Abstract
Microbial catalysts must partition incoming substrate between the synthesis of biomass and the synthesis of a desired product. Although biomass synthesis generates more catalyst and therefore potentially higher volumetric productivities, the synthesis of product increases specific production rates and product yields. Two-stage bioprocesses can accommodate this tradeoff through temporal separation of the growth and production phases. The biocatalyst first grows to optimal density; it is then switched to a growth-arrested state during which the product is synthesized. However, a substantial reduction in metabolic activity is often observed during cellular growth arrest, even in the presence of sufficient substrate. An ultimate bioengineering goal, therefore, is to create growth-arrested states that retain high metabolic activity. Achieving this goal brings the metabolic engineer to the intersection of microbial physiology, synthetic biology and biochemistry. In this Review, we describe various aspects of the design of microbial catalysts for two-stage bioprocesses for metabolite production, including synthetic biology tools to arrest cell growth using external or internal cues, and metabolic engineering tools to minimize interference from the native metabolic network and enhance substrate uptake and conversion. We highlight recent systems biology studies of nutrient-limited heterotrophs and phototrophs and conclude that the reduction in substrate uptake by cells in growth arrest is the consequence of reduced energy demand as well as imbalances in regulatory metabolites that typically arise during nutrient limitation. On the basis of these studies, we propose strategies for increasing metabolic activity in growth-arrested cells.
Key points
-
Microbial catalysts must balance production with growth and other essential functions.
-
The theoretically optimal solution to maximizing production over a finite time interval is a two-stage process with a growth phase followed by a production phase.
-
Tools from synthetic biology enable efficient and dynamic switching to a metabolic mode with limited growth and enhanced production.
-
A major drawback of the growth-arrested state is a commonly observed decrease in metabolic activity and substrate uptake.
-
The non-growing state is generally poorly understood in quantitative biology.
-
Advances in high-throughput phenotyping and computation-based tools offer new avenues to understand metabolic activity decline and increase biocatalyst performances and stability over time.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
MohammadiPeyhani, H., Hafner, J., Sveshnikova, A., Viterbo, V. & Hatzimanikatis, V. Expanding biochemical knowledge and illuminating metabolic dark matter with ATLASx. Nat. Commun. 13, 1560 (2022).
Kumar, A., Wang, L., Ng, C. Y. & Maranas, C. D. Pathway design using de novo steps through uncharted biochemical spaces. Nat. Commun. 9, 184 (2018).
Delépine, B., Duigou, T., Carbonell, P. & Faulon, J.-L. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).
Nielsen, J., Tillegreen, C. B. & Petranovic, D. Innovation trends in industrial biotechnology. Trends Biotechnol. 40, 1160–1172 (2022).
Montaño López, J., Duran, L. & Avalos, J. L. Physiological limitations and opportunities in microbial metabolic engineering. Nat. Rev. Microbiol. 20, 35–48 (2022).
Klamt, S. et al. From elementary flux modes to elementary flux vectors: metabolic pathway analysis with arbitrary linear flux constraints. PLoS Comput. Biol. 13, e1005409 (2017).
Raj, K., Venayak, N. & Mahadevan, R. Novel two-stage processes for optimal chemical production in microbes. Metab. Eng. 62, 186–197 (2020).
Rugbjerg, P. & Sommer, M. O. A. Overcoming genetic heterogeneity in industrial fermentations. Nat. Biotechnol. 37, 869–876 (2019).
Du, W. et al. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth. Biotechnol. Biofuels 11, 38 (2018).
Alter, T. B. & Ebert, B. E. Determination of growth-coupling strategies and their underlying principles. BMC Bioinform. 20, 447 (2019).
Jouhten, P. et al. Predictive evolution of metabolic phenotypes using model-designed environments. Mol. Syst. Biol. 18, e10980 (2022).
Schneider, P., Mahadevan, R. & Klamt, S. Systematizing the different notions of growth-coupled product synthesis and a single framework for computing corresponding strain designs. Biotechnol. J. 16, e2100236 (2021).
Pereira, F. et al. Model-guided development of an evolutionarily stable yeast chassis. Mol. Syst. Biol. 17, e10253 (2021).
St John, P. C., Crowley, M. F. & Bomble, Y. J. Efficient estimation of the maximum metabolic productivity of batch systems. Biotechnol. Biofuels 10, 28 (2017). This article demonstrates that nearly optimal yields and productivities can be achieved with two-stage processes during batch fermentation.
Burg, J. M. et al. Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations. Curr. Opin. Chem. Eng. 14, 121–136 (2016). This study shows that growth-arrested biological catalysts have a better techno-economical potential for complex chemical conversions than chemical catalysts.
