Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design of microbial catalysts for two-stage processes

Abstract

Microbial catalysts must partition incoming substrate between the synthesis of biomass and the synthesis of a desired product. Although biomass synthesis generates more catalyst and therefore potentially higher volumetric productivities, the synthesis of product increases specific production rates and product yields. Two-stage bioprocesses can accommodate this tradeoff through temporal separation of the growth and production phases. The biocatalyst first grows to optimal density; it is then switched to a growth-arrested state during which the product is synthesized. However, a substantial reduction in metabolic activity is often observed during cellular growth arrest, even in the presence of sufficient substrate. An ultimate bioengineering goal, therefore, is to create growth-arrested states that retain high metabolic activity. Achieving this goal brings the metabolic engineer to the intersection of microbial physiology, synthetic biology and biochemistry. In this Review, we describe various aspects of the design of microbial catalysts for two-stage bioprocesses for metabolite production, including synthetic biology tools to arrest cell growth using external or internal cues, and metabolic engineering tools to minimize interference from the native metabolic network and enhance substrate uptake and conversion. We highlight recent systems biology studies of nutrient-limited heterotrophs and phototrophs and conclude that the reduction in substrate uptake by cells in growth arrest is the consequence of reduced energy demand as well as imbalances in regulatory metabolites that typically arise during nutrient limitation. On the basis of these studies, we propose strategies for increasing metabolic activity in growth-arrested cells.

Key points

  • Microbial catalysts must balance production with growth and other essential functions.

  • The theoretically optimal solution to maximizing production over a finite time interval is a two-stage process with a growth phase followed by a production phase.

  • Tools from synthetic biology enable efficient and dynamic switching to a metabolic mode with limited growth and enhanced production.

  • A major drawback of the growth-arrested state is a commonly observed decrease in metabolic activity and substrate uptake.

  • The non-growing state is generally poorly understood in quantitative biology.

  • Advances in high-throughput phenotyping and computation-based tools offer new avenues to understand metabolic activity decline and increase biocatalyst performances and stability over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transitioning from a single-stage to a two-stage microbial production process.
Fig. 2: Overview of the main tools used for arresting cell growth in two-stage process design.
Fig. 3: Feedback between growth rate and cell metabolism.
Fig. 4: Main barriers to redirecting resources to production and future engineering strategies for two-stage production.

Similar content being viewed by others

References

  1. MohammadiPeyhani, H., Hafner, J., Sveshnikova, A., Viterbo, V. & Hatzimanikatis, V. Expanding biochemical knowledge and illuminating metabolic dark matter with ATLASx. Nat. Commun. 13, 1560 (2022).

    Article  Google Scholar 

  2. Kumar, A., Wang, L., Ng, C. Y. & Maranas, C. D. Pathway design using de novo steps through uncharted biochemical spaces. Nat. Commun. 9, 184 (2018).

    Article  Google Scholar 

  3. Delépine, B., Duigou, T., Carbonell, P. & Faulon, J.-L. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).

    Article  Google Scholar 

  4. Nielsen, J., Tillegreen, C. B. & Petranovic, D. Innovation trends in industrial biotechnology. Trends Biotechnol. 40, 1160–1172 (2022).

    Article  Google Scholar 

  5. Montaño López, J., Duran, L. & Avalos, J. L. Physiological limitations and opportunities in microbial metabolic engineering. Nat. Rev. Microbiol. 20, 35–48 (2022).

    Article  Google Scholar 

  6. Klamt, S. et al. From elementary flux modes to elementary flux vectors: metabolic pathway analysis with arbitrary linear flux constraints. PLoS Comput. Biol. 13, e1005409 (2017).

    Article  Google Scholar 

  7. Raj, K., Venayak, N. & Mahadevan, R. Novel two-stage processes for optimal chemical production in microbes. Metab. Eng. 62, 186–197 (2020).

    Article  Google Scholar 

  8. Rugbjerg, P. & Sommer, M. O. A. Overcoming genetic heterogeneity in industrial fermentations. Nat. Biotechnol. 37, 869–876 (2019).

    Article  Google Scholar 

  9. Du, W. et al. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth. Biotechnol. Biofuels 11, 38 (2018).

    Article  Google Scholar 

  10. Alter, T. B. & Ebert, B. E. Determination of growth-coupling strategies and their underlying principles. BMC Bioinform. 20, 447 (2019).

    Article  Google Scholar 

  11. Jouhten, P. et al. Predictive evolution of metabolic phenotypes using model-designed environments. Mol. Syst. Biol. 18, e10980 (2022).

    Article  Google Scholar 

  12. Schneider, P., Mahadevan, R. & Klamt, S. Systematizing the different notions of growth-coupled product synthesis and a single framework for computing corresponding strain designs. Biotechnol. J. 16, e2100236 (2021).

    Article  Google Scholar 

  13. Pereira, F. et al. Model-guided development of an evolutionarily stable yeast chassis. Mol. Syst. Biol. 17, e10253 (2021).

    Article  Google Scholar 

  14. St John, P. C., Crowley, M. F. & Bomble, Y. J. Efficient estimation of the maximum metabolic productivity of batch systems. Biotechnol. Biofuels 10, 28 (2017). This article demonstrates that nearly optimal yields and productivities can be achieved with two-stage processes during batch fermentation.

    Article  Google Scholar 

  15. Burg, J. M. et al. Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations. Curr. Opin. Chem. Eng. 14, 121–136 (2016). This study shows that growth-arrested biological catalysts have a better techno-economical potential for complex chemical conversions than chemical catalysts.

    Article  Google Scholar 

  16. Ye, Z. et al. Two-stage dynamic deregulation of metabolism improves process robustness & scalability in engineered E. coli. Metab. Eng. 68, 106–118 (2021). This article is the first to show the scale-up potential of two-stage processes against traditional one-stage processes.

