Abstract
In a world confronting pollution across diverse environments, fast, sensitive and cost-efficient methods are required to monitor complex chemicals. In particular, microbial bioelectronic sensors can report on the presence of chemicals through electrical signals enabled by biological processes. For example, microbial bioelectronic sensors have been developed for the rapid detection of riverine toxins within minutes of contact, for selective sensing of redox-active pharmaceuticals, and for monitoring of pesticide degradation. However, transferring these laboratory-tested technologies into field-deployable products poses several challenges: sensor sensitivity, specificity, longevity and robustness need to be improved. In this Review, we discuss the design of field-deployable microbial bioelectronic sensors, including chassis selection, approaches for rewiring electron transfer, strategies to establish the cell–electrode interface and fabrication methods. Importantly, we outline key challenges and possible solutions for the application of such sensors in the real world.
Key points
-
Rapid detection of pollutants demands innovations in microbial bioelectronic sensors.
-
Engineering bioelectronic sensors for environmental monitoring involves selection of a microbial chassis, rewiring of electron transfer, establishment of the cell-electrode interface and manufacture of the device.
-
A microbial chassis suited for bioelectronic sensing can be found in a range of ecosystems, and electron transfer can be rewired by controlling primary metabolism or by switching electroactive components ‘on’ and ‘off’.
-
Materials can facilitate electron transfer to an electrode and enable biocontainment.
-
Devices can be fabricated to amplify signals, remove environmental noise and minimize power consumption and footprint.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).
Pinder, R. W. et al. Opportunities and challenges for filling the air quality data gap in low- and middle-income countries. Atmos. Environ. 215, 116794 (2019).
Inda, M. E. & Lu, T. K. Microbes as biosensors. Annu. Rev. Microbiol. 74, 337–359 (2020).
Damborský, P., Švitel, J. & Katrlík, J. Optical biosensors. Essays Biochem. 60, 91–100 (2016).
Sheth, R. U. & Wang, H. H. DNA-based memory devices for recording cellular events. Nat. Rev. Genet. 19, 718–732 (2018).
Maresca, D. et al. Biomolecular ultrasound and sonogenetics. Annu. Rev. Chem. Biomol. Eng. 9, 229–252 (2018).
Simonte, F., Sturm, G., Gescher, J. & Sturm-Richter, K. Extracellular electron transfer and biosensors. Adv. Biochem. Eng. Biotechnol. 167, 15–38 (2019).
Logan, B. E., Rossi, R., Ragab, A. & Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 17, 307–319 (2019).
VanArsdale, E., Pitzer, J., Payne, G. F. & Bentley, W. E. Redox electrochemistry to interrogate and control biomolecular communication. iScience 23, 101545 (2020).
Din, M. O., Martin, A., Razinkov, I., Csicsery, N. & Hasty, J. Interfacing gene circuits with microelectronics through engineered population dynamics. Sci. Adv. 6, eaaz8344 (2020). This article demonstrates a general engineering strategy by which microbes can produce electrochemical signals in response to molecular sensing.
Sonawane, J. M., Ezugwu, C. I. & Ghosh, P. C. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS Sens. 5, 2297–2316 (2020).
Haddour, N. & Azri, Y. M. Recent advances on electrochemical sensors based on electroactive bacterial systems for toxicant monitoring: a minireview. Electroanalysis 35, e202200202 (2023).
Li, D. et al. Microbe-based sensor for long-term detection of urine glucose. Sensors 22, 5340 (2022).
Atci, E., Babauta, J. T., Sultana, S. T. & Beyenal, H. Microbiosensor for the detection of acetate in electrode-respiring biofilms. Biosens. Bioelectron. 81, 517–523 (2016).
Tront, J. M., Fortner, J. D., Plötze, M., Hughes, J. B. & Puzrin, A. M. Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol. Lett. 30, 1385–1390 (2008).
Mohammadifar, M. & Choi, S. A portable and visual electrobiochemical sensor for lactate monitoring in sweat. In 12th Int. Conf. on Nano/Molecular Medicine and Engineering (NANOMED) 73–77 (IEEE, 2018).
Tront, J. M., Fortner, J. D., Plötze, M., Hughes, J. B. & Puzrin, A. M. Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens. Bioelectron. 24, 586–590 (2008).
Klevinskas, A., Kantminienė, K., Žmuidzinavičienė, N., Jonuškienė, I. & Griškonis, E. Microbial fuel cell as a bioelectrochemical sensor of nitrite ions. Processes 9, 1330 (2021).
