Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial bioelectronic sensors for environmental monitoring

Abstract

In a world confronting pollution across diverse environments, fast, sensitive and cost-efficient methods are required to monitor complex chemicals. In particular, microbial bioelectronic sensors can report on the presence of chemicals through electrical signals enabled by biological processes. For example, microbial bioelectronic sensors have been developed for the rapid detection of riverine toxins within minutes of contact, for selective sensing of redox-active pharmaceuticals, and for monitoring of pesticide degradation. However, transferring these laboratory-tested technologies into field-deployable products poses several challenges: sensor sensitivity, specificity, longevity and robustness need to be improved. In this Review, we discuss the design of field-deployable microbial bioelectronic sensors, including chassis selection, approaches for rewiring electron transfer, strategies to establish the cell–electrode interface and fabrication methods. Importantly, we outline key challenges and possible solutions for the application of such sensors in the real world.

Key points

  • Rapid detection of pollutants demands innovations in microbial bioelectronic sensors.

  • Engineering bioelectronic sensors for environmental monitoring involves selection of a microbial chassis, rewiring of electron transfer, establishment of the cell-electrode interface and manufacture of the device.

  • A microbial chassis suited for bioelectronic sensing can be found in a range of ecosystems, and electron transfer can be rewired by controlling primary metabolism or by switching electroactive components ‘on’ and ‘off’.

  • Materials can facilitate electron transfer to an electrode and enable biocontainment.

  • Devices can be fabricated to amplify signals, remove environmental noise and minimize power consumption and footprint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different ways for microbes to generate electrical signals.
Fig. 2: Strategies for rewiring electron transfer for bioelectronic sensing.
Fig. 3: Strategies for establishing cell–electrode interfaces and manufacturing bioelectronic devices.
Fig. 4: Challenges and future directions for engineering microbial bioelectronic sensors.

Similar content being viewed by others

References

  1. Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).

    Article  Google Scholar 

  2. Pinder, R. W. et al. Opportunities and challenges for filling the air quality data gap in low- and middle-income countries. Atmos. Environ. 215, 116794 (2019).

    Article  Google Scholar 

  3. Inda, M. E. & Lu, T. K. Microbes as biosensors. Annu. Rev. Microbiol. 74, 337–359 (2020).

    Article  Google Scholar 

  4. Damborský, P., Švitel, J. & Katrlík, J. Optical biosensors. Essays Biochem. 60, 91–100 (2016).

    Article  Google Scholar 

  5. Sheth, R. U. & Wang, H. H. DNA-based memory devices for recording cellular events. Nat. Rev. Genet. 19, 718–732 (2018).

    Article  Google Scholar 

  6. Maresca, D. et al. Biomolecular ultrasound and sonogenetics. Annu. Rev. Chem. Biomol. Eng. 9, 229–252 (2018).

    Article  Google Scholar 

  7. Simonte, F., Sturm, G., Gescher, J. & Sturm-Richter, K. Extracellular electron transfer and biosensors. Adv. Biochem. Eng. Biotechnol. 167, 15–38 (2019).

    Google Scholar 

  8. Logan, B. E., Rossi, R., Ragab, A. & Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 17, 307–319 (2019).

    Article  Google Scholar 

  9. VanArsdale, E., Pitzer, J., Payne, G. F. & Bentley, W. E. Redox electrochemistry to interrogate and control biomolecular communication. iScience 23, 101545 (2020).

    Article  Google Scholar 

  10. Din, M. O., Martin, A., Razinkov, I., Csicsery, N. & Hasty, J. Interfacing gene circuits with microelectronics through engineered population dynamics. Sci. Adv. 6, eaaz8344 (2020). This article demonstrates a general engineering strategy by which microbes can produce electrochemical signals in response to molecular sensing.

    Article  Google Scholar 

  11. Sonawane, J. M., Ezugwu, C. I. & Ghosh, P. C. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS Sens. 5, 2297–2316 (2020).

    Article  Google Scholar 

  12. Haddour, N. & Azri, Y. M. Recent advances on electrochemical sensors based on electroactive bacterial systems for toxicant monitoring: a minireview. Electroanalysis 35, e202200202 (2023).

    Article  Google Scholar 

  13. Li, D. et al. Microbe-based sensor for long-term detection of urine glucose. Sensors 22, 5340 (2022).

    Article  Google Scholar 

  14. Atci, E., Babauta, J. T., Sultana, S. T. & Beyenal, H. Microbiosensor for the detection of acetate in electrode-respiring biofilms. Biosens. Bioelectron. 81, 517–523 (2016).

    Article  Google Scholar 

  15. Tront, J. M., Fortner, J. D., Plötze, M., Hughes, J. B. & Puzrin, A. M. Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol. Lett. 30, 1385–1390 (2008).

    Article  Google Scholar 

  16. Mohammadifar, M. & Choi, S. A portable and visual electrobiochemical sensor for lactate monitoring in sweat. In 12th Int. Conf. on Nano/Molecular Medicine and Engineering (NANOMED) 73–77 (IEEE, 2018).

  17. Tront, J. M., Fortner, J. D., Plötze, M., Hughes, J. B. & Puzrin, A. M. Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens. Bioelectron. 24, 586–590 (2008).

    Article  Google Scholar 

  18. Klevinskas, A., Kantminienė, K., Žmuidzinavičienė, N., Jonuškienė, I. & Griškonis, E. Microbial fuel cell as a bioelectrochemical sensor of nitrite ions. Processes 9, 1330 (2021).

