Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetically engineered hypoimmunogenic cell therapy

Abstract

Immune rejection is an important obstacle to the use of allogeneic ‘off-the-shelf’ cells for transplantation into immunocompetent patients. Genetic modification has emerged as a promising approach to improve immune compatibility in various applications, including cancer immunotherapy and stem cell-based therapies. Several approaches have been proposed to evade the recognition and attack of transplanted cells by specific host immune cells; however, further investigation is needed to ensure the hypoimmunity and safety of cell-based therapies in clinical practice. This Review discusses key advances and challenges in the clinical translation of hypoimmunogenic cells and describes the genetic engineering methods and manufacturing processes used to create hypoimmunogenic therapeutic cells, while highlighting the complexity of relevant immunological pathways.

Key points

  • Hypoimmunogenic cells created through genetic engineering are likely to become a mainstream approach to allogeneic cell therapy that can avoid or mitigate the need for immunosuppression in treated patients.

  • Immune rejection of allogeneic cell-based clinical therapies can be avoided by the removal of antigens and/or the expression of immunosuppressive factors.

  • The potential risk of tumorigenesis can be mitigated by careful quality assessment and incorporation of a safety ‘kill switch’ into engineered cells.

  • To establish a successful hypoimmunogenic cell therapy, it is important to consider multiple factors, including which cell types to utilize, target genes, editing methods, quality control mechanisms and host-related factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HLA gene variations and biallelic HLA haplotype matching.
Fig. 2: HLA-knockout approaches that facilitate HLA matching.
Fig. 3: Hypoimmunogenic engineering approaches, target cell types and molecules.

Similar content being viewed by others

References

  1. Elisseeff, J., Badylak, S. F. & Boeke, J. D. Immune and genome engineering as the future of transplantable tissue. N. Engl. J. Med. 385, 2451–2462 (2021).

    Article  Google Scholar 

  2. Mihatsch, M. J. et al. The side-effects of ciclosporine-A and tacrolimus. Clin. Nephrol. 49, 356–363 (1998).

    Google Scholar 

  3. Miller, L. W. Cardiovascular toxicities of immunosuppressive agents. Am. J. Transplant. 2, 807–818 (2002).

    Article  Google Scholar 

  4. Taylor, A. L., Watson, C. J. & Bradley, J. A. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 56, 23–46 (2005).

    Article  Google Scholar 

  5. Wood, K. J., Bushell, A. & Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12, 417–430 (2012).

    Article  Google Scholar 

  6. Oberholtzer, N., Atkinson, C. & Nadig, S. N. Adoptive transfer of regulatory immune cells in organ transplantation. Front. Immunol. 12, 631365 (2021).

    Article  Google Scholar 

  7. Mikami, N. & Sakaguchi, S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat. Rev. Nephrol. 19, 544–557 (2023).

    Article  Google Scholar 

  8. Sakaguchi, S., Kawakami, R. & Mikami, N. Treg-based immunotherapy for antigen-specific immune suppression and stable tolerance induction: a perspective. Immunother. Adv. 3, ltad007 (2023).

    Article  Google Scholar 

  9. Kinsella, F. A. M. et al. Mixed chimerism established by hematopoietic stem cell transplantation is maintained by host and donor T regulatory cells. Blood Adv. 3, 734–743 (2019).

    Article  Google Scholar 

  10. Scandling, J. D. et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N. Engl. J. Med. 358, 362–368 (2008).

    Article  Google Scholar 

  11. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    Article  Google Scholar 

  12. Bertaina, A. et al. Sequential stem cell–kidney transplantation in Schimke immuno-osseous dysplasia. N. Engl. J. Med. 386, 2295–2302 (2022).

    Article  Google Scholar 

  13. Ankrum, J. A., Ong, J. F. & Karp, J. M. Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32, 252–260 (2014).

    Article  Google Scholar 

  14. Hutchinson, J. A. et al. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J. Immunol. 187, 2072–2078 (2011).

    Article  Google Scholar 

  15. Thomson, A. W., Metes, D. M., Ezzelarab, M. B. & Raïch-Regué, D. Regulatory dendritic cells for human organ transplantation. Transplant. Rev. 33, 130–136 (2019).