Ye, Z. et al. Two-stage dynamic deregulation of metabolism improves process robustness & scalability in engineered E. coli. Metab. Eng. 68, 106–118 (2021). This article is the first to show the scale-up potential of two-stage processes against traditional one-stage processes.
Yegorov, I., Mairet, F., de Jong, H. & Gouzé, J.-L. Optimal control of bacterial growth for the maximization of metabolite production. J. Math. Biol. 78, 985–1032 (2019).
Hartline, C. J., Schmitz, A. C., Han, Y. & Zhang, F. Dynamic control in metabolic engineering: theories, tools, and applications. Metab. Eng. 63, 126–140 (2021).
Boecker, S. et al. Deciphering the physiological response of Escherichia coli under high ATP demand. Mol. Syst. Biol. 17, e10504 (2021). In this article, increasing ATP turnover via overexpression of the F1-ATPase in growth-arrested E. coli cells leads to a ninefold increase in substrate uptake rate.
Klamt, S., Mahadevan, R. & Hädicke, O. When do two-stage processes outperform one-stage processes? Biotechnol. J. https://doi.org/10.1002/biot.201700539 (2018).
de Carvalho, C. C. C. R. Whole cell biocatalysts: essential workers from Nature to the industry. Microb. Biotechnol. 10, 250–263 (2017).
Mitra, R., Xu, T., Chen, G.-Q., Xiang, H. & Han, J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb. Biotechnol. 15, 1446–1470 (2022).
Nygaard, D., Yashchuk, O., Noseda, D. G., Araoz, B. & Hermida, É. B. Improved fermentation strategies in a bioreactor for enhancing poly(3-hydroxybutyrate) (PHB) production by wild type Cupriavidus necator from fructose. Heliyon 7, e05979 (2021).
Rajpurohit, H. & Eiteman, M. A. Nutrient-limited operational strategies for the microbial production of biochemicals. Microorganisms 10, 2226 (2022).
Rittershaus, E. S. C., Baek, S.-H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13, 643–651 (2013).
Klosinska, M. M., Crutchfield, C. A., Bradley, P. H., Rabinowitz, J. D. & Broach, J. R. Yeast cells can access distinct quiescent states. Genes Dev. 25, 336–349 (2011).
Spät, P., Klotz, A., Rexroth, S., Maček, B. & Forchhammer, K. Chlorosis as a developmental program in cyanobacteria: the proteomic fundament for survival and awakening. Mol. Cell. Proteom. 17, 1650–1669 (2018).
Landberg, J., Wright, N. R., Wulff, T., Herrgård, M. J. & Nielsen, A. T. CRISPR interference of nucleotide biosynthesis improves production of a single-domain antibody in Escherichia coli. Biotechnol. Bioeng. 117, 3835–3848 (2020).
Kasari, M., Kasari, V., Kärmas, M. & Jõers, A. Decoupling growth and production by removing the origin of replication from a bacterial chromosome. ACS Synth. Biol. 11, 2610–2622 (2022).
Ni, C., Dinh, C. V. & Prather, K. L. J. Dynamic control of metabolism. Annu. Rev. Chem. Biomol. Eng. 12, 519–541 (2021).
Tan, S. Z., Reisch, C. R. & Prather, K. L. J. A robust CRISPR interference gene repression system in Pseudomonas. J. Bacteriol. 200, e00575-17 (2018).
Reis, A. C. et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat. Biotechnol. 37, 1294–1301 (2019).
Li, S. et al. Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab. Eng. 38, 274–284 (2016).
Shabestary, K. et al. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria. ACS Synth. Biol. 7, 1669–1675 (2018).
Banerjee, D. et al. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat. Commun. 11, 5385 (2020).
Tian, J. et al. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Res. 48, 8188–8202 (2020).
Li, S. et al. Genome-wide CRISPRi-based identification of targets for decoupling growth from production. ACS Synth. Biol. 9, 1030–1040 (2020).
Yao, L. et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat. Commun. 11, 1666 (2020).
Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022).
Miao, R., Jahn, M., Shabestary, K., Peltier, G. & Hudson, E. P. CRISPR interference screens reveal growth-robustness tradeoffs in Synechocystis sp. PCC 6803 across growth conditions. Plant Cell 35, 3937–3956 (2023).
Cui, L. et al. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9, 1912 (2018).
Rostain, W. et al. Cas9 off-target binding to the promoter of bacterial genes leads to silencing and toxicity. Nucleic Acids Res. 51, 3485–3496 (2023).
Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).
Zhou, L.-B. & Zeng, A.-P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth. Biol. 4, 729–734 (2015).
Abramson, B. W., Lensmire, J., Lin, Y. T., Jennings, E., & Ducat, D. C. Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-secreting cyanobacterium. Algal Res. 33, 248–255 (2018).