    Article  Google Scholar 

  17. Yegorov, I., Mairet, F., de Jong, H. & Gouzé, J.-L. Optimal control of bacterial growth for the maximization of metabolite production. J. Math. Biol. 78, 985–1032 (2019).

    Article  MathSciNet  Google Scholar 

  18. Hartline, C. J., Schmitz, A. C., Han, Y. & Zhang, F. Dynamic control in metabolic engineering: theories, tools, and applications. Metab. Eng. 63, 126–140 (2021).

    Article  Google Scholar 

  19. Boecker, S. et al. Deciphering the physiological response of Escherichia coli under high ATP demand. Mol. Syst. Biol. 17, e10504 (2021). In this article, increasing ATP turnover via overexpression of the F1-ATPase in growth-arrested E. coli cells leads to a ninefold increase in substrate uptake rate.

    Article  Google Scholar 

  20. Klamt, S., Mahadevan, R. & Hädicke, O. When do two-stage processes outperform one-stage processes? Biotechnol. J. https://doi.org/10.1002/biot.201700539 (2018).

  21. de Carvalho, C. C. C. R. Whole cell biocatalysts: essential workers from Nature to the industry. Microb. Biotechnol. 10, 250–263 (2017).

    Article  Google Scholar 

  22. Mitra, R., Xu, T., Chen, G.-Q., Xiang, H. & Han, J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb. Biotechnol. 15, 1446–1470 (2022).

    Article  Google Scholar 

  23. Nygaard, D., Yashchuk, O., Noseda, D. G., Araoz, B. & Hermida, É. B. Improved fermentation strategies in a bioreactor for enhancing poly(3-hydroxybutyrate) (PHB) production by wild type Cupriavidus necator from fructose. Heliyon 7, e05979 (2021).

    Article  Google Scholar 

  24. Rajpurohit, H. & Eiteman, M. A. Nutrient-limited operational strategies for the microbial production of biochemicals. Microorganisms 10, 2226 (2022).

    Article  Google Scholar 

  25. Rittershaus, E. S. C., Baek, S.-H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13, 643–651 (2013).

    Article  Google Scholar 

  26. Klosinska, M. M., Crutchfield, C. A., Bradley, P. H., Rabinowitz, J. D. & Broach, J. R. Yeast cells can access distinct quiescent states. Genes Dev. 25, 336–349 (2011).

    Article  Google Scholar 

  27. Spät, P., Klotz, A., Rexroth, S., Maček, B. & Forchhammer, K. Chlorosis as a developmental program in cyanobacteria: the proteomic fundament for survival and awakening. Mol. Cell. Proteom. 17, 1650–1669 (2018).

    Article  Google Scholar 

  28. Landberg, J., Wright, N. R., Wulff, T., Herrgård, M. J. & Nielsen, A. T. CRISPR interference of nucleotide biosynthesis improves production of a single-domain antibody in Escherichia coli. Biotechnol. Bioeng. 117, 3835–3848 (2020).

    Article  Google Scholar 

  29. Kasari, M., Kasari, V., Kärmas, M. & Jõers, A. Decoupling growth and production by removing the origin of replication from a bacterial chromosome. ACS Synth. Biol. 11, 2610–2622 (2022).

    Article  Google Scholar 

  30. Ni, C., Dinh, C. V. & Prather, K. L. J. Dynamic control of metabolism. Annu. Rev. Chem. Biomol. Eng. 12, 519–541 (2021).

    Article  Google Scholar 

  31. Tan, S. Z., Reisch, C. R. & Prather, K. L. J. A robust CRISPR interference gene repression system in Pseudomonas. J. Bacteriol. 200, e00575-17 (2018).

    Article  Google Scholar 

  32. Reis, A. C. et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat. Biotechnol. 37, 1294–1301 (2019).

    Article  Google Scholar 

  33. Li, S. et al. Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab. Eng. 38, 274–284 (2016).

    Article  Google Scholar 

  34. Shabestary, K. et al. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria. ACS Synth. Biol. 7, 1669–1675 (2018).

    Article  Google Scholar 

  35. Banerjee, D. et al. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat. Commun. 11, 5385 (2020).

    Article  Google Scholar 

  36. Tian, J. et al. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Res. 48, 8188–8202 (2020).

    Article  Google Scholar 

  37. Li, S. et al. Genome-wide CRISPRi-based identification of targets for decoupling growth from production. ACS Synth. Biol. 9, 1030–1040 (2020).

    Article  Google Scholar 

  38. Yao, L. et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat. Commun. 11, 1666 (2020).

    Article  Google Scholar 

  39. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022).

    Article  Google Scholar 

  40. Miao, R., Jahn, M., Shabestary, K., Peltier, G. & Hudson, E. P. CRISPR interference screens reveal growth-robustness tradeoffs in Synechocystis sp. PCC 6803 across growth conditions. Plant Cell 35, 3937–3956 (2023).

    Article  Google Scholar 

  41. Cui, L. et al. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9, 1912 (2018).

    Article  Google Scholar 

  42. Rostain, W. et al. Cas9 off-target binding to the promoter of bacterial genes leads to silencing and toxicity. Nucleic Acids Res. 51, 3485–3496 (2023).

    Article  Google Scholar 

  43. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  Google Scholar 

  44. Zhou, L.-B. & Zeng, A.-P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth. Biol. 4, 729–734 (2015).

    Article  Google Scholar 

  45. Abramson, B. W., Lensmire, J., Lin, Y. T., Jennings, E., & Ducat, D. C. Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-secreting cyanobacterium. Algal Res. 33, 248–255 (2018).

    Article  Google Scholar 

  46. Townshend, B., Xiang, J. S., Manzanarez, G., Hayden, E. J. & Smolke, C. D. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat. Commun. 12, 1437 (2021).

    Article  Google Scholar 

  47. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

    Article  Google Scholar 

  48. Kim, J. et al. De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat. Chem. Biol. 15, 1173–1182 (2019).

    Article  Google Scholar 

  49. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O’Shea, E. K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl Acad. Sci. USA 103, 13004–13009 (2006).