    Article  Google Scholar 

  16. Pang, S. H. M. et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat. Commun. 12, 6495 (2021).

    Article  Google Scholar 

  17. Casiraghi, F., Perico, N. & Remuzzi, G. Mesenchymal stromal cells for tolerance induction in organ transplantation. Hum. Immunol. 79, 304–313 (2018).

    Article  Google Scholar 

  18. Tan, J. et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. J. Am. Med. Assoc. 307, 1169–1177 (2012).

    Article  Google Scholar 

  19. Detry, O. et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: a phase I–II, open-label, clinical study. J. Hepatol. 67, 47–55 (2017).

    Article  Google Scholar 

  20. Wang, P. et al. Immune tolerance induction using cell-based strategies in liver transplantation: clinical perspectives. Front. Immunol. 11, 1723 (2020).

    Article  Google Scholar 

  21. Singh, A. et al. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat. Commun. 10, 3495 (2019).

    Article  Google Scholar 

  22. Husain, I. & Luo, X. Apoptotic donor cells in transplantation. Front. Immunol. 12, 626840 (2021).

    Article  Google Scholar 

  23. Yu, S., Su, C. & Luo, X. Impact of infection on transplantation tolerance. Immunol. Rev. 292, 243–263 (2019).

    Article  Google Scholar 

  24. Wu, S. et al. Advances in encapsulation and delivery strategies for islet transplantation. Adv. Healthc. Mater. 10, e2100965 (2021).

    Article  Google Scholar 

  25. Barker, D. J. et al. The IPD-IMGT/HLA database. Nucleic Acids Res. 51, D1053–D1060 (2023).

    Article  Google Scholar 

  26. Wiebe, C. & Nickerson, P. Strategic use of epitope matching to improve outcomes. Transplantation 100, 2048–2052 (2016).

    Article  Google Scholar 

  27. Morishima, Y. et al. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation. Blood 125, 1189–1197 (2015).

    Article  Google Scholar 

  28. Ayuk, F. et al. Relative impact of HLA matching and non-HLA donor characteristics on outcomes of allogeneic stem cell transplantation for acute myeloid leukemia and myelodysplastic syndrome. Biol. Blood Marrow Transplant. 24, 2558–2567 (2018).

    Article  Google Scholar 

  29. Süsal, C. & Opelz, G. Impact of HLA matching and HLA antibodies in organ transplantation: a collaborative transplant study view. Methods Mol. Biol. 882, 267–277 (2012).

    Article  Google Scholar 

  30. Opelz, G. & Döhler, B. Effect of human leukocyte antigen compatibility on kidney graft survival: comparative analysis of two decades. Transplantation 84, 137–143 (2007).

    Article  Google Scholar 

  31. Nikaein, A. et al. HLA compatibility and liver transplant outcome. Improved patient survival by HLA and cross-matching. Transplantation 58, 786–792 (1994).

    Article  Google Scholar 

  32. Opelz, G. & Wujciak, T. The influence of HLA compatibility on graft survival after heart transplantation. The collaborative transplant study. N. Engl. J. Med. 330, 816–819 (1994).

    Article  Google Scholar 

  33. Rudolph, E. N. et al. HLA-A, -B, -C, -DR, and -DQ matching in pancreas transplantation: effect on graft rejection and survival. Am. J. Transplant. 16, 2401–2412 (2016).

    Article  Google Scholar 

  34. Opelz, G., Süsal, C., Ruhenstroth, A. & Döhler, B. Impact of HLA compatibility on lung transplant survival and evidence for an HLA restriction phenomenon: a collaborative transplant study report. Transplantation 90, 912–917 (2010).

    Article  Google Scholar 

  35. Kanda, J. et al. Related transplantation with HLA-1 Ag mismatch in the GVH direction and HLA-8/8 allele-matched unrelated transplantation: a nationwide retrospective study. Blood 119, 2409–2416 (2012).

    Article  Google Scholar 

  36. Morishima, Y. et al. Impact of homozygous conserved extended HLA haplotype on single cord blood transplantation: lessons for induced pluripotent stem cell banking and transplantation in allogeneic settings. Biol. Blood Marrow Transplant. 26, 132–138 (2020).