Atkinson, J. T. et al. Real-time bioelectronic sensing of environmental contaminants. Nature 611, 548–553 (2022). This article reports a multi-component synthetic electron transfer pathway for rapid detection of environmental contaminants.
Atkinson, J. T. et al. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat. Chem. Biol. 15, 189–195 (2019).
Yu, Y.-Y. et al. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor. Anal. Chim. Acta 985, 148–154 (2017).
Yang, Y. et al. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens. Bioelectron. 98, 338–344 (2017).
Li, S., De Groote Tavares, C., Tolar, J. G. & Ajo-Franklin, C. M. Selective bioelectronic sensing of pharmacologically relevant quinones using extracellular electron transfer in Lactiplantibacillus plantarum. Biosens. Bioelectron. 243, 115762 (2024). This article reports how the promiscuity of oxidoreductase can be harnessed to selectively sense chemical analogues.
Si, R.-W. et al. Wiring bacterial electron flow for sensitive whole-cell amperometric detection of riboflavin. Anal. Chem. 88, 11222–11228 (2016).
Webster, D. P. et al. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens. Bioelectron. 62, 320–324 (2014).
Khan, A. et al. A novel biosensor for zinc detection based on microbial fuel cell system. Biosens. Bioelectron. 147, 111763 (2020).
Zhou, T. et al. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol. Bioeng. 118, 210–222 (2021).
Karbelkar, A. A., Reynolds, E. E., Ahlmark, R. & Furst, A. L. A microbial electrochemical technology to detect and degrade organophosphate pesticides. ACS Cent. Sci. 7, 1718–1727 (2021).
Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).
Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. Proc. Natl Acad. Sci. USA 107, 19213–19218 (2010).
Bird, L. J. et al. Marine biofilm engineered to produce current in response to small molecules. ACS Synth. Biol. 12, 1007–1020 (2023).
Pham, H. T. M. et al. The determination of pharmaceuticals in wastewater using a recombinant Arxula adeninivorans whole cell biosensor. Sens. Actuat. B 211, 439–448 (2015).
VanArsdale, E. et al. A coculture based tyrosine-tyrosinase electrochemical gene circuit for connecting cellular communication with electronic networks. ACS Synth. Biol. 9, 1117–1128 (2020).
Tschirhart, T. et al. Electrochemical measurement of the β-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth. Biol. 5, 28–35 (2016).
VanArsdale, E. et al. Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and roundup via rewired Escherichia coli. ACS Sens. 4, 1180–1184 (2019).
Terrell, J. L. et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nat. Nanotechnol. 16, 688–697 (2021).
Safavieh, M. et al. Rapid real-time antimicrobial susceptibility testing with electrical sensing on plastic microchips with printed electrodes. ACS Appl. Mater. Interf. 9, 12832–12840 (2017).
Yang, Y., Gupta, K. & Ekinci, K. L. All-electrical monitoring of bacterial antibiotic susceptibility in a microfluidic device. Proc. Natl Acad. Sci. USA 117, 10639–10644 (2020).
Pitruzzello, G., Johnson, S. & Krauss, T. F. Exploring the fundamental limit of antimicrobial susceptibility by near-single-cell electrical impedance spectroscopy. Biosens. Bioelectron. 224, 115056 (2023).
Lovley, D. R. & Holmes, D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).
Glasser, N. R., Saunders, S. H. & Newman, D. K. The colorful world of extracellular electron shuttles. Annu. Rev. Microbiol. 71, 731–751 (2017).
Stevens, E. & Marco, M. Bacterial extracellular electron transfer in plant and animal ecosystems. FEMS Microbiol. Rev. 47, fuad019 (2023).
Baker, I. R., Conley, B. E., Gralnick, J. A. & Girguis, P. R. Evidence for horizontal and vertical transmission of Mtr-mediated extracellular electron transfer among the Bacteria. mBio 13, e0290421 (2022). This article explores the distribution and organization of the direct electron transfer-enabling Mtr genes throughout diverse bacteria.
Sridhar, S., Ajo-Franklin, C. M. & Masiello, C. A. A framework for the systematic selection of biosensor chassis for environmental synthetic biology. ACS Synth. Biol. 11, 2909–2916 (2022).
Beblawy, S. et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol. Microbiol. 109, 571–583 (2018).
Bowman, J. P. et al. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47, 1040–1047 (1997).
Xiao, X., Wang, P., Zeng, X., Bartlett, D. H. & Wang, F. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int. J. Syst. Evolut. Microbiol. 57, 60–65 (2007).
Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).
Conley, B. E., Intile, P. J., Bond, D. R. & Gralnick, J. A. Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila. Appl. Env. Microbiol. 84, e02134–18 (2018).
Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).
Conley, B. E., Weinstock, M. T., Bond, D. R. & Gralnick, J. A. A hybrid extracellular electron transfer pathway enhances the survival of Vibrio natriegens. Appl. Environ. Microbiol. 86, e01253–20 (2020).
Janda, J. M. & Abbott, S. L. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73 (2010).
Eagon, R. G. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 83, 736–737 (1962).
Dalia, T. N. et al. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth. Biol. 6, 1650–1655 (2017).
Kim, M. K. et al. Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol. Lett. 26, 819–822 (2004).
Guzman, M. S. et al. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nat. Commun. 10, 1355 (2019).
Ueki, T. Cytochromes in extracellular electron transfer in Geobacter. Appl. Env. Microbiol. 87, e03109–e03120 (2021).
Zacharoff, L., Chan, C. H. & Bond, D. R. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107, 7–13 (2016).
Ueki, T., DiDonato, L. N. & Lovley, D. R. Toward establishing minimum requirements for extracellular electron transfer in Geobacter sulfurreducens. FEMS Microbiol. Lett. 364, https://doi.org/10.1093/femsle/fnx093 (2017).
Gralnick, J. A. & Bond, D. R. Electron transfer beyond the outer membrane: putting electrons to rest. Annu. Rev. Microbiol. 77, 517–539 (2023).
Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 375–381 (2009).
Engel, C. E. A., Vorländer, D., Biedendieck, R., Krull, R. & Dohnt, K. Quantification of microaerobic growth of Geobacter sulfurreducens. PLoS ONE 15, e0215341 (2020).
Wrighton, K. C. et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2, 1146–1156 (2008).
Carlson, H. K. et al. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc. Natl Acad. Sci. USA 109, 1702–1707 (2012).
Costa, N. L. et al. How thermophilic Gram-positive organisms perform extracellular electron transfer: characterization of the cell surface terminal reductase OcwA. mBio 10, e01210–e01219 (2019).
Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).
Light, S. H. et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562, 140–144 (2018). This article describes a widespread extracellular electron transfer mechanism by which many Gram-positive bacteria can interface with electrodes.
Tejedor-Sanz, S. et al. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. eLife 11, e70684 (2022).
Tolar, J. G., Li, S. & Ajo-Franklin, C. M. The differing roles of flavins and quinones in extracellular electron transfer in Lactiplantibacillus plantarum. Appl. Environ. Microbiol. 89, e01313–e01322 (2022).
Rabaey, K., Boon, N., Höfte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005).
Wang, Y., Kern, S. E. & Newman, D. K. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J. Bacteriol. 192, 365–369 (2010).
Nakamura, H. et al. A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72, 210–216 (2007).
Rhoads, A., Beyenal, H. & Lewandowski, Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39, 4666–4671 (2005).
Duan, R., Fang, X. & Wang, D. A methylene blue assisted electrochemical sensor for determination of drug resistance of Escherichia coli. Front. Chem. 9, 689735 (2021).
Lai, B. et al. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol. Biofuels 9, 39 (2016).
Babanova, S., Hubenova, Y. & Mitov, M. Influence of artificial mediators on yeast-based fuel cell performance. J. Biosci. Bioeng. 112, 379–387 (2011).
Rahimnejad, M. et al. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol. 50, 575–580 (2012).
Sund, C. J., McMasters, S., Crittenden, S. R., Harrell, L. E. & Sumner, J. J. Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 76, 561–568 (2007).
Zaitseva, A. S., Arlyapov, V. A., Yu.Yudina, N., Alferov, S. V. & Reshetilov, A. N. Use of one- and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii. Enzyme Microb. Technol. 98, 43–51 (2017).
Jensen, H. M., TerAvest, M. A., Kokish, M. G. & Ajo-Franklin, C. M. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 5, 679–688 (2016).
Schmitz, S., Nies, S., Wierckx, N., Blank, L. M. & Rosenbaum, M. A. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front. Microbiol. 6, 284 (2015).
Feng, J. et al. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. J. Biotechnol. 275, 1–6 (2018).
Goldbeck, C. P. et al. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2, 150–159 (2013).
Mouhib, M., Reggente, M., Li, L., Schuergers, N. & Boghossian, A. A. Extracellular electron transfer pathways to enhance the electroactivity of modified Escherichia coli. Joule 7, 2092–2106 (2023).