Townshend, B., Xiang, J. S., Manzanarez, G., Hayden, E. J. & Smolke, C. D. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat. Commun. 12, 1437 (2021).
Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).
Kim, J. et al. De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat. Chem. Biol. 15, 1173–1182 (2019).
Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O’Shea, E. K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl Acad. Sci. USA 103, 13004–13009 (2006).
Ohira, M. J., Hendrickson, D. G., Scott McIsaac, R. & Rhind, N. An estradiol-inducible promoter enables fast, graduated control of gene expression in fission yeast. Yeast 34, 323–334 (2017).
Gupta, M. et al. Global protein-turnover quantification in Escherichia coli reveals cytoplasmic recycling under nitrogen limitation. Preprint at bioRxiv https://doi.org/10.1101/2022.08.01.502339 (2022).
Martin-Perez, M. & Villén, J. Determinants and regulation of protein turnover in yeast. Cell Syst. 5, 283–294.e5 (2017).
Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).
Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).
Lu, Z., Peng, B., Ebert, B. E., Dumsday, G. & Vickers, C. E. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat. Commun. 12, 1051 (2021).
McGinness, K. E., Baker, T. A. & Sauer, R. T. Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).
Cronan, G. E. & Kuzminov, A. Degron-controlled protein degradation in Escherichia coli: new approaches and parameters. ACS Synth. Biol. 13, 669–682 (2024).
Fernandez-Rodriguez, J. & Voigt, C. A. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res. 44, 6493–6502 (2016).
Gao, C. et al. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat. Commun. 10, 3751 (2019).
Durante-Rodríguez, G., de Lorenzo, V. & Nikel, P. I. A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli. ACS Synth. Biol. 7, 2686–2697 (2018).
Brockman, I. M. & Prather, K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28, 104–113 (2015).
Li, S. et al. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab. Eng. 64, 26–40 (2021).
Gao, C. et al. Engineering a CRISPRi circuit for autonomous control of metabolic flux in Escherichia coli. ACS Synth. Biol. 10, 2661–2671 (2021).
Schramm, T. et al. High-throughput enrichment of temperature-sensitive argininosuccinate synthetase for two-stage citrulline production in E. coli. Metab. Eng. 60, 14–24 (2020). This article presents an elegant approach to inducing growth arrest more efficiently by using a temperature-sensitive variant of the essential gene argG in E. coli.
Schramm, T. et al. Mapping temperature-sensitive mutations at a genome scale to engineer growth switches in Escherichia coli. Mol. Syst. Biol. 19, e11596 (2023).
Link, H., Fuhrer, T., Gerosa, L., Zamboni, N. & Sauer, U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12, 1091–1097 (2015).
Gurvich, Y., Leshkowitz, D. & Barkai, N. Dual role of starvation signaling in promoting growth and recovery. PLoS Biol. 15, e2002039 (2017).
Kaplan, Y. et al. Observation of universal ageing dynamics in antibiotic persistence. Nature 600, 290–294 (2021).
Gefen, O., Fridman, O., Ronin, I. & Balaban, N. Q. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc. Natl Acad. Sci. USA 111, 556–561 (2014).
Hwang, K.-S., Kim, H. U., Charusanti, P., Palsson, B. Ø. & Lee, S. Y. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 32, 255–268 (2014).
Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).
Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).
Malatinszky, D., Steuer, R. & Jones, P. R. A comprehensively curated genome-scale two-cell model for the heterocystous cyanobacterium Anabaena sp. PCC 7120. Plant Physiol. 173, 509–523 (2017).
Bergkessel, M., Basta, D. W. & Newman, D. K. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat. Rev. Microbiol. 14, 549–562 (2016).
Nguyen, J., Lara-Gutiérrez, J. & Stocker, R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol. Rev. 45, fuaa068 (2021).
Dworkin, J. & Harwood, C. S. Metabolic reprogramming and longevity in quiescence. Annu. Rev. Microbiol. 76, 91–111 (2022).
Zhang, Z., Claessen, D. & Rozen, D. E. Understanding microbial divisions of labor. Front. Microbiol. 7, 2070 (2016).
Bosdriesz, E., Molenaar, D., Teusink, B. & Bruggeman, F. J. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J. 282, 2029–2044 (2015).
Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).
Reimers, A.-M., Knoop, H., Bockmayr, A. & Steuer, R. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. Proc. Natl Acad. Sci. USA 114, E6457–E6465 (2017).
Chure, G. & Cremer, J. An optimal regulation of fluxes dictates microbial growth in and out of steady state. eLife 12, e84878 (2023).
Scott, M. & Hwa, T. Shaping bacterial gene expression by physiological and proteome allocation constraints. Nat. Rev. Microbiol. 21, 327–342 (2023).