    Article  Google Scholar 

  37. Yoshida, S. et al. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med 4, 51–66.e10 (2023).

    Article  Google Scholar 

  38. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    Article  Google Scholar 

  39. Lee, S. et al. Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells 36, 1552–1566 (2018).

    Article  Google Scholar 

  40. Gourraud, P. A., Gilson, L., Girard, M. & Peschanski, M. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells 30, 180–186 (2012).

    Article  Google Scholar 

  41. Álvarez-Palomo, B. et al. Public cord blood banks as a source of starting material for clinical grade HLA-homozygous induced pluripotent stem cells. Stem Cell Res. Ther. 13, 408 (2022).

    Article  Google Scholar 

  42. Sugita, S. et al. HLA-matched allogeneic iPS cells-derived RPE transplantation for macular degeneration. J. Clin. Med. 9, 2217 (2020).

    Article  Google Scholar 

  43. Miyagawa, S. et al. Case report: transplantation of human induced pluripotent stem cell-derived cardiomyocyte patches for ischemic cardiomyopathy. Front. Cardiovasc. Med. 9, 950829 (2022).

    Article  Google Scholar 

  44. Mandai, M. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: a review. Regen. Ther. 22, 59–67 (2023).

    Article  Google Scholar 

  45. Morizane, A. Cell therapy for Parkinson’s disease with induced pluripotent stem cells. Inflamm. Regen. 43, 16 (2023).

    Article  Google Scholar 

  46. Sugai, K. et al. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: study protocol. Regen. Ther. 18, 321–333 (2021).

    Article  Google Scholar 

  47. Deuse, T. et al. De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nat. Biotechnol. 37, 1137–1144 (2019).

    Article  Google Scholar 

  48. Deuse, T. et al. SCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts. Cell Stem Cell 16, 33–38 (2015).

    Article  Google Scholar 

  49. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  50. Zhang, Q. & Reed, E. F. The importance of non-HLA antibodies in transplantation. Nat. Rev. Nephrol. 12, 484–495 (2016).

    Article  Google Scholar 

  51. Aron Badin, R. et al. MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nat. Commun. 10, 4357 (2019).

    Article  Google Scholar 

  52. Kawamura, T. et al. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem Cell Rep. 6, 312–320 (2016).

    Article  Google Scholar 

  53. Lanza, R., Russell, D. W. & Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 19, 723–733 (2019).

    Article  Google Scholar 

  54. Petrus-Reurer, S. et al. Immunological considerations and challenges for regenerative cellular therapies. Commun. Biol. 4, 798 (2021).

    Article  Google Scholar 

  55. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  Google Scholar 

  56. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  Google Scholar 

  57. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  Google Scholar 

  58. O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    Article  Google Scholar 

  59. Münz, C. Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat. Rev. Microbiol. 17, 691–700 (2019).

    Article  Google Scholar 

  60. Ander, S. E., Diamond, M. S. & Coyne, C. B. Immune responses at the maternal-fetal interface. Sci. Immunol. 4, eaat6114 (2019).

    Article  Google Scholar 

  61. Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013).

    Article  Google Scholar 

  62. Xu, H. et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e7 (2019).

    Article  Google Scholar 

  63. Parent, A. V. et al. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Rep. 36, 109538 (2021).

    Article  Google Scholar 

  64. Riolobos, L. et al. HLA engineering of human pluripotent stem cells. Mol. Ther. 21, 1232–1241 (2013).

    Article  Google Scholar 

  65. Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    Article  Google Scholar 

  66. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  Google Scholar 

  67. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  Google Scholar 

  68. Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

    Article  Google Scholar 

  69. Deuse, T. et al. Hypoimmune induced pluripotent stem cell-derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice. Proc. Natl Acad. Sci. USA 118, e2022091118 (2021).

    Article  Google Scholar 

  70. Harding, J. et al. Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long-term in allogeneic hosts. Nat. Biomed. Eng. 8, 427–442 (2024).

    Article  Google Scholar 

  71. Wani, M. A. et al. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant β2-microglobulin gene. Proc. Natl Acad. Sci. USA 103, 5084–5089 (2006).