    Article  Google Scholar 

  50. Ohira, M. J., Hendrickson, D. G., Scott McIsaac, R. & Rhind, N. An estradiol-inducible promoter enables fast, graduated control of gene expression in fission yeast. Yeast 34, 323–334 (2017).

    Article  Google Scholar 

  51. Gupta, M. et al. Global protein-turnover quantification in Escherichia coli reveals cytoplasmic recycling under nitrogen limitation. Preprint at bioRxiv https://doi.org/10.1101/2022.08.01.502339 (2022).

  52. Martin-Perez, M. & Villén, J. Determinants and regulation of protein turnover in yeast. Cell Syst. 5, 283–294.e5 (2017).

    Article  Google Scholar 

  53. Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).

    Article  Google Scholar 

  54. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  Google Scholar 

  55. Lu, Z., Peng, B., Ebert, B. E., Dumsday, G. & Vickers, C. E. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat. Commun. 12, 1051 (2021).

    Article  Google Scholar 

  56. McGinness, K. E., Baker, T. A. & Sauer, R. T. Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).

    Article  Google Scholar 

  57. Cronan, G. E. & Kuzminov, A. Degron-controlled protein degradation in Escherichia coli: new approaches and parameters. ACS Synth. Biol. 13, 669–682 (2024).

    Article  Google Scholar 

  58. Fernandez-Rodriguez, J. & Voigt, C. A. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res. 44, 6493–6502 (2016).

    Article  Google Scholar 

  59. Gao, C. et al. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat. Commun. 10, 3751 (2019).

    Article  Google Scholar 

  60. Durante-Rodríguez, G., de Lorenzo, V. & Nikel, P. I. A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli. ACS Synth. Biol. 7, 2686–2697 (2018).

    Article  Google Scholar 

  61. Brockman, I. M. & Prather, K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28, 104–113 (2015).

    Article  Google Scholar 

  62. Li, S. et al. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab. Eng. 64, 26–40 (2021).

    Article  Google Scholar 

  63. Gao, C. et al. Engineering a CRISPRi circuit for autonomous control of metabolic flux in Escherichia coli. ACS Synth. Biol. 10, 2661–2671 (2021).

    Article  Google Scholar 

  64. Schramm, T. et al. High-throughput enrichment of temperature-sensitive argininosuccinate synthetase for two-stage citrulline production in E. coli. Metab. Eng. 60, 14–24 (2020). This article presents an elegant approach to inducing growth arrest more efficiently by using a temperature-sensitive variant of the essential gene argG in E. coli.

    Article  Google Scholar 

  65. Schramm, T. et al. Mapping temperature-sensitive mutations at a genome scale to engineer growth switches in Escherichia coli. Mol. Syst. Biol. 19, e11596 (2023).

    Article  Google Scholar 

  66. Link, H., Fuhrer, T., Gerosa, L., Zamboni, N. & Sauer, U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12, 1091–1097 (2015).

    Article  Google Scholar 

  67. Gurvich, Y., Leshkowitz, D. & Barkai, N. Dual role of starvation signaling in promoting growth and recovery. PLoS Biol. 15, e2002039 (2017).

    Article  Google Scholar 

  68. Kaplan, Y. et al. Observation of universal ageing dynamics in antibiotic persistence. Nature 600, 290–294 (2021).

    Article  Google Scholar 

  69. Gefen, O., Fridman, O., Ronin, I. & Balaban, N. Q. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc. Natl Acad. Sci. USA 111, 556–561 (2014).

    Article  Google Scholar 

  70. Hwang, K.-S., Kim, H. U., Charusanti, P., Palsson, B. Ø. & Lee, S. Y. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 32, 255–268 (2014).

    Article  Google Scholar 

  71. Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).

    Article  Google Scholar 

  72. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).

    Article  Google Scholar 

  73. Malatinszky, D., Steuer, R. & Jones, P. R. A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120. Plant Physiol. 173, 509–523 (2017).

    Article  Google Scholar 

  74. Bergkessel, M., Basta, D. W. & Newman, D. K. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat. Rev. Microbiol. 14, 549–562 (2016).

    Article  Google Scholar 

  75. Nguyen, J., Lara-Gutiérrez, J. & Stocker, R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol. Rev. 45, fuaa068 (2021).

    Article  Google Scholar 

  76. Dworkin, J. & Harwood, C. S. Metabolic reprogramming and longevity in quiescence. Annu. Rev. Microbiol. 76, 91–111 (2022).

    Article  Google Scholar 

  77. Zhang, Z., Claessen, D. & Rozen, D. E. Understanding microbial divisions of labor. Front. Microbiol. 7, 2070 (2016).

    Article  Google Scholar 

  78. Bosdriesz, E., Molenaar, D., Teusink, B. & Bruggeman, F. J. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J. 282, 2029–2044 (2015).

    Article  Google Scholar 

  79. Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).

    Article  Google Scholar 

  80. Reimers, A.-M., Knoop, H., Bockmayr, A. & Steuer, R. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. Proc. Natl Acad. Sci. USA 114, E6457–E6465 (2017).

    Article  Google Scholar 

  81. Chure, G. & Cremer, J. An optimal regulation of fluxes dictates microbial growth in and out of steady state. eLife 12, e84878 (2023).

    Article  Google Scholar 

  82. Scott, M. & Hwa, T. Shaping bacterial gene expression by physiological and proteome allocation constraints. Nat. Rev. Microbiol. 21, 327–342 (2023).

    Article  Google Scholar 

  83. Klumpp, S., Zhang, Z. & Hwa, T. Growth rate-dependent global effects on gene expression in bacteria. Cell 139, 1366–1375 (2009).