Klumpp, S., Zhang, Z. & Hwa, T. Growth rate-dependent global effects on gene expression in bacteria. Cell 139, 1366–1375 (2009).
Gorochowski, T. E., Avcilar-Kucukgoze, I., Bovenberg, R. A. L., Roubos, J. A. & Ignatova, Z. A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes. ACS Synth. Biol. 5, 710–720 (2016).
Li, S. H.-J. et al. Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions. Nat. Microbiol. 3, 939–947 (2018).
Calabrese, L. et al. Protein degradation sets the fraction of active ribosomes at vanishing growth. PLoS Comput. Biol. 18, e1010059 (2022).
Pavlov, M. Y. & Ehrenberg, M. Optimal control of gene expression for fast proteome adaptation to environmental change. Proc. Natl Acad. Sci. USA 110, 20527–20532 (2013).
Bruggeman, F. J., Teusink, B. & Steuer, R. Trade-offs between the instantaneous growth rate and long-term fitness: consequences for microbial physiology and predictive computational models. Bioessays 45, e2300015 (2023).
Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).
Balakrishnan, R., de Silva, R. T., Hwa, T. & Cremer, J. Suboptimal resource allocation in changing environments constrains response and growth in bacteria. Mol. Syst. Biol. 17, e10597 (2021).
Schink, S., Ammar, C., Chang, Y.-F., Zimmer, R. & Basan, M. Analysis of proteome adaptation reveals a key role of the bacterial envelope in starvation survival. Mol. Syst. Biol. 18, e11160 (2022).
Zhu, M. & Dai, X. Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift. Nat. Commun. 14, 467 (2023).
Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).
Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).
Millard, P., Smallbone, K. & Mendes, P. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. PLoS Comput. Biol. 13, e1005396 (2017).
Baldazzi, V., Ropers, D., Gouzé, J.-L., Gedeon, T. & de Jong, H. Resource allocation accounts for the large variability of rate-yield phenotypes across bacterial strains. eLife 12, e79815 (2023).
Shimizu, K. & Matsuoka, Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol. Adv. 37, 284–305 (2019).
Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).
Yu, R. et al. Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast. Nat. Commun. 11, 1881 (2020).
Basan, M., Hui, S. & Williamson, J. R. ArcA overexpression induces fermentation and results in enhanced growth rates of E. coli. Sci. Rep. 7, 11866 (2017).
Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing bacteria enter overflow metabolism? testing the membrane real estate hypothesis. Cell Syst. 5, 95–104 (2017).
Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of microbial metabolism. Nat. Rev. Microbiol. 12, 327–340 (2014). This article provides an extensive review of microbial metabolic regulation and how cells actively regulate supply and demand.
Litsios, A., Ortega, Á. D., Wit, E. C. & Heinemann, M. Metabolic-flux dependent regulation of microbial physiology. Curr. Opin. Microbiol. 42, 71–78 (2018).
Okano, H., Hermsen, R., Kochanowski, K. & Hwa, T. Regulation underlying hierarchical and simultaneous utilization of carbon substrates by flux sensors in Escherichia coli. Nat. Microbiol. 5, 206–215 (2019).
Forchhammer, K. & Selim, K. A. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol. Rev. 44, 33–53 (2020).
Kochanowski, K. et al. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. Mol. Syst. Biol. 13, 903 (2017).
Wang, C.-Y. et al. Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli. Nat. Commun. 12, 4929 (2021).
You, C. et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500, 301–306 (2013).
Towbin, B. D. et al. Optimality and sub-optimality in a bacterial growth law. Nat. Commun. 8, 14123 (2017). This article demonstrates the central role of cAMP in aligning carbon supply to demand in order to achieve optimal growth on a wide range of substrates in E. coli.
Nguyen, V., Xue, P., Li, Y., Zhao, H. & Lu, T. Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae. Metab. Eng. 80, 173–183 (2023).
Burnap, R. L., Hagemann, M. & Kaplan, A. Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5, 348–371 (2015).
Jiang, Y.-L. et al. Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc. Natl Acad. Sci. USA 115, 403–408 (2018).
Kopka, J. et al. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol. Biofuels 10, 56 (2017).
Santos-Merino, M., Singh, A. K. & Ducat, D. C. in Cyanobacteria Biotechnology 1st edn, Vol. 12 (eds Nielsen, J. et al.) Ch. 6 (Wiley-VCH, 2021).
Hudson, E. P. The Calvin Benson cycle in bacteria: new insights from systems biology. Semin. Cell Dev. Biol. 155, 71–83 (2024).
Cordell, W. T., Avolio, G., Takors, R. & Pfleger, B. F. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol. 41, 1442–1457 (2023).
Fernández-Coll, L. & Cashel, M. Possible roles for basal levels of (p)ppGpp: growth efficiency vs. surviving stress. Front. Microbiol. 11, 592718 (2020).