    Article  Google Scholar 

  72. Jo, S. et al. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat. Commun. 13, 3453 (2022).

    Article  Google Scholar 

  73. Haruta, M. et al. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther. 20, 504–513 (2013).

    Article  Google Scholar 

  74. Hanna, S. & Etzioni, A. MHC class I and II deficiencies. J. Allergy Clin. Immunol. 134, 269–275 (2014).

    Article  Google Scholar 

  75. Reith, W. & Mach, B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu. Rev. Immunol. 19, 331–373 (2001).

    Article  Google Scholar 

  76. Steimle, V., Otten, L. A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75, 135–146 (1993).

    Article  Google Scholar 

  77. Kwon, Y. W. et al. HLA DR genome editing with TALENs in human iPSCs produced immune-tolerant dendritic cells. Stem Cells Int. 2021, 8873383 (2021).

    Article  Google Scholar 

  78. Madsen, L. et al. Mice lacking all conventional MHC class II genes. Proc. Natl Acad. Sci. USA 96, 10338–10343 (1999).

    Article  Google Scholar 

  79. Abrahimi, P. et al. Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9. Circ. Res. 117, 121–128 (2015).

    Article  Google Scholar 

  80. Mattapally, S. et al. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J. Am. Heart Assoc. 7, e010239 (2018).

    Article  Google Scholar 

  81. Kwon, D. et al. Human leukocyte antigen class I pseudo-homozygous mesenchymal stem cells derived from human induced pluripotent stem cells. Stem Cell Rev. Rep. 16, 792–808 (2020).

    Article  Google Scholar 

  82. Kärre, K. Natural killer cell recognition of missing self. Nat. Immunol. 9, 477–480 (2008).

    Article  Google Scholar 

  83. Carretero, M. et al. Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. Eur. J. Immunol. 28, 1280–1291 (1998).

    Article  Google Scholar 

  84. Thielens, A., Vivier, E. & Romagné, F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr. Opin. Immunol. 24, 239–245 (2012).

    Article  Google Scholar 

  85. Rajagopalan, S. & Long, E. O. KIR2DL4 (CD158d): an activation receptor for HLA-G. Front. Immunol. 3, 258 (2012).

    Article  Google Scholar 

  86. Carr, W. H., Pando, M. J. & Parham, P. KIR3DL1 polymorphisms that affect NK cell inhibition by HLA-Bw4 ligand. J. Immunol. 175, 5222–5229 (2005).

    Article  Google Scholar 

  87. Hansasuta, P. et al. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur. J. Immunol. 34, 1673–1679 (2004).

    Article  Google Scholar 

  88. Winter, C. C., Gumperz, J. E., Parham, P., Long, E. O. & Wagtmann, N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J. Immunol. 161, 571–577 (1998).

    Article  Google Scholar 

  89. Viant, C. et al. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nat. Commun. 5, 5108 (2014).

    Article  Google Scholar 

  90. Crew, M. D., Cannon, M. J., Phanavanh, B. & Garcia-Borges, C. N. An HLA-E single chain trimer inhibits human NK cell reactivity towards porcine cells. Mol. Immunol. 42, 1205–1214 (2005).

    Article  Google Scholar 

  91. Hu, X. et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat. Biotechnol. 42, 413–423 (2024).

    Article  Google Scholar 

  92. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  Google Scholar 

  93. Guethlein, L. A., Older Aguilar, A. M., Abi-Rached, L. & Parham, P. Evolution of killer cell Ig-like receptor (KIR) genes: definition of an orangutan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. J. Immunol. 179, 491–504 (2007).

    Article  Google Scholar 

  94. Kitano, Y. et al. Generation of hypoimmunogenic induced pluripotent stem cells by CRISPR-Cas9 system and detailed evaluation for clinical application. Mol. Ther. Methods Clin. Dev. 26, 15–25 (2022).

    Article  Google Scholar 

  95. Ichise, H. et al. NK cell alloreactivity against KIR-ligand-mismatched HLA-haploidentical tissue derived from HLA haplotype-homozygous iPSCs. Stem Cell Rep. 9, 853–867 (2017).

    Article  Google Scholar 

  96. Kagita, A. et al. Efficient ssODN-mediated targeting by avoiding cellular inhibitory RNAs through precomplexed CRISPR-Cas9/sgRNA ribonucleoprotein. Stem Cell Rep. 16, 985–996 (2021).