Su, L. et al. Modifying cytochrome c maturation can increase the bioelectronic performance of engineered Escherichia coli. ACS Synth. Biol. 9, 115–124 (2020).
Su, L., Fukushima, T. & Ajo-Franklin, C. M. A hybrid cyt c maturation system enhances the bioelectrical performance of engineered Escherichia coli by improving the rate-limiting step. Biosens. Bioelectron. 165, 112312 (2020).
Yang, Y. et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4, 815–823 (2015).
Li, J. et al. Rediverting electron flux with an engineered CRISPR–ddAsCpf1 system to enhance the pollutant degradation capacity of Shewanella oneidensis. Environ. Sci. Technol. 54, 3599–3608 (2020).
Campbell, I. J. et al. Determinants of multiheme cytochrome extracellular electron transfer uncovered by systematic peptide insertion. Biochemistry 61, 1337–1350 (2022).
Kast, P. & Hilvert, D. 3D structural information as a guide to protein engineering using genetic selection. Curr. Opin. Struct. Biol. 7, 470–479 (1997).
Askitosari, T. D., Boto, S. T., Blank, L. M. & Rosenbaum, M. A. Boosting heterologous phenazine production in Pseudomonas putida KT2440 through the exploration of the natural sequence space. Front. Microbiol. 10, 1990 (2019).
Torisawa, Y.-S. et al. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Anal. Chem. 78, 7625–7631 (2006).
Silley, P. & Forsythe, S. Impedance microbiology — a rapid change for microbiologists. J. Appl. Bacteriol. 80, 233–243 (1996).
Kara, V. et al. Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab. Chip 18, 743–753 (2018).
Gao, G. et al. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta 167, 208–216 (2017).
Schneider, G., Czeller, M., Rostás, V. & Kovács, T. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of β-lactam antibiotics. Enzyme Microb. Technol. 73–74, 59–64 (2015).
Pasco, N., Baronian, K., Jeffries, C. & Hay, J. Biochemical mediator demand — a novel rapid alternative for measuring biochemical oxygen demand. Appl. Microbiol. Biotechnol. 53, 613–618 (2000).
Szydlowski, L., Lan, T. C. T., Shibata, N. & Goryanin, I. Metabolic engineering of a novel strain of electrogenic bacterium Arcobacter butzleri to create a platform for single analyte detection using a microbial fuel cell. Enzyme Microb. Technol. 139, 109564 (2020).
Zhou, A. Y., Baruch, M., Ajo-Franklin, C. M. & Maharbiz, M. M. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS ONE 12, e0184994 (2017).
Ueki, T., Nevin, K. P., Woodard, T. L. & Lovley, D. R. Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens. J. Ind. Microbiol. Biotechnol. 43, 1561–1575 (2016).
Zeng, J. et al. A novel bioelectronic reporter system in living cells tested with a synthetic biological comparator. Sci. Rep. 9, 7275 (2019).
Atkinson, J. T., Chavez, M. S., Niman, C. M. & El-Naggar, M. Y. Living electronics: a catalogue of engineered living electronic components. Microb. Biotechnol. 16, 507–533 (2022).
Golitsch, F., Bücking, C. & Gescher, J. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens. Bioelectron. 47, 285–291 (2013).
Cheng, L. et al. Engineering a rhamnose-inducible system to enhance the extracellular electron transfer ability of Shewanella genus for improved Cr(VI) reduction. ACS EST. Eng. 1, 842–850 (2021).
West, E. A., Jain, A. & Gralnick, J. A. Engineering a native inducible expression system in Shewanella oneidensis to control extracellular electron transfer. ACS Synth. Biol. 6, 1627–1634 (2017).
Cao, Y., Li, X., Li, F. & Song, H. CRISPRi–sRNA: transcriptional–translational regulation of extracellular electron transfer in Shewanella oneidensis. ACS Synth. Biol. 6, 1679–1690 (2017).
Dundas, C. M., Walker, D. J. F. & Keitz, B. K. Tuning extracellular electron transfer by Shewanella oneidensis using transcriptional logic gates. ACS Synth. Biol. 9, 2301–2315 (2020).
Graham, A. J. et al. Transcriptional regulation of living materials via extracellular electron transfer. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01628-y (2024). This article reported complex genetic logic gates to modularly control electron transfer components.
Atkinson, J. T., Campbell, I., Bennett, G. N. & Silberg, J. J. Cellular assays for ferredoxins: a strategy for understanding electron flow through protein carriers that link metabolic pathways. Biochemistry 55, 7047–7064 (2016).