    Article  Google Scholar 

  19. Atkinson, J. T. et al. Real-time bioelectronic sensing of environmental contaminants. Nature 611, 548–553 (2022). This article reports a multi-component synthetic electron transfer pathway for rapid detection of environmental contaminants.

    Article  Google Scholar 

  20. Atkinson, J. T. et al. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat. Chem. Biol. 15, 189–195 (2019).

    Article  Google Scholar 

  21. Yu, Y.-Y. et al. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor. Anal. Chim. Acta 985, 148–154 (2017).

    Article  Google Scholar 

  22. Yang, Y. et al. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens. Bioelectron. 98, 338–344 (2017).

    Article  Google Scholar 

  23. Li, S., De Groote Tavares, C., Tolar, J. G. & Ajo-Franklin, C. M. Selective bioelectronic sensing of pharmacologically relevant quinones using extracellular electron transfer in Lactiplantibacillus plantarum. Biosens. Bioelectron. 243, 115762 (2024). This article reports how the promiscuity of oxidoreductase can be harnessed to selectively sense chemical analogues.

    Article  Google Scholar 

  24. Si, R.-W. et al. Wiring bacterial electron flow for sensitive whole-cell amperometric detection of riboflavin. Anal. Chem. 88, 11222–11228 (2016).

    Article  Google Scholar 

  25. Webster, D. P. et al. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens. Bioelectron. 62, 320–324 (2014).

    Article  Google Scholar 

  26. Khan, A. et al. A novel biosensor for zinc detection based on microbial fuel cell system. Biosens. Bioelectron. 147, 111763 (2020).

    Article  Google Scholar 

  27. Zhou, T. et al. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol. Bioeng. 118, 210–222 (2021).

    Article  Google Scholar 

  28. Karbelkar, A. A., Reynolds, E. E., Ahlmark, R. & Furst, A. L. A microbial electrochemical technology to detect and degrade organophosphate pesticides. ACS Cent. Sci. 7, 1718–1727 (2021).

    Article  Google Scholar 

  29. Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    Article  Google Scholar 

  30. Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. Proc. Natl Acad. Sci. USA 107, 19213–19218 (2010).

    Article  Google Scholar 

  31. Bird, L. J. et al. Marine biofilm engineered to produce current in response to small molecules. ACS Synth. Biol. 12, 1007–1020 (2023).

    Article  Google Scholar 

  32. Pham, H. T. M. et al. The determination of pharmaceuticals in wastewater using a recombinant Arxula adeninivorans whole cell biosensor. Sens. Actuat. B 211, 439–448 (2015).

    Article  Google Scholar 

  33. VanArsdale, E. et al. A coculture based tyrosine-tyrosinase electrochemical gene circuit for connecting cellular communication with electronic networks. ACS Synth. Biol. 9, 1117–1128 (2020).

    Article  Google Scholar 

  34. Tschirhart, T. et al. Electrochemical measurement of the β-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth. Biol. 5, 28–35 (2016).

    Article  Google Scholar 

  35. VanArsdale, E. et al. Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and roundup via rewired Escherichia coli. ACS Sens. 4, 1180–1184 (2019).

    Article  Google Scholar 

  36. Terrell, J. L. et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nat. Nanotechnol. 16, 688–697 (2021).

    Article  Google Scholar 

  37. Safavieh, M. et al. Rapid real-time antimicrobial susceptibility testing with electrical sensing on plastic microchips with printed electrodes. ACS Appl. Mater. Interf. 9, 12832–12840 (2017).

    Article  Google Scholar 

  38. Yang, Y., Gupta, K. & Ekinci, K. L. All-electrical monitoring of bacterial antibiotic susceptibility in a microfluidic device. Proc. Natl Acad. Sci. USA 117, 10639–10644 (2020).

    Article  Google Scholar 

  39. Pitruzzello, G., Johnson, S. & Krauss, T. F. Exploring the fundamental limit of antimicrobial susceptibility by near-single-cell electrical impedance spectroscopy. Biosens. Bioelectron. 224, 115056 (2023).

    Article  Google Scholar 

  40. Lovley, D. R. & Holmes, D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).

    Article  Google Scholar 

  41. Glasser, N. R., Saunders, S. H. & Newman, D. K. The colorful world of extracellular electron shuttles. Annu. Rev. Microbiol. 71, 731–751 (2017).

    Article  Google Scholar 

  42. Stevens, E. & Marco, M. Bacterial extracellular electron transfer in plant and animal ecosystems. FEMS Microbiol. Rev. 47, fuad019 (2023).

    Article  Google Scholar 

  43. Baker, I. R., Conley, B. E., Gralnick, J. A. & Girguis, P. R. Evidence for horizontal and vertical transmission of Mtr-mediated extracellular electron transfer among the Bacteria. mBio 13, e0290421 (2022). This article explores the distribution and organization of the direct electron transfer-enabling Mtr genes throughout diverse bacteria.

    Article  Google Scholar 

  44. Sridhar, S., Ajo-Franklin, C. M. & Masiello, C. A. A framework for the systematic selection of biosensor chassis for environmental synthetic biology. ACS Synth. Biol. 11, 2909–2916 (2022).

    Article  Google Scholar 

  45. Beblawy, S. et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol. Microbiol. 109, 571–583 (2018).

    Article  Google Scholar 

  46. Bowman, J. P. et al. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47, 1040–1047 (1997).

    Article  Google Scholar 

  47. Xiao, X., Wang, P., Zeng, X., Bartlett, D. H. & Wang, F. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int. J. Syst. Evolut. Microbiol. 57, 60–65 (2007).