Zhang, Y., Zborníková, E., Rejman, D. & Gerdes, K. Novel (p)ppGpp binding and metabolizing proteins of Escherichia coli. mBio 9, e02188-17 (2018).
Wang, B. et al. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat. Chem. Biol. 15, 141–150 (2019).
Steinchen, W., Zegarra, V. & Bange, G. (p)ppGpp: magic modulators of bacterial physiology and metabolism. Front. Microbiol. 11, 2072 (2020).
Krásný, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 23, 4473–4483 (2004).
Wu, C. et al. Cellular perception of growth rate and the mechanistic origin of bacterial growth law. Proc. Natl Acad. Sci. USA 119, e2201585119 (2022).
Barajas, C., Huang, H.-H., Gibson, J., Sandoval, L. & Del Vecchio, D. Feedforward growth rate control mitigates gene activation burden. Nat. Commun. 13, 7054 (2022).
Hood, R. D., Higgins, S. A., Flamholz, A., Nichols, R. J. & Savage, D. F. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. Proc. Natl Acad. Sci. USA 113, E4867–E4876 (2016).
Puszynska, A. M. & O’Shea, E. K. ppGpp controls global gene expression in light and in darkness in S. elongatus. Cell Rep. 21, 3155–3165 (2017).
Sinha, A. K., Winther, K. S., Roghanian, M. & Gerdes, K. Fatty acid starvation activates RelA by depleting lysine precursor pyruvate. Mol. Microbiol. 112, 1339–1349 (2019).
Roghanian, M., Semsey, S., Løbner-Olesen, A. & Jalalvand, F. (p)ppGpp-mediated stress response induced by defects in outer membrane biogenesis and ATP production promotes survival in Escherichia coli. Sci. Rep. 9, 2934 (2019).
Romand, S. et al. A guanosine tetraphosphate (ppGpp) mediated brake on photosynthesis is required for acclimation to nitrogen limitation in Arabidopsis. eLife 11, e75041 (2022).
Al Mamun, A. A. M. et al. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338, 1344–1348 (2012).
Shee, C., Gibson, J. L., Darrow, M. C., Gonzalez, C. & Rosenberg, S. M. Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc. Natl Acad. Sci. USA 108, 13659–13664 (2011).
Pribis, J. P., Zhai, Y., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis, gambler cells, and stealth targeting antibiotic-induced evolution. mBio 13, e0107422 (2022).
Voordeckers, K. et al. Ethanol exposure increases mutation rate through error-prone polymerases. Nat. Commun. 11, 3664 (2020).
Liu, H. & Zhang, J. Yeast spontaneous mutation rate and spectrum vary with environment. Curr. Biol. 29, 1584–1591.e3 (2019).
Fitzgerald, D. M. & Rosenberg, S. M. What is mutation? A chapter in the series: how microbes “jeopardize” the modern synthesis. PLoS Genet. 15, e1007995 (2019).
Wimberly, H. et al. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4, 2115 (2013).
Hofmeyr, J. S. & Cornish-Bowden, A. Regulating the cellular economy of supply and demand. FEBS Lett. 476, 47–51 (2000).
Oliver, S. Metabolism: demand management in cells. Nature 418, 33–34 (2002).
Noda, S. et al. Alterations of cellular physiology in Escherichia coli in response to oxidative phosphorylation impaired by defective F1-ATPase. J. Bacteriol. 188, 6869–6876 (2006).
Koebmann, B. J., Westerhoff, H. V., Snoep, J. L., Nilsson, D. & Jensen, P. R. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184, 3909–3916 (2002).
Boecker, S., Harder, B.-J., Kutscha, R., Pflügl, S. & Klamt, S. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Microb. Cell Factories 20, 63 (2021).
Causey, T. B., Zhou, S., Shanmugam, K. T. & Ingram, L. O. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl Acad. Sci. USA 100, 825–832 (2003).
Doucette, C. D., Schwab, D. J., Wingreen, N. S. & Rabinowitz, J. D. α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat. Chem. Biol. 7, 894–901 (2011).
Chubukov, V. & Sauer, U. Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol. 80, 2901–2909 (2014).
Zampieri, M., Hörl, M., Hotz, F., Müller, N. F. & Sauer, U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat. Commun. 10, 3354 (2019).
Chubukov, V. et al. Engineering glucose metabolism of Escherichia coli under nitrogen starvation. NPJ Syst. Biol. Appl. 3, 16035 (2017).
van der Hoek, S. A. & Borodina, I. Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr. Opin. Biotechnol. 66, 186–194 (2020).