    Article  Google Scholar 

  84. Gorochowski, T. E., Avcilar-Kucukgoze, I., Bovenberg, R. A. L., Roubos, J. A. & Ignatova, Z. A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes. ACS Synth. Biol. 5, 710–720 (2016).

    Article  Google Scholar 

  85. Li, S. H.-J. et al. Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions. Nat. Microbiol. 3, 939–947 (2018).

    Article  Google Scholar 

  86. Calabrese, L. et al. Protein degradation sets the fraction of active ribosomes at vanishing growth. PLoS Comput. Biol. 18, e1010059 (2022).

    Article  Google Scholar 

  87. Pavlov, M. Y. & Ehrenberg, M. Optimal control of gene expression for fast proteome adaptation to environmental change. Proc. Natl Acad. Sci. USA 110, 20527–20532 (2013).

    Article  Google Scholar 

  88. Bruggeman, F. J., Teusink, B. & Steuer, R. Trade-offs between the instantaneous growth rate and long-term fitness: consequences for microbial physiology and predictive computational models. Bioessays 45, e2300015 (2023).

    Article  Google Scholar 

  89. Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).

    Article  Google Scholar 

  90. Balakrishnan, R., de Silva, R. T., Hwa, T. & Cremer, J. Suboptimal resource allocation in changing environments constrains response and growth in bacteria. Mol. Syst. Biol. 17, e10597 (2021).

    Article  Google Scholar 

  91. Schink, S., Ammar, C., Chang, Y.-F., Zimmer, R. & Basan, M. Analysis of proteome adaptation reveals a key role of the bacterial envelope in starvation survival. Mol. Syst. Biol. 18, e11160 (2022).

    Article  Google Scholar 

  92. Zhu, M. & Dai, X. Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift. Nat. Commun. 14, 467 (2023).

    Article  Google Scholar 

  93. Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).

    Article  Google Scholar 

  94. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    Article  Google Scholar 

  95. Millard, P., Smallbone, K. & Mendes, P. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. PLoS Comput. Biol. 13, e1005396 (2017).

    Article  Google Scholar 

  96. Baldazzi, V., Ropers, D., Gouzé, J.-L., Gedeon, T. & de Jong, H. Resource allocation accounts for the large variability of rate-yield phenotypes across bacterial strains. eLife 12, e79815 (2023).

    Article  Google Scholar 

  97. Shimizu, K. & Matsuoka, Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol. Adv. 37, 284–305 (2019).

    Article  Google Scholar 

  98. Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).

    Article  Google Scholar 

  99. Yu, R. et al. Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast. Nat. Commun. 11, 1881 (2020).

    Article  Google Scholar 

  100. Basan, M., Hui, S. & Williamson, J. R. ArcA overexpression induces fermentation and results in enhanced growth rates of E. coli. Sci. Rep. 7, 11866 (2017).

    Article  Google Scholar 

  101. Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing bacteria enter overflow metabolism? testing the membrane real estate hypothesis. Cell Syst. 5, 95–104 (2017).

    Article  Google Scholar 

  102. Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of microbial metabolism. Nat. Rev. Microbiol. 12, 327–340 (2014). This article provides an extensive review of microbial metabolic regulation and how cells actively regulate supply and demand.

    Article  Google Scholar 

  103. Litsios, A., Ortega, Á. D., Wit, E. C. & Heinemann, M. Metabolic-flux dependent regulation of microbial physiology. Curr. Opin. Microbiol. 42, 71–78 (2018).

    Article  Google Scholar 

  104. Okano, H., Hermsen, R., Kochanowski, K. & Hwa, T. Regulation underlying hierarchical and simultaneous utilization of carbon substrates by flux sensors in Escherichia coli. Nat. Microbiol. 5, 206–215 (2019).

    Article  Google Scholar 

  105. Forchhammer, K. & Selim, K. A. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol. Rev. 44, 33–53 (2020).

    Article  Google Scholar 

  106. Kochanowski, K. et al. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. Mol. Syst. Biol. 13, 903 (2017).

    Article  Google Scholar 

  107. Wang, C.-Y. et al. Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli. Nat. Commun. 12, 4929 (2021).

    Article  Google Scholar 

  108. You, C. et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500, 301–306 (2013).

    Article  Google Scholar 

  109. Towbin, B. D. et al. Optimality and sub-optimality in a bacterial growth law. Nat. Commun. 8, 14123 (2017). This article demonstrates the central role of cAMP in aligning carbon supply to demand in order to achieve optimal growth on a wide range of substrates in E. coli.

    Article  Google Scholar 

  110. Nguyen, V., Xue, P., Li, Y., Zhao, H. & Lu, T. Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae. Metab. Eng. 80, 173–183 (2023).

    Article  Google Scholar 

  111. Burnap, R. L., Hagemann, M. & Kaplan, A. Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5, 348–371 (2015).

    Article  Google Scholar 

  112. Jiang, Y.-L. et al. Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc. Natl Acad. Sci. USA 115, 403–408 (2018).

    Article  Google Scholar 

  113. Kopka, J. et al. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol. Biofuels 10, 56 (2017).

    Article  Google Scholar 

  114. Santos-Merino, M., Singh, A. K. & Ducat, D. C. in Cyanobacteria Biotechnology 1st edn, Vol. 12 (eds Nielsen, J. et al.) Ch. 6 (Wiley-VCH, 2021).

  115. Hudson, E. P. The Calvin Benson cycle in bacteria: new insights from systems biology. Semin. Cell Dev. Biol. 155, 71–83 (2024).

    Article  Google Scholar 

  116. Cordell, W. T., Avolio, G., Takors, R. & Pfleger, B. F. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol. 41, 1442–1457 (2023).

    Article  Google Scholar 

  117. Fernández-Coll, L. & Cashel, M. Possible roles for basal levels of (p)ppGpp: growth efficiency vs. surviving stress. Front. Microbiol. 11, 592718 (2020).

