). The DNA concentration was measured with a
Qubit fluorometer (Life Technologies, Carlsbad, CA, USA) and
adjusted to 0.2 ng/µL, and stored at –20 °C before library
preparation. The library preparation for short-read sequencing,
was performed using the Nextera Flex DNA Library Preparation Kit
according to the manufacturer’s instructions (Illumina, San Diego,
CA, USA). Subsequently, sequencing was performed with a
NextSeq benchtop sequencer (Illumina, San Diego, CA, USA).
Raw sequence data were submitted to the Sequence Read Archive
(SRA) (https://www.ncbi.nlm.nih.gov/sra) under study accession
PRJNA762287. Read quality was assessed with fastp52 and
summarized with multiqc53. Sequences with a theoretical read
depth below 20x, or with less than 80% of reads attributed to
Salmonella using Bracken were excluded from further analysis.
Only samples that passed the quality control were considered for
genomic analysis.
Freshly extracted DNA, for long-read sequencing, was ligated

using native barcoding SQK-LSK109 following ONT recommenda-
tions. The library pool was loaded on a MinION Flow Cell (R9.4.1) at
43 fmol. The raw reads are available in the Sequence Read Archive
(SRA) (accession PRJNA762287).

Illumina short-read sequence analysis and assembly
The serotype formula 245 S. enterica strains isolated in Zim-
babwe that passed the quality control were identified from
short-read sequence data using SeqSero254. Multilocus
sequence type (MLST) for Salmonella enterica, the presence of
antimicrobial resistance genes and plasmid replicon incompat-
ibility group were identified in raw sequence reads using
ARIBA55 with the ResFinder database56 or the plasmidfinder

database57, with default settings. Raw sequence reads were
assembled using SPAdes version 3.13.058 and chromosomal
point mutations in gyrA, gyrB, parC, and parE genes identified
using RGI59. For phylogenetic analysis S. enterica strains isolated
in Zimbabwe or 364 S. Kentucky ST198 genomes previously
described17,18,24,44, raw sequence data were mapped to the
reference genome strain 201001922 (GenBank accession num-
ber CP028357) using snippy version 4.1.0 (https://github.com/
tseemann/snippy) with parameters (--mapqual 60 –basequal
13 –mincov 4 –minfrac 0.75) to identify single-nucleotide
polymorphism (SNPs). Putative recombinogenic regions were
detected based on SNP density and masked using Gubbins
version 2.2.060 with default settings. A maximum likelihood (ML)
phylogenetic tree was built from an alignment of chromosomal
SNPs, with RAxML61 version 8.2.8 using the GTR model with
bootstraps as determined by the auto-mre flag. The tree
visualized with ggtree62. HierBaps63 was used to estimate the
population structure with a max depth of 3 and n.pops of 10. To
investigate conservation of SGI1K using short-read data, reads
were mapped to the SGI1K reference (genbank accession
AY463797.8) using minimap264 and the percentage of sequence
covered assessed using bedtools65. The presence of individual
SGI1K genes was assessed using ARIBA55.

Long-read assembly and sequence analysis
Long-read data was assembled using trycycler66. The reads were
filtered using filtlong (keep 95%, minimum length 1 kb) 12 sub-
samples of reads were generated, and assemblies generated
using either flye, raven, or miniasm (four assemblies per
software). Trycycler reconcile, and consensus was used to
generate a consensus assembly. Pilon was used correct sequen-
cing errors with matched Illumina short-read data, the quality of
the polished assembly was assessed with QUAST67 and Socru68

was used to confirm the orientation of the chromosome
fragments. The start of the chromosome was set to thrL using
circlator69. BLAST was also used to compare SGI1-K to the
genome assembly, and comparison of chromosomal and
plasmids region of interest were visualized using genoplotR70.
Plasmid taxonomic unit was identified using COPLA71 and
compared against the plasmid database (PLSDB)72 using BLAST
to identify closely related plasmids.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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