Michalowski, A., Siemann-Herzberg, M. & Takors, R. Escherichia coli HGT: engineered for high glucose throughput even under slowly growing or resting conditions. Metab. Eng. 40, 93–103 (2017). This article presents the first attempt to readjust the stringent response in growth-arrested E. coli to increase the substrate uptake rate.
Ziegler, M., Zieringer, J. & Takors, R. Transcriptional profiling of the stringent response mutant strain E. coli SR reveals enhanced robustness to large-scale conditions. Microb. Biotechnol. 14, 993–1010 (2021).
Gosse, J. L., Engel, B. J., Hui, J. C.-H., Harwood, C. S. & Flickinger, M. C. Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris. Biotechnol. Prog. 26, 907–918 (2010).
McKinlay, J. B. et al. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J. Biol. Chem. 289, 1960–1970 (2014).
Yin, L., Ma, H., Fones, E. M., Morris, D. R. & Harwood, C. S. ATP is a major determinant of phototrophic bacterial longevity in growth arrest. mBio 14, e0360992 (2023).
Carrieri, D. et al. Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 ΔglgC, a strain incapable of glycogen storage. Microb. Biotechnol. 8, 275–280 (2015).
Jackson, S. A., Eaton-Rye, J. J., Bryant, D. A., Posewitz, M. C. & Davies, F. K. Dynamics of photosynthesis in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. Appl. Environ. Microbiol. 81, 6210–6222 (2015).
Shabestary, K. et al. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab. Eng. 68, 131–141 (2021).
Weiss, T. L., Young, E. J. & Ducat, D. C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab. Eng. 44, 236–245 (2017).
Moore, K. A. et al. Mechanical regulation of photosynthesis in cyanobacteria. Nat. Microbiol. 5, 757–767 (2020).
Tóth, G. S. et al. Photosynthetically produced sucrose by immobilized Synechocystis sp. PCC 6803 drives biotransformation in E. coli. Biotechnol. Biofuels Bioprod. 15, 146 (2022).
Singh, A. K., Santos-Merino, M., Sakkos, J. K., Walker, B. J. & Ducat, D. C. Rubisco regulation in response to altered carbon status in the cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiol. 189, 874–888 (2022).
Lehning, C. E., Siedler, S., Ellabaan, M. M. H., & Sommer, M. O. A. Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor. Metab. Eng. 42, 194–202 (2017).
Boer, V. M., Crutchfield, C. A., Bradley, P. H., Botstein, D. & Rabinowitz, J. D. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol. Biol. Cell 21, 198–211 (2010).
Wu, G. et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34, 652–664 (2016).
Borkowski, O., Ceroni, F., Stan, G.-B. & Ellis, T. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol. 33, 123–130 (2016).
Farré, J.-C. & Subramani, S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol. 17, 537–552 (2016).
Mahmoud, S. A. & Chien, P. Regulated proteolysis in bacteria. Annu. Rev. Biochem. 87, 677–696 (2018).
Pandit, A. V., Srinivasan, S. & Mahadevan, R. Redesigning metabolism based on orthogonality principles. Nat. Commun. 8, 15188 (2017). This article proposes a computational strategy based on orthogonality principles to minimize crosstalk between host metabolism and production pathways.
Asplund-Samuelsson, J., Janasch, M. & Hudson, E. P. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential. Metab. Eng. 45, 223–236 (2018).
Yang, X. et al. Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab. Eng. 56, 142–153 (2019).
Wang, L., Ng, C. Y., Dash, S. & Maranas, C. D. Exploring the combinatorial space of complete pathways to chemicals. Biochem. Soc. Trans. 46, 513–522 (2018).
Lin, G.-M., Warden-Rothman, R. & Voigt, C. A. Retrosynthetic design of metabolic pathways to chemicals not found in nature. Curr. Opin. Syst. Biol. 14, 82–107 (2019).
Vayena, E. et al. A workflow for annotating the knowledge gaps in metabolic reconstructions using known and hypothetical reactions. Proc. Natl Acad. Sci. USA 119, e2211197119 (2022).
Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704–3709 (2015).
Scheffen, M. et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat. Catal. 4, 105–115 (2021).
Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction. Science 329, 309–313 (2010).
Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).
Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).
Gelsinger, D. R. et al. Bacterial genome engineering using CRISPR-associated transposases. Nat. Protoc. 19, 752–790 (2024).
Tickman, B. I. et al. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Syst. 13, 215–229.e8 (2022).
Shaw, W. M. et al. Inducible expression of large gRNA arrays for multiplexed CRISPRai applications. Nat. Commun. 13, 4984 (2022).
Santos-Moreno, J., Tasiudi, E., Stelling, J. & Schaerli, Y. Multistable and dynamic CRISPRi-based synthetic circuits. Nat. Commun. 11, 2746 (2020).
de Jong, H., Geiselmann, J. & Ropers, D. Resource reallocation in bacteria by reengineering the gene expression machinery. Trends Microbiol. 25, 480–493 (2017).