    Article  Google Scholar 

  97. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 5, 201–214 (2005).

    Article  Google Scholar 

  98. Yawata, M. et al. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 112, 2369–2380 (2008).

    Article  Google Scholar 

  99. Wang, B. et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 5, 429–440 (2021).

    Article  Google Scholar 

  100. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    Article  Google Scholar 

  101. Deuse, T. et al. The SIRPα-CD47 immune checkpoint in NK cells. J. Exp. Med. 218, e20200839 (2021).

    Article  Google Scholar 

  102. Salaman, M. R. & Gould, K. G. Breakdown of T-cell ignorance: the tolerance failure responsible for mainstream autoimmune diseases? J. Transl. Autoimmun. 3, 100070 (2020).

    Article  Google Scholar 

  103. Kurts, C. et al. CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl Acad. Sci. USA 96, 12703–12707 (1999).

    Article  Google Scholar 

  104. Calbo, S. et al. Functional tolerance of CD8+ T cells induced by muscle-specific antigen expression. J. Immunol. 181, 408–417 (2008).

    Article  Google Scholar 

  105. Hu, X. et al. Human hypoimmune primary pancreatic islets avoid rejection and autoimmunity and alleviate diabetes in allogeneic humanized mice. Sci. Transl. Med. 15, eadg5794 (2023).

    Article  Google Scholar 

  106. Hu, X. et al. Hypoimmune anti-CD19 chimeric antigen receptor T cells provide lasting tumor control in fully immunocompetent allogeneic humanized mice. Nat. Commun. 14, 2020 (2023).

    Article  Google Scholar 

  107. Hu, X. et al. Hypoimmune islets achieve insulin independence after allogeneic transplantation in a fully immunocompetent non-human primate. Cell Stem Cell 31, 334–340.e5 (2024).

    Article  Google Scholar 

  108. Coles, S. J. et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 25, 792–799 (2011).

    Article  Google Scholar 

  109. Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    Article  Google Scholar 

  110. Ferreira, L. M. R., Meissner, T. B., Tilburgs, T. & Strominger, J. L. HLA-G: at the interface of maternal–fetal tolerance. Trends Immunol. 38, 272–286 (2017).

    Article  Google Scholar 

  111. Shi, L. et al. Generation of hypoimmunogenic human pluripotent stem cells via expression of membrane-bound and secreted β2m-HLA-G fusion proteins. Stem Cells 38, 1423–1437 (2020).

    Article  Google Scholar 

  112. Yi, Y. S. Functional role of milk fat globule-epidermal growth factor VIII in macrophage-mediated inflammatory responses and inflammatory/autoimmune diseases. Mediators Inflamm. 2016, 5628486 (2016).

    Article  Google Scholar 

  113. Comerford, I. et al. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev. 24, 269–283 (2013).

    Article  Google Scholar 

  114. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  Google Scholar 

  115. Woodward, K. B. et al. Pancreatic islets engineered with a FasL protein induce systemic tolerance at the induction phase that evolves into long-term graft-localized immune privilege. Am. J. Transplant. 20, 1285–1295 (2020).

    Article  Google Scholar 

  116. Lenschow, D. J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257, 789–792 (1992).

    Article  Google Scholar 

  117. Ali, A. et al. CTLA4 immunoglobulin but not anti-tumor necrosis factor therapy promotes staphylococcal septic arthritis in mice. J. Infect. Dis. 212, 1308–1316 (2015).

    Article  Google Scholar 

  118. Riminton, D. S., Hartung, H. P. & Reddel, S. W. Managing the risks of immunosuppression. Curr. Opin. Neurol. 24, 217–223 (2011).

    Article  Google Scholar 

  119. Kahlig, K. M. et al. Multiplexed transposon-mediated stable gene transfer in human cells. Proc. Natl Acad. Sci. USA 107, 1343–1348 (2010).

    Article  Google Scholar 

  120. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  Google Scholar 

  121. Liu, Z. et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 7, 2193 (2017).

    Article  Google Scholar 

  122. Merkle, F. T. et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep. 11, 875–883 (2015).

    Article  Google Scholar 

  123. Sakuma, T., Nakade, S., Sakane, Y., Suzuki, K. T. & Yamamoto, T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 11, 118–133 (2016).