    Article  Google Scholar 

  48. Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).

    Article  Google Scholar 

  49. Conley, B. E., Intile, P. J., Bond, D. R. & Gralnick, J. A. Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila. Appl. Env. Microbiol. 84, e02134–18 (2018).

    Article  Google Scholar 

  50. Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).

    Article  Google Scholar 

  51. Conley, B. E., Weinstock, M. T., Bond, D. R. & Gralnick, J. A. A hybrid extracellular electron transfer pathway enhances the survival of Vibrio natriegens. Appl. Environ. Microbiol. 86, e01253–20 (2020).

    Article  Google Scholar 

  52. Janda, J. M. & Abbott, S. L. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73 (2010).

    Article  Google Scholar 

  53. Eagon, R. G. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 83, 736–737 (1962).

    Article  Google Scholar 

  54. Dalia, T. N. et al. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth. Biol. 6, 1650–1655 (2017).

    Article  Google Scholar 

  55. Kim, M. K. et al. Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol. Lett. 26, 819–822 (2004).

    Article  Google Scholar 

  56. Guzman, M. S. et al. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nat. Commun. 10, 1355 (2019).

    Article  Google Scholar 

  57. Ueki, T. Cytochromes in extracellular electron transfer in Geobacter. Appl. Env. Microbiol. 87, e03109–e03120 (2021).

    Article  Google Scholar 

  58. Zacharoff, L., Chan, C. H. & Bond, D. R. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107, 7–13 (2016).

    Article  Google Scholar 

  59. Ueki, T., DiDonato, L. N. & Lovley, D. R. Toward establishing minimum requirements for extracellular electron transfer in Geobacter sulfurreducens. FEMS Microbiol. Lett. 364, https://doi.org/10.1093/femsle/fnx093 (2017).

  60. Gralnick, J. A. & Bond, D. R. Electron transfer beyond the outer membrane: putting electrons to rest. Annu. Rev. Microbiol. 77, 517–539 (2023).

    Article  Google Scholar 

  61. Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 375–381 (2009).

    Article  Google Scholar 

  62. Engel, C. E. A., Vorländer, D., Biedendieck, R., Krull, R. & Dohnt, K. Quantification of microaerobic growth of Geobacter sulfurreducens. PLoS ONE 15, e0215341 (2020).

    Article  Google Scholar 

  63. Wrighton, K. C. et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2, 1146–1156 (2008).

    Article  Google Scholar 

  64. Carlson, H. K. et al. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc. Natl Acad. Sci. USA 109, 1702–1707 (2012).

    Article  Google Scholar 

  65. Costa, N. L. et al. How thermophilic Gram-positive organisms perform extracellular electron transfer: characterization of the cell surface terminal reductase OcwA. mBio 10, e01210–e01219 (2019).

    Article  Google Scholar 

  66. Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).

    Article  Google Scholar 

  67. Light, S. H. et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562, 140–144 (2018). This article describes a widespread extracellular electron transfer mechanism by which many Gram-positive bacteria can interface with electrodes.

    Article  Google Scholar 

  68. Tejedor-Sanz, S. et al. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. eLife 11, e70684 (2022).

    Article  Google Scholar 

  69. Tolar, J. G., Li, S. & Ajo-Franklin, C. M. The differing roles of flavins and quinones in extracellular electron transfer in Lactiplantibacillus plantarum. Appl. Environ. Microbiol. 89, e01313–e01322 (2022).

    Google Scholar 

  70. Rabaey, K., Boon, N., Höfte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005).

    Article  Google Scholar 

  71. Wang, Y., Kern, S. E. & Newman, D. K. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J. Bacteriol. 192, 365–369 (2010).

    Article  Google Scholar 

  72. Nakamura, H. et al. A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72, 210–216 (2007).

    Article  Google Scholar 

  73. Rhoads, A., Beyenal, H. & Lewandowski, Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39, 4666–4671 (2005).

    Article  Google Scholar 

  74. Duan, R., Fang, X. & Wang, D. A methylene blue assisted electrochemical sensor for determination of drug resistance of Escherichia coli. Front. Chem. 9, 689735 (2021).

    Article  Google Scholar 

  75. Lai, B. et al. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol. Biofuels 9, 39 (2016).

    Article  Google Scholar 

  76. Babanova, S., Hubenova, Y. & Mitov, M. Influence of artificial mediators on yeast-based fuel cell performance. J. Biosci. Bioeng. 112, 379–387 (2011).

    Article  Google Scholar 

  77. Rahimnejad, M. et al. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol. 50, 575–580 (2012).

    Article  Google Scholar 

  78. Sund, C. J., McMasters, S., Crittenden, S. R., Harrell, L. E. & Sumner, J. J. Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 76, 561–568 (2007).

    Article  Google Scholar 

  79. Zaitseva, A. S., Arlyapov, V. A., Yu.Yudina, N., Alferov, S. V. & Reshetilov, A. N. Use of one- and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii. Enzyme Microb. Technol. 98, 43–51 (2017).

    Article  Google Scholar 

  80. Jensen, H. M., TerAvest, M. A., Kokish, M. G. & Ajo-Franklin, C. M. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 5, 679–688 (2016).

    Article  Google Scholar 

  81. Schmitz, S., Nies, S., Wierckx, N., Blank, L. M. & Rosenbaum, M. A. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front. Microbiol. 6, 284 (2015).