Campbell, I. J., Bennett, G. N. & Silberg, J. J. Evolutionary relationships between low potential ferredoxin and flavodoxin electron carriers. Front. Energy Res. 7, https://doi.org/10.3389/fenrg.2019.00079 (2019).
Barstow, B. et al. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. J. Biol. Eng. 5, 7 (2011).
Truong, A., Myerscough, D., Campbell, I., Atkinson, J. & Silberg, J. J. A cellular selection identifies elongated flavodoxins that support electron transfer to sulfite reductase. Protein Sci. 32, e4746 (2023).
Mutter, A. C. et al. De novo design of symmetric ferredoxins that shuttle electrons in vivo. Proc. Natl Acad. Sci. 116, 14557–14562 (2019).
Sellés Vidal, L., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 1866, 327–347 (2018).
Li, Z. et al. Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem. Commun. 47, 3060–3062 (2011).
Baron, D., LaBelle, E., Coursolle, D., Gralnick, J. A. & Bond, D. R. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem. 284, 28865–28873 (2009).
Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC Press, 2020).
Shiku, H. et al. Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements. Anal. Chim. Acta 640, 87–92 (2009).
Gui, Q., Lawson, T., Shan, S., Yan, L. & Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17, 1623 (2017).
Del Valle, I. et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences. Front. Microbiol. 11, 618373 (2021).
Moraskie, M. et al. Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosens. Bioelectron. 191, 113359 (2021).
Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell‐based biosensors. ChemPhysChem 21, 132–144 (2020).
VanArsdale, E. et al. Enhanced electrochemical measurement of β-galactosidase activity in whole cells by coexpression of lactose permease, LacY. BioTechniques 73, 251–255 (2022).
Tseng, C.-P., Silberg, J. J., Bennett, G. N. & Verduzco, R. 100th anniversary of macromolecular science viewpoint: soft materials for microbial bioelectronics. ACS Macro Lett. 9, 1590–1603 (2020).
Ratheesh, A., Elias, L. & Aboobakar Shibli, S. M. Tuning of electrode surface for enhanced bacterial adhesion and reactions: a review on recent approaches. ACS Appl. Bio Mater. 4, 5809–5838 (2021).
Liu, H., Ramnarayanan, R. & Logan, B. E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285 (2004).
Logan, B., Cheng, S., Watson, V. & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007).
Vázquez, R. J. et al. Conjugated polyelectrolyte/bacteria living composites in carbon paper for biocurrent generation. Macromol. Rapid Commun. 43, 2100840 (2022).
Wang, X. et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 43, 6870–6874 (2009).
Cornejo, J. A. et al. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes. J. Electrochem. Soc. 162, H597–H603 (2015).
He, Y.-R. et al. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Phys. Chem. Chem. Phys. 14, 9966 (2012).
Hidalgo, D. et al. Surface modification of commercial carbon felt used as anode for microbial fuel cells. Energy 99, 193–201 (2016).
Richter, H. et al. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24, 4376–4379 (2008).
Long, X., Li, W.-P. & Okamoto, A. Riboflavin-rich agar enhances the rate of extracellular electron transfer from electrogenic bacteria inside a thin-layer system. Bioelectrochemistry 148, 108252 (2022).
Pu, K.-B. et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem. Eng. J. 132, 255–261 (2018).
Kargi, F. & Eker, S. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. J. Chem. Tech. Biotech. 82, 658–662 (2007).
Wang, H. et al. High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale 5, 10283 (2013).
Krishnamurthy, A. et al. Passivation of microbial corrosion using a graphene coating. Carbon 56, 45–49 (2013).
Sun, M. et al. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosens. Bioelectron. 26, 338–343 (2010).
Kane, A. L., Bond, D. R. & Gralnick, J. A. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth. Biol. 2, 93–101 (2013).
Fang, X., Kalathil, S., Divitini, G., Wang, Q. & Reisner, E. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proc. Natl Acad. Sci. USA 117, 5074–5080 (2020). This article reports a 3D metal oxide electrode that can host a large population of current-producing strains for efficient electron transfer.
Bian, B. et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 44, 174–180 (2018).
Abd-Elrahman, N. K. et al. Applications of nanomaterials in microbial fuel cells: a review. Molecules 27, 7483 (2022).
Zhou, S., Tang, J., Yuan, Y., Yang, G. & Xing, B. TiO2 nanoparticle-induced nanowire formation facilitates extracellular electron transfer. Environ. Sci. Technol. Lett. 5, 564–570 (2018).