    Article  Google Scholar 

  118. Zhang, Y., Zborníková, E., Rejman, D. & Gerdes, K. Novel (p)ppGpp binding and metabolizing proteins of Escherichia coli. mBio 9, e02188-17 (2018).

    Article  Google Scholar 

  119. Wang, B. et al. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat. Chem. Biol. 15, 141–150 (2019).

    Article  Google Scholar 

  120. Steinchen, W., Zegarra, V. & Bange, G. (p)ppGpp: magic modulators of bacterial physiology and metabolism. Front. Microbiol. 11, 2072 (2020).

    Article  Google Scholar 

  121. Krásný, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 23, 4473–4483 (2004).

    Article  Google Scholar 

  122. Wu, C. et al. Cellular perception of growth rate and the mechanistic origin of bacterial growth law. Proc. Natl Acad. Sci. USA 119, e2201585119 (2022).

    Article  Google Scholar 

  123. Barajas, C., Huang, H.-H., Gibson, J., Sandoval, L. & Del Vecchio, D. Feedforward growth rate control mitigates gene activation burden. Nat. Commun. 13, 7054 (2022).

    Article  Google Scholar 

  124. Hood, R. D., Higgins, S. A., Flamholz, A., Nichols, R. J. & Savage, D. F. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. Proc. Natl Acad. Sci. USA 113, E4867–E4876 (2016).

    Article  Google Scholar 

  125. Puszynska, A. M. & O’Shea, E. K. ppGpp controls global gene expression in light and in darkness in S. elongatus. Cell Rep. 21, 3155–3165 (2017).

    Article  Google Scholar 

  126. Sinha, A. K., Winther, K. S., Roghanian, M. & Gerdes, K. Fatty acid starvation activates RelA by depleting lysine precursor pyruvate. Mol. Microbiol. 112, 1339–1349 (2019).

    Article  Google Scholar 

  127. Roghanian, M., Semsey, S., Løbner-Olesen, A. & Jalalvand, F. (p)ppGpp-mediated stress response induced by defects in outer membrane biogenesis and ATP production promotes survival in Escherichia coli. Sci. Rep. 9, 2934 (2019).

    Article  Google Scholar 

  128. Romand, S. et al. A guanosine tetraphosphate (ppGpp) mediated brake on photosynthesis is required for acclimation to nitrogen limitation in Arabidopsis. eLife 11, e75041 (2022).

    Article  Google Scholar 

  129. Al Mamun, A. A. M. et al. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338, 1344–1348 (2012).

    Article  Google Scholar 

  130. Shee, C., Gibson, J. L., Darrow, M. C., Gonzalez, C. & Rosenberg, S. M. Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc. Natl Acad. Sci. USA 108, 13659–13664 (2011).

    Article  Google Scholar 

  131. Pribis, J. P., Zhai, Y., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis, gambler cells, and stealth targeting antibiotic-induced evolution. mBio 13, e0107422 (2022).

    Article  Google Scholar 

  132. Voordeckers, K. et al. Ethanol exposure increases mutation rate through error-prone polymerases. Nat. Commun. 11, 3664 (2020).

    Article  Google Scholar 

  133. Liu, H. & Zhang, J. Yeast spontaneous mutation rate and spectrum vary with environment. Curr. Biol. 29, 1584–1591.e3 (2019).

    Article  Google Scholar 

  134. Fitzgerald, D. M. & Rosenberg, S. M. What is mutation? A chapter in the series: how microbes “jeopardize” the modern synthesis. PLoS Genet. 15, e1007995 (2019).

    Article  Google Scholar 

  135. Wimberly, H. et al. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4, 2115 (2013).

    Article  Google Scholar 

  136. Hofmeyr, J. S. & Cornish-Bowden, A. Regulating the cellular economy of supply and demand. FEBS Lett. 476, 47–51 (2000).

    Article  Google Scholar 

  137. Oliver, S. Metabolism: demand management in cells. Nature 418, 33–34 (2002).

    Article  Google Scholar 

  138. Noda, S. et al. Alterations of cellular physiology in Escherichia coli in response to oxidative phosphorylation impaired by defective F1-ATPase. J. Bacteriol. 188, 6869–6876 (2006).

    Article  Google Scholar 

  139. Koebmann, B. J., Westerhoff, H. V., Snoep, J. L., Nilsson, D. & Jensen, P. R. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184, 3909–3916 (2002).

    Article  Google Scholar 

  140. Boecker, S., Harder, B.-J., Kutscha, R., Pflügl, S. & Klamt, S. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Microb. Cell Factories 20, 63 (2021).

    Article  Google Scholar 

  141. Causey, T. B., Zhou, S., Shanmugam, K. T. & Ingram, L. O. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl Acad. Sci. USA 100, 825–832 (2003).

    Article  Google Scholar 

  142. Doucette, C. D., Schwab, D. J., Wingreen, N. S. & Rabinowitz, J. D. α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat. Chem. Biol. 7, 894–901 (2011).

    Article  Google Scholar 

  143. Chubukov, V. & Sauer, U. Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol. 80, 2901–2909 (2014).

    Article  Google Scholar 

  144. Zampieri, M., Hörl, M., Hotz, F., Müller, N. F. & Sauer, U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat. Commun. 10, 3354 (2019).

    Article  Google Scholar 

  145. Chubukov, V. et al. Engineering glucose metabolism of Escherichia coli under nitrogen starvation. NPJ Syst. Biol. Appl. 3, 16035 (2017).

    Article  Google Scholar 

  146. van der Hoek, S. A. & Borodina, I. Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr. Opin. Biotechnol. 66, 186–194 (2020).

    Article  Google Scholar 

  147. Michalowski, A., Siemann-Herzberg, M. & Takors, R. Escherichia coli HGT: engineered for high glucose throughput even under slowly growing or resting conditions. Metab. Eng. 40, 93–103 (2017). This article presents the first attempt to readjust the stringent response in growth-arrested E. coli to increase the substrate uptake rate.