    Article  Google Scholar 

  82. Feng, J. et al. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. J. Biotechnol. 275, 1–6 (2018).

    Article  Google Scholar 

  83. Goldbeck, C. P. et al. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2, 150–159 (2013).

    Article  Google Scholar 

  84. Mouhib, M., Reggente, M., Li, L., Schuergers, N. & Boghossian, A. A. Extracellular electron transfer pathways to enhance the electroactivity of modified Escherichia coli. Joule 7, 2092–2106 (2023).

    Article  Google Scholar 

  85. Su, L. et al. Modifying cytochrome c maturation can increase the bioelectronic performance of engineered Escherichia coli. ACS Synth. Biol. 9, 115–124 (2020).

    Article  Google Scholar 

  86. Su, L., Fukushima, T. & Ajo-Franklin, C. M. A hybrid cyt c maturation system enhances the bioelectrical performance of engineered Escherichia coli by improving the rate-limiting step. Biosens. Bioelectron. 165, 112312 (2020).

    Article  Google Scholar 

  87. Yang, Y. et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4, 815–823 (2015).

    Article  Google Scholar 

  88. Li, J. et al. Rediverting electron flux with an engineered CRISPR–ddAsCpf1 system to enhance the pollutant degradation capacity of Shewanella oneidensis. Environ. Sci. Technol. 54, 3599–3608 (2020).

    Article  Google Scholar 

  89. Campbell, I. J. et al. Determinants of multiheme cytochrome extracellular electron transfer uncovered by systematic peptide insertion. Biochemistry 61, 1337–1350 (2022).

    Article  Google Scholar 

  90. Kast, P. & Hilvert, D. 3D structural information as a guide to protein engineering using genetic selection. Curr. Opin. Struct. Biol. 7, 470–479 (1997).

    Article  Google Scholar 

  91. Askitosari, T. D., Boto, S. T., Blank, L. M. & Rosenbaum, M. A. Boosting heterologous phenazine production in Pseudomonas putida KT2440 through the exploration of the natural sequence space. Front. Microbiol. 10, 1990 (2019).

    Article  Google Scholar 

  92. Torisawa, Y.-S. et al. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Anal. Chem. 78, 7625–7631 (2006).

    Article  Google Scholar 

  93. Silley, P. & Forsythe, S. Impedance microbiology — a rapid change for microbiologists. J. Appl. Bacteriol. 80, 233–243 (1996).

    Article  Google Scholar 

  94. Kara, V. et al. Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab. Chip 18, 743–753 (2018).

    Article  Google Scholar 

  95. Gao, G. et al. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta 167, 208–216 (2017).

    Article  Google Scholar 

  96. Schneider, G., Czeller, M., Rostás, V. & Kovács, T. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of β-lactam antibiotics. Enzyme Microb. Technol. 73–74, 59–64 (2015).

    Article  Google Scholar 

  97. Pasco, N., Baronian, K., Jeffries, C. & Hay, J. Biochemical mediator demand — a novel rapid alternative for measuring biochemical oxygen demand. Appl. Microbiol. Biotechnol. 53, 613–618 (2000).

    Article  Google Scholar 

  98. Szydlowski, L., Lan, T. C. T., Shibata, N. & Goryanin, I. Metabolic engineering of a novel strain of electrogenic bacterium Arcobacter butzleri to create a platform for single analyte detection using a microbial fuel cell. Enzyme Microb. Technol. 139, 109564 (2020).

    Article  Google Scholar 

  99. Zhou, A. Y., Baruch, M., Ajo-Franklin, C. M. & Maharbiz, M. M. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS ONE 12, e0184994 (2017).

    Article  Google Scholar 

  100. Ueki, T., Nevin, K. P., Woodard, T. L. & Lovley, D. R. Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens. J. Ind. Microbiol. Biotechnol. 43, 1561–1575 (2016).

    Article  Google Scholar 

  101. Zeng, J. et al. A novel bioelectronic reporter system in living cells tested with a synthetic biological comparator. Sci. Rep. 9, 7275 (2019).

    Article  Google Scholar 

  102. Atkinson, J. T., Chavez, M. S., Niman, C. M. & El-Naggar, M. Y. Living electronics: a catalogue of engineered living electronic components. Microb. Biotechnol. 16, 507–533 (2022).

    Article  Google Scholar 

  103. Golitsch, F., Bücking, C. & Gescher, J. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens. Bioelectron. 47, 285–291 (2013).

    Article  Google Scholar 

  104. Cheng, L. et al. Engineering a rhamnose-inducible system to enhance the extracellular electron transfer ability of Shewanella genus for improved Cr(VI) reduction. ACS EST. Eng. 1, 842–850 (2021).

    Article  Google Scholar 

  105. West, E. A., Jain, A. & Gralnick, J. A. Engineering a native inducible expression system in Shewanella oneidensis to control extracellular electron transfer. ACS Synth. Biol. 6, 1627–1634 (2017).

    Article  Google Scholar 

  106. Cao, Y., Li, X., Li, F. & Song, H. CRISPRi–sRNA: transcriptional–translational regulation of extracellular electron transfer in Shewanella oneidensis. ACS Synth. Biol. 6, 1679–1690 (2017).

    Article  Google Scholar 

  107. Dundas, C. M., Walker, D. J. F. & Keitz, B. K. Tuning extracellular electron transfer by Shewanella oneidensis using transcriptional logic gates. ACS Synth. Biol. 9, 2301–2315 (2020).

    Article  Google Scholar 

  108. Graham, A. J. et al. Transcriptional regulation of living materials via extracellular electron transfer. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01628-y (2024). This article reported complex genetic logic gates to modularly control electron transfer components.