Wang, R. et al. FeS2 nanoparticles decorated graphene as microbial‐fuel‐cell anode achieving high power density. Adv. Mater. 30, 1800618 (2018).
Su, L., Yin, T., Du, H., Zhang, W. & Fu, D. Synergistic improvement of Shewanella loihica PV-4 extracellular electron transfer using a TiO2@TiN nanocomposite. Bioelectrochemistry 134, 107519 (2020).
Xie, X. et al. Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells. Nano Lett. 11, 291–296 (2011).
McCuskey, S. R. et al. Current progress of interfacing organic semiconducting materials with bacteria. Chem. Rev. 122, 4791–4825 (2022).
Kaneko, M., Ishihara, K. & Nakanishi, S. Redox‐active polymers connecting living microbial cells to an extracellular electrical circuit. Small 16, 2001849 (2020).
Hasan, K., Patil, S. A., Leech, D., Hägerhäll, C. & Gorton, L. Electrochemical communication between microbial cells and electrodes via osmium redox systems. Biochem. Soc. Trans. 40, 1330–1335 (2012).
Pankratova, G., Pankratov, D., Milton, R. D., Minteer, S. D. & Gorton, L. Following nature: bioinspired mediation strategy for Gram‐positive bacterial cells. Adv. Energy Mater. 9, 1900215 (2019).
Lin, X., Nishio, K., Konno, T. & Ishihara, K. The effect of the encapsulation of bacteria in redox phospholipid polymer hydrogels on electron transfer efficiency in living cell-based devices. Biomaterials 33, 8221–8227 (2012).
Hasan, K., Grattieri, M., Wang, T., Milton, R. D. & Minteer, S. D. Enhanced bioelectrocatalysis of Shewanella oneidensis MR-1 by a naphthoquinone redox polymer. ACS Energy Lett. 2, 1947–1951 (2017).
Qiao, Y., Li, C. M., Bao, S.-J. & Bao, Q.-L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170, 79–84 (2007).
Song, R. et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. 129, 10652–10656 (2017).
Apetrei, R.-M., Cârâc, G., Bahrim, G. & Camurlu, P. Sensitivity enhancement for microbial biosensors through cell self-coating with polypyrrole. Int. J. Polym. Mater. Polym. Biomater. 68, 1058–1067 (2019).
Zhang, P. et al. Conductive polymer–exoelectrogen hybrid bioelectrode with improved biofilm formation and extracellular electron transport. Adv. Electron. Mater. 5, 1900320 (2019).
Zajdel, T. J. et al. PEDOT:PSS-based multilayer bacterial-composite films for bioelectronics. Sci. Rep. 8, 15293 (2018).
Tseng, C.-P. et al. Solution-deposited and patternable conductive polymer thin-film electrodes for microbial bioelectronics. Adv. Mater. 34, 2109442 (2022). This article reports a conductive polymer coating for electrodes that is patternable and facilitates extracellular electron transfer in microbial bioelectronic devices.
Narayanasamy, S. & Jayaprakash, J. Application of carbon-polymer based composite electrodes for microbial fuel cells. Rev. Environ. Sci. Biotechnol. 19, 595–620 (2020).
Ghach, W., Etienne, M., Billard, P., Jorand, F. P. A. & Walcarius, A. Electrochemically assisted bacteria encapsulation in thin hybrid sol–gel films. J. Mater. Chem. B 1, 1052–1509 (2013).
Kaur, A. et al. Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor. Sens. Actuat. B 201, 266–273 (2014).
Tang, T.-C. et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17, 724–731 (2021).
Du, Q., Li, T., Li, N. & Wang, X. Protection of electroactive biofilm from extreme acid shock by polydopamine encapsulation. Environ. Sci. Technol. Lett. 4, 345–349 (2017).
Buscemi, G. et al. Bio-inspired redox-adhesive polydopamine matrix for intact bacteria biohybrid photoanodes. ACS Appl. Mater. Interf. 14, 26631–26641 (2022).
Fu, Y. et al. Polydopamine antibacterial materials. Mater. Horiz. 8, 1618–1633 (2021).
Bhusari, S., Sankaran, S. & Del Campo, A. Regulating bacterial behavior within hydrogels of tunable viscoelasticity. Adv. Sci. 9, 2106026 (2022).
Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2018).
Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).
Li, Y., Wang, N., Yang, A., Ling, H. & Yan, F. Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 5, 1900566 (2019).