    Article  Google Scholar 

  148. Ziegler, M., Zieringer, J. & Takors, R. Transcriptional profiling of the stringent response mutant strain E. coli SR reveals enhanced robustness to large-scale conditions. Microb. Biotechnol. 14, 993–1010 (2021).

    Article  Google Scholar 

  149. Gosse, J. L., Engel, B. J., Hui, J. C.-H., Harwood, C. S. & Flickinger, M. C. Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris. Biotechnol. Prog. 26, 907–918 (2010).

    Article  Google Scholar 

  150. McKinlay, J. B. et al. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J. Biol. Chem. 289, 1960–1970 (2014).

    Article  Google Scholar 

  151. Yin, L., Ma, H., Fones, E. M., Morris, D. R. & Harwood, C. S. ATP is a major determinant of phototrophic bacterial longevity in growth arrest. mBio 14, e0360992 (2023).

    Article  Google Scholar 

  152. Carrieri, D. et al. Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 ΔglgC, a strain incapable of glycogen storage. Microb. Biotechnol. 8, 275–280 (2015).

    Article  Google Scholar 

  153. Jackson, S. A., Eaton-Rye, J. J., Bryant, D. A., Posewitz, M. C. & Davies, F. K. Dynamics of photosynthesis in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. Appl. Environ. Microbiol. 81, 6210–6222 (2015).

    Article  Google Scholar 

  154. Shabestary, K. et al. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab. Eng. 68, 131–141 (2021).

    Article  Google Scholar 

  155. Weiss, T. L., Young, E. J. & Ducat, D. C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab. Eng. 44, 236–245 (2017).

    Article  Google Scholar 

  156. Moore, K. A. et al. Mechanical regulation of photosynthesis in cyanobacteria. Nat. Microbiol. 5, 757–767 (2020).

    Article  Google Scholar 

  157. Tóth, G. S. et al. Photosynthetically produced sucrose by immobilized Synechocystis sp. PCC 6803 drives biotransformation in E. coli. Biotechnol. Biofuels Bioprod. 15, 146 (2022).

    Article  Google Scholar 

  158. Singh, A. K., Santos-Merino, M., Sakkos, J. K., Walker, B. J. & Ducat, D. C. Rubisco regulation in response to altered carbon status in the cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiol. 189, 874–888 (2022).

    Article  Google Scholar 

  159. Lehning, C. E., Siedler, S., Ellabaan, M. M. H., & Sommer, M. O. A. Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor. Metab. Eng. 42, 194–202 (2017).

    Article  Google Scholar 

  160. Boer, V. M., Crutchfield, C. A., Bradley, P. H., Botstein, D. & Rabinowitz, J. D. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol. Biol. Cell 21, 198–211 (2010).

    Article  Google Scholar 

  161. Wu, G. et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34, 652–664 (2016).

    Article  Google Scholar 

  162. Borkowski, O., Ceroni, F., Stan, G.-B. & Ellis, T. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol. 33, 123–130 (2016).

    Article  Google Scholar 

  163. Farré, J.-C. & Subramani, S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol. 17, 537–552 (2016).

    Article  Google Scholar 

  164. Mahmoud, S. A. & Chien, P. Regulated proteolysis in bacteria. Annu. Rev. Biochem. 87, 677–696 (2018).

    Article  Google Scholar 

  165. Pandit, A. V., Srinivasan, S. & Mahadevan, R. Redesigning metabolism based on orthogonality principles. Nat. Commun. 8, 15188 (2017). This article proposes a computational strategy based on orthogonality principles to minimize crosstalk between host metabolism and production pathways.

    Article  Google Scholar 

  166. Asplund-Samuelsson, J., Janasch, M. & Hudson, E. P. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential. Metab. Eng. 45, 223–236 (2018).

    Article  Google Scholar 

  167. Yang, X. et al. Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab. Eng. 56, 142–153 (2019).

    Article  Google Scholar 

  168. Wang, L., Ng, C. Y., Dash, S. & Maranas, C. D. Exploring the combinatorial space of complete pathways to chemicals. Biochem. Soc. Trans. 46, 513–522 (2018).

    Article  Google Scholar 

  169. Lin, G.-M., Warden-Rothman, R. & Voigt, C. A. Retrosynthetic design of metabolic pathways to chemicals not found in nature. Curr. Opin. Syst. Biol. 14, 82–107 (2019).

    Article  Google Scholar 

  170. Vayena, E. et al. A workflow for annotating the knowledge gaps in metabolic reconstructions using known and hypothetical reactions. Proc. Natl Acad. Sci. USA 119, e2211197119 (2022).

    Article  Google Scholar 

  171. Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704–3709 (2015).

    Article  Google Scholar 

  172. Scheffen, M. et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat. Catal. 4, 105–115 (2021).

    Article  Google Scholar 

  173. Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction. Science 329, 309–313 (2010).

    Article  Google Scholar 

  174. Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).

    Article  Google Scholar 

  175. Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).

    Article  Google Scholar 

  176. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article  Google Scholar 

  177. Gelsinger, D. R. et al. Bacterial genome engineering using CRISPR-associated transposases. Nat. Protoc. 19, 752–790 (2024).

    Article  Google Scholar 

  178. Tickman, B. I. et al. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Syst. 13, 215–229.e8 (2022).

    Article  Google Scholar 

  179. Shaw, W. M. et al. Inducible expression of large gRNA arrays for multiplexed CRISPRai applications. Nat. Commun. 13, 4984 (2022).

    Article  Google Scholar 

  180. Santos-Moreno, J., Tasiudi, E., Stelling, J. & Schaerli, Y. Multistable and dynamic CRISPRi-based synthetic circuits. Nat. Commun. 11, 2746 (2020).

    Article  Google Scholar 

  181. de Jong, H., Geiselmann, J. & Ropers, D. Resource reallocation in bacteria by reengineering the gene expression machinery. Trends Microbiol. 25, 480–493 (2017).