  109. Atkinson, J. T., Campbell, I., Bennett, G. N. & Silberg, J. J. Cellular assays for ferredoxins: a strategy for understanding electron flow through protein carriers that link metabolic pathways. Biochemistry 55, 7047–7064 (2016).

    Article  Google Scholar 

  110. Campbell, I. J., Bennett, G. N. & Silberg, J. J. Evolutionary relationships between low potential ferredoxin and flavodoxin electron carriers. Front. Energy Res. 7, https://doi.org/10.3389/fenrg.2019.00079 (2019).

  111. Barstow, B. et al. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. J. Biol. Eng. 5, 7 (2011).

    Article  Google Scholar 

  112. Truong, A., Myerscough, D., Campbell, I., Atkinson, J. & Silberg, J. J. A cellular selection identifies elongated flavodoxins that support electron transfer to sulfite reductase. Protein Sci. 32, e4746 (2023).

    Article  Google Scholar 

  113. Mutter, A. C. et al. De novo design of symmetric ferredoxins that shuttle electrons in vivo. Proc. Natl Acad. Sci. 116, 14557–14562 (2019).

    Article  Google Scholar 

  114. Sellés Vidal, L., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 1866, 327–347 (2018).

    Article  Google Scholar 

  115. Li, Z. et al. Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem. Commun. 47, 3060–3062 (2011).

    Article  Google Scholar 

  116. Baron, D., LaBelle, E., Coursolle, D., Gralnick, J. A. & Bond, D. R. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem. 284, 28865–28873 (2009).

    Article  Google Scholar 

  117. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC Press, 2020).

  118. Shiku, H. et al. Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements. Anal. Chim. Acta 640, 87–92 (2009).

    Article  Google Scholar 

  119. Gui, Q., Lawson, T., Shan, S., Yan, L. & Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17, 1623 (2017).

    Article  Google Scholar 

  120. Del Valle, I. et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences. Front. Microbiol. 11, 618373 (2021).

    Article  Google Scholar 

  121. Moraskie, M. et al. Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosens. Bioelectron. 191, 113359 (2021).

    Article  Google Scholar 

  122. Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell‐based biosensors. ChemPhysChem 21, 132–144 (2020).

    Article  Google Scholar 

  123. VanArsdale, E. et al. Enhanced electrochemical measurement of β-galactosidase activity in whole cells by coexpression of lactose permease, LacY. BioTechniques 73, 251–255 (2022).

    Article  Google Scholar 

  124. Tseng, C.-P., Silberg, J. J., Bennett, G. N. & Verduzco, R. 100th anniversary of macromolecular science viewpoint: soft materials for microbial bioelectronics. ACS Macro Lett. 9, 1590–1603 (2020).

    Article  Google Scholar 

  125. Ratheesh, A., Elias, L. & Aboobakar Shibli, S. M. Tuning of electrode surface for enhanced bacterial adhesion and reactions: a review on recent approaches. ACS Appl. Bio Mater. 4, 5809–5838 (2021).

    Article  Google Scholar 

  126. Liu, H., Ramnarayanan, R. & Logan, B. E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285 (2004).

    Article  Google Scholar 

  127. Logan, B., Cheng, S., Watson, V. & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007).

    Article  Google Scholar 

  128. Vázquez, R. J. et al. Conjugated polyelectrolyte/bacteria living composites in carbon paper for biocurrent generation. Macromol. Rapid Commun. 43, 2100840 (2022).

    Article  Google Scholar 

  129. Wang, X. et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 43, 6870–6874 (2009).

    Article  Google Scholar 

  130. Cornejo, J. A. et al. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes. J. Electrochem. Soc. 162, H597–H603 (2015).

    Article  Google Scholar 

  131. He, Y.-R. et al. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Phys. Chem. Chem. Phys. 14, 9966 (2012).

    Article  Google Scholar 

  132. Hidalgo, D. et al. Surface modification of commercial carbon felt used as anode for microbial fuel cells. Energy 99, 193–201 (2016).

    Article  Google Scholar 

  133. Richter, H. et al. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24, 4376–4379 (2008).

    Article  Google Scholar 

  134. Long, X., Li, W.-P. & Okamoto, A. Riboflavin-rich agar enhances the rate of extracellular electron transfer from electrogenic bacteria inside a thin-layer system. Bioelectrochemistry 148, 108252 (2022).

    Article  Google Scholar 

  135. Pu, K.-B. et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem. Eng. J. 132, 255–261 (2018).

    Article  Google Scholar 

  136. Kargi, F. & Eker, S. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. J. Chem. Tech. Biotech. 82, 658–662 (2007).

    Article  Google Scholar 

  137. Wang, H. et al. High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale 5, 10283 (2013).

    Article  Google Scholar 

  138. Krishnamurthy, A. et al. Passivation of microbial corrosion using a graphene coating. Carbon 56, 45–49 (2013).

    Article  Google Scholar 

  139. Sun, M. et al. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosens. Bioelectron. 26, 338–343 (2010).

    Article  Google Scholar 

  140. Kane, A. L., Bond, D. R. & Gralnick, J. A. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth. Biol. 2, 93–101 (2013).

    Article  Google Scholar 

  141. Fang, X., Kalathil, S., Divitini, G., Wang, Q. & Reisner, E. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proc. Natl Acad. Sci. USA 117, 5074–5080 (2020). This article reports a 3D metal oxide electrode that can host a large population of current-producing strains for efficient electron transfer.