Shopera, T., He, L., Oyetunde, T., Tang, Y. J. & Moon, T. S. Decoupling resource-coupled gene expression in living cells. ACS Synth. Biol. 6, 1596–1604 (2017).
Qian, Y., Huang, H.-H., Jiménez, J. I. & Del Vecchio, D. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6, 1263–1272 (2017).
McBride, C. D., Grunberg, T. W. & Del Vecchio, D. Design of genetic circuits that are robust to resource competition. Curr. Opin. Syst. Biol. 28, 100357 (2021).
Segall-Shapiro, T. H., Meyer, A. J., Ellington, A. D., Sontag, E. D. & Voigt, C. A. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Mol. Syst. Biol. 10, 742 (2014).
Darlington, A. P. S., Kim, J., Jiménez, J. I. & Bates, D. G. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Nat. Commun. 9, 695 (2018).
Aleksashin, N. A. et al. A fully orthogonal system for protein synthesis in bacterial cells. Nat. Commun. 11, 1858 (2020).
Caringella, G., Bandiera, L. & Menolascina, F. Recent advances, opportunities and challenges in cybergenetic identification and control of biomolecular networks. Curr. Opin. Biotechnol. 80, 102893 (2023).
Bertaux, F., Ruess, J. & Batt, G. External control of microbial populations for bioproduction: a modeling and optimization viewpoint. Curr. Opin. Syst. Biol. 28, 100394 (2021).
Ceroni, F. et al. Burden-driven feedback control of gene expression. Nat. Methods 15, 387–393 (2018).
Furey, T. S. ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).
Stormo, G. D. & Zhao, Y. Determining the specificity of protein–DNA interactions. Nat. Rev. Genet. 11, 751–760 (2010).
Christodoulou, D. et al. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Syst. 6, 569–578.e7 (2018).
Sander, T. et al. Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. Cell Syst. 8, 66–75.e8 (2019).
Hackett, S. R. et al. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 354, aaf2786 (2016).
St John, P. C., Strutz, J., Broadbelt, L. J., Tyo, K. E. J. & Bomble, Y. J. Bayesian inference of metabolic kinetics from genome-scale multiomics data. PLoS Comput. Biol. 15, e1007424 (2019).
Hackett, S. R., Baltz, E. A., Coram, M. & Wranik, B. J. Learning causal networks using inducible transcription factors and transcriptome‐wide time series. Mol. Syst. Biol. 16, e9174 (2020).
Lempp, M. et al. Systematic identification of metabolites controlling gene expression in E. coli. Nat. Commun. 10, 4463 (2019).
Donati, S. et al. Multi-omics analysis of CRISPRi-knockdowns identifies mechanisms that buffer decreases of enzymes in E. coli metabolism. Cell Syst. 12, 56–67.e6 (2021).
Piazza, I. et al. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172, 358–372.e23 (2018).
Mateus, A. et al. Thermal proteome profiling for interrogating protein interactions. Mol. Syst. Biol. 16, e9232 (2020).
Gaetani, M. et al. Proteome integral solubility alteration: a high-throughput proteomics assay for target deconvolution. J. Proteome Res. 18, 4027–4037 (2019).
Veyel, D. et al. PROMIS, global analysis of PROtein–metabolite interactions using size separation in Arabidopsis thaliana. J. Biol. Chem. 293, 12440–12453 (2018).
Sridharan, S. et al. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nat. Commun. 10, 1155 (2019).
Sporre, E. et al. Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation. Commun. Biol. 6, 947 (2023).
Cameron, J. C. & Pakrasi, H. B. Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 154, 1672–1685 (2010).
Yang, L. et al. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc. Natl Acad. Sci. USA 116, 14368–14373 (2019).
Nyström, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24, 1311–1317 (2005).
Lerma-Ortiz, C. et al. Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites. Biochem. Soc. Trans. 44, 961–971 (2016).
Bathe, U. et al. The moderately (D)efficient enzyme: catalysis-related damage in vivo and its repair. Biochemistry 60, 3555–3565 (2021).
Hanson, A. D. et al. The number of catalytic cycles in an enzyme’s lifetime and why it matters to metabolic engineering. Proc. Natl Acad. Sci. USA 118, e2023348118 (2021). This article identifies failure-prone enzymes that show low values for catalytic cycles per lifetime across organisms.
Lahtvee, P.-J., Seiman, A., Arike, L., Adamberg, K. & Vilu, R. Protein turnover forms one of the highest maintenance costs in Lactococcus lactis. Microbiology 160, 1501–1512 (2014).