    Article  Google Scholar 

  182. Shopera, T., He, L., Oyetunde, T., Tang, Y. J. & Moon, T. S. Decoupling resource-coupled gene expression in living cells. ACS Synth. Biol. 6, 1596–1604 (2017).

    Article  Google Scholar 

  183. Qian, Y., Huang, H.-H., Jiménez, J. I. & Del Vecchio, D. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6, 1263–1272 (2017).

    Article  Google Scholar 

  184. McBride, C. D., Grunberg, T. W. & Del Vecchio, D. Design of genetic circuits that are robust to resource competition. Curr. Opin. Syst. Biol. 28, 100357 (2021).

    Article  Google Scholar 

  185. Segall-Shapiro, T. H., Meyer, A. J., Ellington, A. D., Sontag, E. D. & Voigt, C. A. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Mol. Syst. Biol. 10, 742 (2014).

    Article  Google Scholar 

  186. Darlington, A. P. S., Kim, J., Jiménez, J. I. & Bates, D. G. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat. Commun. 9, 695 (2018).

    Article  Google Scholar 

  187. Aleksashin, N. A. et al. A fully orthogonal system for protein synthesis in bacterial cells. Nat. Commun. 11, 1858 (2020).

    Article  Google Scholar 

  188. Caringella, G., Bandiera, L. & Menolascina, F. Recent advances, opportunities and challenges in cybergenetic identification and control of biomolecular networks. Curr. Opin. Biotechnol. 80, 102893 (2023).

    Article  Google Scholar 

  189. Bertaux, F., Ruess, J. & Batt, G. External control of microbial populations for bioproduction: a modeling and optimization viewpoint. Curr. Opin. Syst. Biol. 28, 100394 (2021).

    Article  Google Scholar 

  190. Ceroni, F. et al. Burden-driven feedback control of gene expression. Nat. Methods 15, 387–393 (2018).

    Article  Google Scholar 

  191. Furey, T. S. ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).

    Article  Google Scholar 

  192. Stormo, G. D. & Zhao, Y. Determining the specificity of protein–DNA interactions. Nat. Rev. Genet. 11, 751–760 (2010).

    Article  Google Scholar 

  193. Christodoulou, D. et al. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Syst. 6, 569–578.e7 (2018).

    Article  Google Scholar 

  194. Sander, T. et al. Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. Cell Syst. 8, 66–75.e8 (2019).

    Article  Google Scholar 

  195. Hackett, S. R. et al. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 354, aaf2786 (2016).

    Article  Google Scholar 

  196. St John, P. C., Strutz, J., Broadbelt, L. J., Tyo, K. E. J. & Bomble, Y. J. Bayesian inference of metabolic kinetics from genome-scale multiomics data. PLoS Comput. Biol. 15, e1007424 (2019).

    Article  Google Scholar 

  197. Hackett, S. R., Baltz, E. A., Coram, M. & Wranik, B. J. Learning causal networks using inducible transcription factors and transcriptome‐wide time series. Mol. Syst. Biol. 16, e9174 (2020).

    Article  Google Scholar 

  198. Lempp, M. et al. Systematic identification of metabolites controlling gene expression in E. coli. Nat. Commun. 10, 4463 (2019).

    Article  Google Scholar 

  199. Donati, S. et al. Multi-omics analysis of CRISPRi-knockdowns identifies mechanisms that buffer decreases of enzymes in E. coli metabolism. Cell Syst. 12, 56–67.e6 (2021).

    Article  Google Scholar 

  200. Piazza, I. et al. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172, 358–372.e23 (2018).

    Article  Google Scholar 

  201. Mateus, A. et al. Thermal proteome profiling for interrogating protein interactions. Mol. Syst. Biol. 16, e9232 (2020).

    Article  Google Scholar 

  202. Gaetani, M. et al. Proteome integral solubility alteration: a high-throughput proteomics assay for target deconvolution. J. Proteome Res. 18, 4027–4037 (2019).

    Article  Google Scholar 

  203. Veyel, D. et al. PROMIS, global analysis of PROtein–metabolite interactions using size separation in Arabidopsis thaliana. J. Biol. Chem. 293, 12440–12453 (2018).

    Article  Google Scholar 

  204. Sridharan, S. et al. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nat. Commun. 10, 1155 (2019).

    Article  Google Scholar 

  205. Sporre, E. et al. Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation. Commun. Biol. 6, 947 (2023).

    Article  Google Scholar 

  206. Cameron, J. C. & Pakrasi, H. B. Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 154, 1672–1685 (2010).

    Article  Google Scholar 

  207. Yang, L. et al. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc. Natl Acad. Sci. USA 116, 14368–14373 (2019).

    Article  Google Scholar 

  208. Nyström, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24, 1311–1317 (2005).

    Article  Google Scholar 

  209. Lerma-Ortiz, C. et al. Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites. Biochem. Soc. Trans. 44, 961–971 (2016).

    Article  Google Scholar 

  210. Bathe, U. et al. The moderately (D)efficient enzyme: catalysis-related damage in vivo and its repair. Biochemistry 60, 3555–3565 (2021).

    Article  Google Scholar 

  211. Hanson, A. D. et al. The number of catalytic cycles in an enzyme’s lifetime and why it matters to metabolic engineering. Proc. Natl Acad. Sci. USA 118, e2023348118 (2021). This article identifies failure-prone enzymes that show low values for catalytic cycles per lifetime across organisms.

    Article  Google Scholar 

  212. Lahtvee, P.-J., Seiman, A., Arike, L., Adamberg, K. & Vilu, R. Protein turnover forms one of the highest maintenance costs in Lactococcus lactis. Microbiology 160, 1501–1512 (2014).

    Article  Google Scholar 

  213. Imlay, J. A., Sethu, R. & Rohaun, S. K. Evolutionary adaptations that enable enzymes to tolerate oxidative stress. Free Radic. Biol. Med. 140, 4–13 (2019).