    Article  Google Scholar 

  142. Bian, B. et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 44, 174–180 (2018).

    Article  Google Scholar 

  143. Abd-Elrahman, N. K. et al. Applications of nanomaterials in microbial fuel cells: a review. Molecules 27, 7483 (2022).

    Article  Google Scholar 

  144. Zhou, S., Tang, J., Yuan, Y., Yang, G. & Xing, B. TiO2 nanoparticle-induced nanowire formation facilitates extracellular electron transfer. Environ. Sci. Technol. Lett. 5, 564–570 (2018).

    Article  Google Scholar 

  145. Wang, R. et al. FeS2 nanoparticles decorated graphene as microbial‐fuel‐cell anode achieving high power density. Adv. Mater. 30, 1800618 (2018).

    Article  Google Scholar 

  146. Su, L., Yin, T., Du, H., Zhang, W. & Fu, D. Synergistic improvement of Shewanella loihica PV-4 extracellular electron transfer using a TiO2@TiN nanocomposite. Bioelectrochemistry 134, 107519 (2020).

    Article  Google Scholar 

  147. Xie, X. et al. Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells. Nano Lett. 11, 291–296 (2011).

    Article  Google Scholar 

  148. McCuskey, S. R. et al. Current progress of interfacing organic semiconducting materials with bacteria. Chem. Rev. 122, 4791–4825 (2022).

    Article  Google Scholar 

  149. Kaneko, M., Ishihara, K. & Nakanishi, S. Redox‐active polymers connecting living microbial cells to an extracellular electrical circuit. Small 16, 2001849 (2020).

    Article  Google Scholar 

  150. Hasan, K., Patil, S. A., Leech, D., Hägerhäll, C. & Gorton, L. Electrochemical communication between microbial cells and electrodes via osmium redox systems. Biochem. Soc. Trans. 40, 1330–1335 (2012).

    Article  Google Scholar 

  151. Pankratova, G., Pankratov, D., Milton, R. D., Minteer, S. D. & Gorton, L. Following nature: bioinspired mediation strategy for Gram‐positive bacterial cells. Adv. Energy Mater. 9, 1900215 (2019).

    Article  Google Scholar 

  152. Lin, X., Nishio, K., Konno, T. & Ishihara, K. The effect of the encapsulation of bacteria in redox phospholipid polymer hydrogels on electron transfer efficiency in living cell-based devices. Biomaterials 33, 8221–8227 (2012).

    Article  Google Scholar 

  153. Hasan, K., Grattieri, M., Wang, T., Milton, R. D. & Minteer, S. D. Enhanced bioelectrocatalysis of Shewanella oneidensis MR-1 by a naphthoquinone redox polymer. ACS Energy Lett. 2, 1947–1951 (2017).

    Article  Google Scholar 

  154. Qiao, Y., Li, C. M., Bao, S.-J. & Bao, Q.-L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170, 79–84 (2007).

    Article  Google Scholar 

  155. Song, R. et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. 129, 10652–10656 (2017).

    Article  Google Scholar 

  156. Apetrei, R.-M., Cârâc, G., Bahrim, G. & Camurlu, P. Sensitivity enhancement for microbial biosensors through cell self-coating with polypyrrole. Int. J. Polym. Mater. Polym. Biomater. 68, 1058–1067 (2019).

    Article  Google Scholar 

  157. Zhang, P. et al. Conductive polymer–exoelectrogen hybrid bioelectrode with improved biofilm formation and extracellular electron transport. Adv. Electron. Mater. 5, 1900320 (2019).

    Article  Google Scholar 

  158. Zajdel, T. J. et al. PEDOT:PSS-based multilayer bacterial-composite films for bioelectronics. Sci. Rep. 8, 15293 (2018).

    Article  Google Scholar 

  159. Tseng, C.-P. et al. Solution-deposited and patternable conductive polymer thin-film electrodes for microbial bioelectronics. Adv. Mater. 34, 2109442 (2022). This article reports a conductive polymer coating for electrodes that is patternable and facilitates extracellular electron transfer in microbial bioelectronic devices.

    Article  Google Scholar 

  160. Narayanasamy, S. & Jayaprakash, J. Application of carbon-polymer based composite electrodes for microbial fuel cells. Rev. Environ. Sci. Biotechnol. 19, 595–620 (2020).

    Article  Google Scholar 

  161. Ghach, W., Etienne, M., Billard, P., Jorand, F. P. A. & Walcarius, A. Electrochemically assisted bacteria encapsulation in thin hybrid sol–gel films. J. Mater. Chem. B 1, 1052–1509 (2013).

    Article  Google Scholar 

  162. Kaur, A. et al. Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor. Sens. Actuat. B 201, 266–273 (2014).

    Article  Google Scholar 

  163. Tang, T.-C. et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17, 724–731 (2021).

    Article  Google Scholar 

  164. Du, Q., Li, T., Li, N. & Wang, X. Protection of electroactive biofilm from extreme acid shock by polydopamine encapsulation. Environ. Sci. Technol. Lett. 4, 345–349 (2017).

    Article  Google Scholar 

  165. Buscemi, G. et al. Bio-inspired redox-adhesive polydopamine matrix for intact bacteria biohybrid photoanodes. ACS Appl. Mater. Interf. 14, 26631–26641 (2022).

    Article  Google Scholar 

  166. Fu, Y. et al. Polydopamine antibacterial materials. Mater. Horiz. 8, 1618–1633 (2021).

    Article  Google Scholar 

  167. Bhusari, S., Sankaran, S. & Del Campo, A. Regulating bacterial behavior within hydrogels of tunable viscoelasticity. Adv. Sci. 9, 2106026 (2022).