Ohayon, D. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 19, 456–463 (2020).
Méhes, G. et al. Organic microbial electrochemical transistor monitoring extracellular electron transfer. Adv. Sci. 9, 2000641. This article reports the use of organic electrochemical transistors to amplify signals from microbial bioelectronic sensors for rapid sensing.
Kim, E., Gordonov, T., Bentley, W. E. & Payne, G. F. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor. Anal. Chem. 85, 2102–2108 (2013).
Pasternak, G., Greenman, J. & Ieropoulos, I. Self-powered, autonomous biological oxygen demand biosensor for online water quality monitoring. Sens. Actuat. B 244, 815–822 (2017). This article presents a self-powered bioelectronic alarm system for water-quality monitoring that can last for months.
Adekunle, A., Rickwood, C. & Tartakovsky, B. Online monitoring of heavy metal–related toxicity using flow-through and floating microbial fuel cell biosensors. Environ. Monit. Assess. 192, 52 (2020).
Cristiani, P. et al. Long term feasibility study of in-field floating microbial fuel cells for monitoring anoxic wastewater and energy harvesting. Front. Energy Res. 7, 460198 (2019).
Liu, L., Lu, Y., Zhong, W., Meng, L. & Deng, H. On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment. Sci. Total. Environ. 748, 141544 (2020).
Song, N. et al. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci. Total. Environ. 673, 272–280 (2019).
Wang, C. & Jiang, H. Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor. Sci. Total. Environ. 697, 134009 (2019).
Cho, J. H., Gao, Y. & Choi, S. A portable, single-use, paper-based microbial fuel cell sensor for rapid, on-site water quality monitoring. Sensors 19, 5452 (2019).
Xu, Z. et al. Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks. Bioresour. Technol. 197, 244–251 (2015).
Mohammadifar, M. & Choi, S. A papertronic, on-demand and disposable biobattery: saliva-activated electricity generation from lyophilized exoelectrogens preinoculated on paper. Adv. Mater. Technol. 2, 1700127 (2017).
Chouler, J., Cruz-Izquierdo, Á., Rengaraj, S., Scott, J. L. & Di Lorenzo, M. A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosens. Bioelectron. 102, 49–56 (2018).
Jiang, H., Yang, J., Wan, K., Jiang, D. & Jin, C. Miniaturized paper-supported 3D cell-based electrochemical sensor for bacterial lipopolysaccharide detection. ACS Sens. 5, 1325–1335 (2020).
Cho, J. H., Gao, Y., Ryu, J. & Choi, S. Portable, disposable, paper-based microbial fuel cell sensor utilizing freeze-dried bacteria for in situ water quality monitoring. ACS Omega 5, 13940–13947 (2020).
Dávila, D., Esquivel, J. P., Sabaté, N. & Mas, J. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens. Bioelectron. 26, 2426–2430 (2011).
Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018). This article reports a wireless readout bioelectronic capsule for sensing in the gut environment.
Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).
Sonntag, C. K., Flachbart, L. K., Maass, C., Vogt, M. & Marienhagen, J. A unified design allows fine-tuning of biosensor parameters and application across bacterial species. Metab. Eng. Commun. 11, e00150 (2020).
Reimers, C. E., Wolf, M., Alleau, Y. & Li, C. Benthic microbial fuel cell systems for marine applications. J. Power Sources 522, 231033 (2022).
Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S. & Kim, H. J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25, 541–545 (2003).
Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).
Freguia, S., Masuda, M., Tsujimura, S. & Kano, K. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76, 14–18 (2009).
Gu, L. et al. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer. Microb. Biotechnol. 16, 1277–1292 (2023).
Davis, J. B. & Yarbrough, H. F. Preliminary experiments on a microbial fuel cell. Science 137, 615–616 (1962).
Park, D. H. & Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Env. Microbiol. 66, 1292–1297 (2000).
Bennetto, H. P., Stirling, J. L., Tanaka, K. & Vega, C. A. Anodic reactions in microbial fuel cells. Biotechnol. Bioeng. 25, 559–568 (1983).
Heiskanen, A. Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochem. Commun. 6, 219–224 (2004).
Tanaka, K., Tamamushi, R. & Ogawa, T. Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J. Chem. Technol. Biotechnol. 35, 191–197 (1985).
Tucci, M., Grattieri, M., Schievano, A., Cristiani, P. & Minteer, S. D. Microbial amperometric biosensor for online herbicide detection: photocurrent inhibition of Anabaena variabilis. Electrochim. Acta 302, 102–108 (2019).