Imlay, J. A., Sethu, R. & Rohaun, S. K. Evolutionary adaptations that enable enzymes to tolerate oxidative stress. Free Radic. Biol. Med. 140, 4–13 (2019).
Chang, R. L. et al. Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation-induced damage. EMBO J. 39, e104523 (2020).
Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 4348 (2022).
Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational protein engineering with sequence-based deep representation learning. Nat. Methods 16, 1315–1322 (2019).
Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).
Sumida, K. H. et al. Improving protein expression, stability, and function with ProteinMPNN. J. Am. Chem. Soc. 146, 2054–2061 (2024).
Jabarivelisdeh, B. & Waldherr, S. Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming. Biotechnol. Bioeng. 115, 1829–1841 (2018).
Venayak, N., von Kamp, A., Klamt, S. & Mahadevan, R. MoVE identifies metabolic valves to switch between phenotypic states. Nat. Commun. 9, 5332 (2018).
Schneider, P., von Kamp, A. & Klamt, S. An extended and generalized framework for the calculation of metabolic intervention strategies based on minimal cut sets. PLoS Comput. Biol. 16, e1008110 (2020).
Sahoo, K. K., Datta, S., Goswami, G. & Das, D. Two-stage integrated process for bio-methanol production coupled with methane and carbon dioxide sequestration: kinetic modelling and experimental validation. J. Environ. Manage. 301, 113927 (2022).
Bauer, J. & Klamt, S. OptMSP: a toolbox for designing optimal multi-stage (bio)processes. J. Biotechnol. 383, 94–102 (2024).
Lawson, C. E. et al. Machine learning for metabolic engineering: a review. Metab. Eng. 63, 34–60 (2021).
Li, F. et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat. Catal. 5, 662–672 (2022).
Choudhury, S. et al. Reconstructing kinetic models for dynamical studies of metabolism using generative adversarial networks. Nat. Mach. Intell. 4, 710–719 (2022).
Xu, Z., Wu, J., Song, Y. S. & Mahadevan, R. Enzyme activity prediction of sequence variants on novel substrates using improved substrate encodings and convolutional pooling. Proc. Mach. Learn. Res. 165, 78–87 (2022).
Gherman, I. M. et al. Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Comput. Biol. 19, e1010988 (2023).
Sapoval, N. et al. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun. 13, 1728 (2022).
Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 2040 (2019).
Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891.e14 (2023).
Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 17, 629–635 (2020).
Yao, D. et al. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01964-9 (2023).
Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).
Suzuki, E. & Ollis, D. F. Enhanced antibody production at slowed growth rates: experimental demonstration and a simple structured model. Biotechnol. Prog. 6, 231–236 (1990).
Ahn-Horst, T. A., Mille, L. S., Sun, G., Morrison, J. H. & Covert, M. W. An expanded whole-cell model of E. coli links cellular physiology with mechanisms of growth rate control. NPJ Syst. Biol. Appl. 8, 30 (2022).
Tokuyama, K. et al. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli. Metab. Eng. 52, 215–223 (2019).
Xia, J. et al. Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation. Nat. Commun. 13, 2819 (2022).
Izard, J. et al. A synthetic growth switch based on controlled expression of RNA polymerase. Mol. Syst. Biol. 11, 840 (2015).
Masuda, A., Toya, Y. & Shimizu, H. Metabolic impact of nutrient starvation in mevalonate-producing Escherichia coli. Bioresour. Technol. 245, 1634–1640 (2017).
Nishio, Y., Usuda, Y., Matsui, K. & Kurata, H. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol. Syst. Biol. 4, 160 (2008).
Koebmann, B. J., Solem, C., Pedersen, M. B., Nilsson, D. & Jensen, P. R. Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl. Environ. Microbiol. 68, 4274–4282 (2002).
Zahoor, A., Messerschmidt, K., Boecker, S. & Klamt, S. ATPase-based implementation of enforced ATP wasting in Saccharomyces cerevisiae for improved ethanol production. Biotechnol. Biofuels 13, 185 (2020).
Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).
Maharjan, R. & Ferenci, T. Mutational signatures indicative of environmental stress in bacteria. Mol. Biol. Evol. 32, 380–391 (2015).
Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).
Wegner, S. A., Barocio-Galindo, R. M. & Avalos, J. L. The bright frontiers of microbial metabolic optogenetics. Curr. Opin. Chem. Biol. 71, 102207 (2022).
Author information
Authors and Affiliations
Contributions
K.S. and E.P.H. prepared the outline with input from all authors. K.S., S.K. and E.P.H. drafted the manuscript with input from all authors. All authors contributed text, and edited and reviewed the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Ralf Takors and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shabestary, K., Klamt, S., Link, H. et al. Design of microbial catalysts for two-stage processes. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00225-x
Accepted:
Published:
DOI: https://doi.org/10.1038/s44222-024-00225-x