    Article  Google Scholar 

  168. Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2018).

    Article  Google Scholar 

  169. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  Google Scholar 

  170. Li, Y., Wang, N., Yang, A., Ling, H. & Yan, F. Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 5, 1900566 (2019).

    Article  Google Scholar 

  171. Ohayon, D. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 19, 456–463 (2020).

    Article  Google Scholar 

  172. Méhes, G. et al. Organic microbial electrochemical transistor monitoring extracellular electron transfer. Adv. Sci. 9, 2000641. This article reports the use of organic electrochemical transistors to amplify signals from microbial bioelectronic sensors for rapid sensing.

  173. Kim, E., Gordonov, T., Bentley, W. E. & Payne, G. F. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor. Anal. Chem. 85, 2102–2108 (2013).

    Article  Google Scholar 

  174. Pasternak, G., Greenman, J. & Ieropoulos, I. Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring. Sens. Actuat. B 244, 815–822 (2017). This article presents a self-powered bioelectronic alarm system for water-quality monitoring that can last for months.

    Article  Google Scholar 

  175. Adekunle, A., Rickwood, C. & Tartakovsky, B. Online monitoring of heavy metal–related toxicity using flow-through and floating microbial fuel cell biosensors. Environ. Monit. Assess. 192, 52 (2020).

    Article  Google Scholar 

  176. Cristiani, P. et al. Long term feasibility study of in-field floating microbial fuel cells for monitoring anoxic wastewater and energy harvesting. Front. Energy Res. 7, 460198 (2019).

    Article  Google Scholar 

  177. Liu, L., Lu, Y., Zhong, W., Meng, L. & Deng, H. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment. Sci. Total. Environ. 748, 141544 (2020).

    Article  Google Scholar 

  178. Song, N. et al. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci. Total. Environ. 673, 272–280 (2019).

    Article  Google Scholar 

  179. Wang, C. & Jiang, H. Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor. Sci. Total. Environ. 697, 134009 (2019).

    Article  Google Scholar 

  180. Cho, J. H., Gao, Y. & Choi, S. A portable, single-use, paper-based microbial fuel cell sensor for rapid, on-site water quality monitoring. Sensors 19, 5452 (2019).

    Article  Google Scholar 

  181. Xu, Z. et al. Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks. Bioresour. Technol. 197, 244–251 (2015).

    Article  Google Scholar 

  182. Mohammadifar, M. & Choi, S. A papertronic, on-demand and disposable biobattery: saliva-activated electricity generation from lyophilized exoelectrogens preinoculated on paper. Adv. Mater. Technol. 2, 1700127 (2017).

    Article  Google Scholar 

  183. Chouler, J., Cruz-Izquierdo, Á., Rengaraj, S., Scott, J. L. & Di Lorenzo, M. A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosens. Bioelectron. 102, 49–56 (2018).

    Article  Google Scholar 

  184. Jiang, H., Yang, J., Wan, K., Jiang, D. & Jin, C. Miniaturized paper-supported 3D cell-based electrochemical sensor for bacterial lipopolysaccharide detection. ACS Sens. 5, 1325–1335 (2020).

    Article  Google Scholar 

  185. Cho, J. H., Gao, Y., Ryu, J. & Choi, S. Portable, disposable, paper-based microbial fuel cell sensor utilizing freeze-dried bacteria for in situ water quality monitoring. ACS Omega 5, 13940–13947 (2020).

    Article  Google Scholar 

  186. Dávila, D., Esquivel, J. P., Sabaté, N. & Mas, J. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens. Bioelectron. 26, 2426–2430 (2011).

    Article  Google Scholar 

  187. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018). This article reports a wireless readout bioelectronic capsule for sensing in the gut environment.

    Article  Google Scholar 

  188. Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).

    Article  Google Scholar 

  189. Sonntag, C. K., Flachbart, L. K., Maass, C., Vogt, M. & Marienhagen, J. A unified design allows fine-tuning of biosensor parameters and application across bacterial species. Metab. Eng. Commun. 11, e00150 (2020).

    Article  Google Scholar 

  190. Reimers, C. E., Wolf, M., Alleau, Y. & Li, C. Benthic microbial fuel cell systems for marine applications. J. Power Sources 522, 231033 (2022).

    Article  Google Scholar 

  191. Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S. & Kim, H. J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25, 541–545 (2003).

    Article  Google Scholar 

  192. Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).

    Article  Google Scholar 

  193. Freguia, S., Masuda, M., Tsujimura, S. & Kano, K. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76, 14–18 (2009).

    Article  Google Scholar 

  194. Gu, L. et al. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer. Microb. Biotechnol. 16, 1277–1292 (2023).

    Article  Google Scholar 

  195. Davis, J. B. & Yarbrough, H. F. Preliminary experiments on a microbial fuel cell. Science 137, 615–616 (1962).

    Article  Google Scholar 

  196. Park, D. H. & Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Env. Microbiol. 66, 1292–1297 (2000).

    Article  Google Scholar 

  197. Bennetto, H. P., Stirling, J. L., Tanaka, K. & Vega, C. A. Anodic reactions in microbial fuel cells. Biotechnol. Bioeng. 25, 559–568 (1983).

    Article  Google Scholar 

  198. Heiskanen, A. Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochem. Commun. 6, 219–224 (2004).

    Article  Google Scholar 

  199. Tanaka, K., Tamamushi, R. & Ogawa, T. Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J. Chem. Technol. Biotechnol. 35, 191–197 (1985).