Kulys, J., Wang, L. & Razumas, V. Sensitive yeast bioelectrode to l-lactate. Electroanalysis 4, 527–532 (1992).
Kaláb, T. & Skládal, P. Evaluation of mediators for development of amperometric microbial bioelectrodes. Electroanalysis 6, 1004–1008 (1994).
Rasmussen, M. & Minteer, S. D. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell. Bioelectrochemistry 106, 207–212 (2015).
Pourmadadi, M. et al. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim. Acta 186, 787 (2019).
Fang, D., Gao, G., Shen, J., Yu, Y. & Zhi, J. A reagentless electrochemical biosensor based on thionine wrapped E. coli and chitosan-entrapped carbon nanodots film modified glassy carbon electrode for wastewater toxicity assessment. Electrochim. Acta 222, 303–311 (2016).
Srikanth, S., Marsili, E., Flickinger, M. C. & Bond, D. R. Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol. Bioeng. 99, 1065–1073 (2008).
Gandu, B., Rozenfeld, S., Ouaknin Hirsch, L., Schechter, A. & Cahan, R. Immobilization of bacterial cells on carbon-cloth anode using alginate for hydrogen generation in a microbial electrolysis cell. J. Power Sources 455, 227986 (2020).
Kirubaharan, C. J. et al. Facile fabrication of Au@polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim. Acta 328, 135136 (2019).
Zhao, S. et al. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 1, e1500372 (2015).
Yong, Y.-C., Dong, X.-C., Chan-Park, M. B., Song, H. & Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6, 2394–2400 (2012).
Elbadawi, M., Ong, J. J., Pollard, T. D., Gaisford, S. & Basit, A. W. Additive manufacturable materials for electrochemical biosensor electrodes. Adv. Funct. Mater. 31, 2006407 (2021).
Xu, H. et al. A 3D porous NCNT sponge anode modified with chitosan and polyaniline for high-performance microbial fuel cell. Bioelectrochemistry 129, 144–153 (2019).
Song, R.-B. et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. Int. Edn Engl. 56, 10516–10520 (2017).
Grattieri, M. & Minteer, S. D. Self-powered biosensors. ACS Sens. 3, 44–53 (2018).
Xu, L., Zhao, Y., Fan, C., Fan, Z. & Zhao, F. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresour. Technol. 243, 846–854 (2017).
Quek, S. B., Cheng, L. & Cord-Ruwisch, R. In-line deoxygenation for organic carbon detections in seawater using a marine microbial fuel cell-biosensor. Bioresour. Technol. 182, 34–40 (2015).
Naik, S. & Jujjavarapu, S. E. Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water. J. Environ. Chem. Eng. 9, 105318 (2021).
Yang, Q. et al. Self-powered ultrasensitive nanowire photodetector driven by a hybridized microbial fuel cell. Angew. Chem. Int. Edn Engl. 51, 6443–6446 (2012).
Alzate-Gaviria, L. & Garca Einschlag, F. S. (eds) Microbial Fuel Cells for Wastewater Treatment. in Waste Water — Treatment and Reutilization (InTech, 2011).
Shantaram, A., Beyenal, H., Veluchamy, R. R. A. & Lewandowski, Z. Wireless sensors powered by microbial fuel cells. Environ. Sci. Technol. 39, 5037–5042 (2005).
Donovan, C., Dewan, A., Peng, H., Heo, D. & Beyenal, H. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J. Power Sources 196, 1171–1177 (2011).
Acknowledgements
We thank members of the Ajo-Franklin laboratory and the Verduzco laboratory for discussions and comments. We thank J. Soman and M. Charrier for assistance in editing this manuscript. Research was sponsored by the Army Research Office (grant W911NF-22-1-0239 to C.M.A.-F). M.D.C. and S.L. were supported by the Cancer Prevention and Research Institute of Texas (award RR190063 to C.M.A.-F.). We acknowledge support from the National Science Foundation (EFMA—2223678).
Author information
Authors and Affiliations
Contributions
All authors contributed to conceptualization. S.L., M.D.C. and X.Z. contributed to investigation, visualization and writing of the original draft. S.L., R.V. and C.M.A.-F. contributed to writing, review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Rona Chandrawati and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Global Chemicals Outlook II: From Legacies to Innovative Solutions: http://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, S., Zuo, X., Carpenter, M.D. et al. Microbial bioelectronic sensors for environmental monitoring. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00233-x
Accepted:
Published:
DOI: https://doi.org/10.1038/s44222-024-00233-x