    Article  Google Scholar 

  214. Chang, R. L. et al. Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation-induced damage. EMBO J. 39, e104523 (2020).

    Article  Google Scholar 

  215. Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 4348 (2022).

    Article  Google Scholar 

  216. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational protein engineering with sequence-based deep representation learning. Nat. Methods 16, 1315–1322 (2019).

    Article  Google Scholar 

  217. Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Article  Google Scholar 

  218. Sumida, K. H. et al. Improving protein expression, stability, and function with ProteinMPNN. J. Am. Chem. Soc. 146, 2054–2061 (2024).

    Article  Google Scholar 

  219. Jabarivelisdeh, B. & Waldherr, S. Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming. Biotechnol. Bioeng. 115, 1829–1841 (2018).

    Article  Google Scholar 

  220. Venayak, N., von Kamp, A., Klamt, S. & Mahadevan, R. MoVE identifies metabolic valves to switch between phenotypic states. Nat. Commun. 9, 5332 (2018).

    Article  Google Scholar 

  221. Schneider, P., von Kamp, A. & Klamt, S. An extended and generalized framework for the calculation of metabolic intervention strategies based on minimal cut sets. PLoS Comput. Biol. 16, e1008110 (2020).

    Article  Google Scholar 

  222. Sahoo, K. K., Datta, S., Goswami, G. & Das, D. Two-stage integrated process for bio-methanol production coupled with methane and carbon dioxide sequestration: kinetic modelling and experimental validation. J. Environ. Manage. 301, 113927 (2022).

    Article  Google Scholar 

  223. Bauer, J. & Klamt, S. OptMSP: a toolbox for designing optimal multi-stage (bio)processes. J. Biotechnol. 383, 94–102 (2024).

    Article  Google Scholar 

  224. Lawson, C. E. et al. Machine learning for metabolic engineering: a review. Metab. Eng. 63, 34–60 (2021).

    Article  Google Scholar 

  225. Li, F. et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat. Catal. 5, 662–672 (2022).

    Article  Google Scholar 

  226. Choudhury, S. et al. Reconstructing kinetic models for dynamical studies of metabolism using generative adversarial networks. Nat. Mach. Intell. 4, 710–719 (2022).

    Article  Google Scholar 

  227. Xu, Z., Wu, J., Song, Y. S. & Mahadevan, R. Enzyme activity prediction of sequence variants on novel substrates using improved substrate encodings and convolutional pooling. Proc. Mach. Learn. Res. 165, 78–87 (2022).

    Google Scholar 

  228. Gherman, I. M. et al. Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Comput. Biol. 19, e1010988 (2023).

    Article  Google Scholar 

  229. Sapoval, N. et al. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun. 13, 1728 (2022).

    Article  Google Scholar 

  230. Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 2040 (2019).

    Article  Google Scholar 

  231. Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891.e14 (2023).

    Article  Google Scholar 

  232. Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 17, 629–635 (2020).

    Article  Google Scholar 

  233. Yao, D. et al. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01964-9 (2023).

    Article  Google Scholar 

  234. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article  Google Scholar 

  235. Suzuki, E. & Ollis, D. F. Enhanced antibody production at slowed growth rates: experimental demonstration and a simple structured model. Biotechnol. Prog. 6, 231–236 (1990).

    Article  Google Scholar 

  236. Ahn-Horst, T. A., Mille, L. S., Sun, G., Morrison, J. H. & Covert, M. W. An expanded whole-cell model of E. coli links cellular physiology with mechanisms of growth rate control. NPJ Syst. Biol. Appl. 8, 30 (2022).

    Article  Google Scholar 

  237. Tokuyama, K. et al. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli. Metab. Eng. 52, 215–223 (2019).

    Article  Google Scholar 

  238. Xia, J. et al. Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation. Nat. Commun. 13, 2819 (2022).

    Article  Google Scholar 

  239. Izard, J. et al. A synthetic growth switch based on controlled expression of RNA polymerase. Mol. Syst. Biol. 11, 840 (2015).

    Article  Google Scholar 

  240. Masuda, A., Toya, Y. & Shimizu, H. Metabolic impact of nutrient starvation in mevalonate-producing Escherichia coli. Bioresour. Technol. 245, 1634–1640 (2017).

    Article  Google Scholar 

  241. Nishio, Y., Usuda, Y., Matsui, K. & Kurata, H. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol. Syst. Biol. 4, 160 (2008).

    Article  Google Scholar 

  242. Koebmann, B. J., Solem, C., Pedersen, M. B., Nilsson, D. & Jensen, P. R. Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl. Environ. Microbiol. 68, 4274–4282 (2002).

    Article  Google Scholar 

  243. Zahoor, A., Messerschmidt, K., Boecker, S. & Klamt, S. ATPase-based implementation of enforced ATP wasting in Saccharomyces cerevisiae for improved ethanol production. Biotechnol. Biofuels 13, 185 (2020).

    Article  Google Scholar 

  244. Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

    Article  Google Scholar 

  245. Maharjan, R. & Ferenci, T. Mutational signatures indicative of environmental stress in bacteria. Mol. Biol. Evol. 32, 380–391 (2015).

    Article  Google Scholar 

  246. Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).

    Article  Google Scholar 

  247. Wegner, S. A., Barocio-Galindo, R. M. & Avalos, J. L. The bright frontiers of microbial metabolic optogenetics. Curr. Opin. Chem. Biol. 71, 102207 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.S. and E.P.H. prepared the outline with input from all authors. K.S., S.K. and E.P.H. drafted the manuscript with input from all authors. All authors contributed text, and edited and reviewed the final manuscript.

Corresponding author

Correspondence to Elton P. Hudson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Ralf Takors and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabestary, K., Klamt, S., Link, H. et al. Design of microbial catalysts for two-stage processes. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00225-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00225-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research