    Article  Google Scholar 

  200. Tucci, M., Grattieri, M., Schievano, A., Cristiani, P. & Minteer, S. D. Microbial amperometric biosensor for online herbicide detection: photocurrent inhibition of Anabaena variabilis. Electrochim. Acta 302, 102–108 (2019).

    Article  Google Scholar 

  201. Kulys, J., Wang, L. & Razumas, V. Sensitive yeast bioelectrode to l-lactate. Electroanalysis 4, 527–532 (1992).

    Article  Google Scholar 

  202. Kaláb, T. & Skládal, P. Evaluation of mediators for development of amperometric microbial bioelectrodes. Electroanalysis 6, 1004–1008 (1994).

    Article  Google Scholar 

  203. Rasmussen, M. & Minteer, S. D. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell. Bioelectrochemistry 106, 207–212 (2015).

    Article  Google Scholar 

  204. Pourmadadi, M. et al. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim. Acta 186, 787 (2019).

    Article  Google Scholar 

  205. Fang, D., Gao, G., Shen, J., Yu, Y. & Zhi, J. A reagentless electrochemical biosensor based on thionine wrapped E. coli and chitosan-entrapped carbon nanodots film modified glassy carbon electrode for wastewater toxicity assessment. Electrochim. Acta 222, 303–311 (2016).

    Article  Google Scholar 

  206. Srikanth, S., Marsili, E., Flickinger, M. C. & Bond, D. R. Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol. Bioeng. 99, 1065–1073 (2008).

    Article  Google Scholar 

  207. Gandu, B., Rozenfeld, S., Ouaknin Hirsch, L., Schechter, A. & Cahan, R. Immobilization of bacterial cells on carbon-cloth anode using alginate for hydrogen generation in a microbial electrolysis cell. J. Power Sources 455, 227986 (2020).

    Article  Google Scholar 

  208. Kirubaharan, C. J. et al. Facile fabrication of Au@polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim. Acta 328, 135136 (2019).

    Article  Google Scholar 

  209. Zhao, S. et al. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 1, e1500372 (2015).

    Article  Google Scholar 

  210. Yong, Y.-C., Dong, X.-C., Chan-Park, M. B., Song, H. & Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6, 2394–2400 (2012).

    Article  Google Scholar 

  211. Elbadawi, M., Ong, J. J., Pollard, T. D., Gaisford, S. & Basit, A. W. Additive manufacturable materials for electrochemical biosensor electrodes. Adv. Funct. Mater. 31, 2006407 (2021).

    Article  Google Scholar 

  212. Xu, H. et al. A 3D porous NCNT sponge anode modified with chitosan and polyaniline for high-performance microbial fuel cell. Bioelectrochemistry 129, 144–153 (2019).

    Article  Google Scholar 

  213. Song, R.-B. et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. Int. Edn Engl. 56, 10516–10520 (2017).

    Article  Google Scholar 

  214. Grattieri, M. & Minteer, S. D. Self-powered biosensors. ACS Sens. 3, 44–53 (2018).

    Article  Google Scholar 

  215. Xu, L., Zhao, Y., Fan, C., Fan, Z. & Zhao, F. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresour. Technol. 243, 846–854 (2017).

    Article  Google Scholar 

  216. Quek, S. B., Cheng, L. & Cord-Ruwisch, R. In-line deoxygenation for organic carbon detections in seawater using a marine microbial fuel cell-biosensor. Bioresour. Technol. 182, 34–40 (2015).

    Article  Google Scholar 

  217. Naik, S. & Jujjavarapu, S. E. Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water. J. Environ. Chem. Eng. 9, 105318 (2021).

    Article  Google Scholar 

  218. Yang, Q. et al. Self-powered ultrasensitive nanowire photodetector driven by a hybridized microbial fuel cell. Angew. Chem. Int. Edn Engl. 51, 6443–6446 (2012).

    Article  Google Scholar 

  219. Alzate-Gaviria, L. & Garca Einschlag, F. S. (eds) Microbial Fuel Cells for Wastewater Treatment. in Waste Water — Treatment and Reutilization (InTech, 2011).

  220. Shantaram, A., Beyenal, H., Veluchamy, R. R. A. & Lewandowski, Z. Wireless sensors powered by microbial fuel cells. Environ. Sci. Technol. 39, 5037–5042 (2005).

    Article  Google Scholar 

  221. Donovan, C., Dewan, A., Peng, H., Heo, D. & Beyenal, H. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J. Power Sources 196, 1171–1177 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Ajo-Franklin laboratory and the Verduzco laboratory for discussions and comments. We thank J. Soman and M. Charrier for assistance in editing this manuscript. Research was sponsored by the Army Research Office (grant W911NF-22-1-0239 to C.M.A.-F). M.D.C. and S.L. were supported by the Cancer Prevention and Research Institute of Texas (award RR190063 to C.M.A.-F.). We acknowledge support from the National Science Foundation (EFMA—2223678).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualization. S.L., M.D.C. and X.Z. contributed to investigation, visualization and writing of the original draft. S.L., R.V. and C.M.A.-F. contributed to writing, review and editing.

Corresponding author

Correspondence to Caroline M. Ajo-Franklin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Rona Chandrawati and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Chemicals Outlook II: From Legacies to Innovative Solutions: http://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zuo, X., Carpenter, M.D. et al. Microbial bioelectronic sensors for environmental monitoring. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00233-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00233-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research