    Article  Google Scholar 

  124. Gravina, A. et al. Synthetic immune checkpoint engagers protect HLA-deficient iPSCs and derivatives from innate immune cell cytotoxicity. Cell Stem Cell 30, 1538–1548.e4 (2023).

    Article  Google Scholar 

  125. Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).

    Article  Google Scholar 

  126. Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    Article  Google Scholar 

  127. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  Google Scholar 

  128. Gomes-Silva, D. et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285–296 (2017).

    Article  Google Scholar 

  129. Hu, Y. et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res. 32, 995–1007 (2022).

    Article  Google Scholar 

  130. Wellhausen, N. et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci. Transl. Med. 15, eadi1145 (2023).

    Article  Google Scholar 

  131. Mailankody, S. et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat. Med. 29, 422–429 (2023).

    Article  Google Scholar 

  132. Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    Article  Google Scholar 

  133. Loupy, A. & Lefaucheur, C. Antibody-mediated rejection of solid-organ allografts. N. Engl. J. Med. 379, 1150–1160 (2018).

    Article  Google Scholar 

  134. Wagner, D. L. et al. Immunogenicity of CAR T cells in cancer therapy. Nat. Rev. Clin. Oncol. 18, 379–393 (2021).

    Article  Google Scholar 

  135. Peraro, L. et al. Incorporation of bacterial immunoevasins to protect cell therapies from host antibody-mediated immune rejection. Mol. Ther. 29, 3398–3409 (2021).

    Article  Google Scholar 

  136. Gravina, A. et al. Protection of cell therapeutics from antibody-mediated killing by CD64 overexpression. Nat. Biotechnol. 41, 717–727 (2023).

    Article  Google Scholar 

  137. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  Google Scholar 

  138. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  Google Scholar 

  139. Forbes, S. J. & Rosenthal, N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20, 857–869 (2014).

    Article  Google Scholar 

  140. Galleu, A. et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med. 9, eaam7828 (2017).

    Article  Google Scholar 

  141. Yamasaki, S. et al. Low immunogenicity and immunosuppressive properties of human ESC- and iPSC-derived retinas. Stem Cell Rep. 16, 851–867 (2021).

    Article  Google Scholar 

  142. Abe, K. et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat. Commun. 14, 804 (2023).

    Article  Google Scholar 

  143. Mendicino, M., Bailey, A. M., Wonnacott, K., Puri, R. K. & Bauer, S. R. MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14, 141–145 (2014).

    Article  Google Scholar 

  144. Candinas, D. et al. Sex mismatch as a risk factor for chronic rejection of liver allografts. Lancet 346, 1117–1121 (1995).

    Article  Google Scholar 

  145. Gratwohl, A., Döhler, B., Stern, M. & Opelz, G. H-Y as a minor histocompatibility antigen in kidney transplantation: a retrospective cohort study. Lancet 372, 49–53 (2008).

    Article  Google Scholar 

  146. Wright, D. J. et al. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nat. Genet. 49, 674–679 (2017).

    Article  Google Scholar 

  147. Nazor, K. L. et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10, 620–634 (2012).

    Article  Google Scholar 

  148. Mekhoubad, S. et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10, 595–609 (2012).

    Article  Google Scholar 

  149. Hawksworth, J. et al. Enhancement of red blood cell transfusion compatibility using CRISPR-mediated erythroblast gene editing. EMBO Mol. Med. 10, e8454 (2018).

    Article  Google Scholar 

  150. Hildebrandt, M. R. et al. Precision health resource of control iPSC lines for versatile multilineage differentiation. Stem Cell Rep. 13, 1126–1141 (2019).

    Article  Google Scholar 

  151. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  Google Scholar 

  152. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  Google Scholar 

  153. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  Google Scholar 

  154. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  Google Scholar 

  155. Strecker, J. et al. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).

    Article  Google Scholar 

  156. Morisaka, H. et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat. Commun. 10, 5302 (2019).

    Article  Google Scholar 

  157. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).

    Article  Google Scholar 

  158. Ishida, K. et al. Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells. Sci. Rep. 8, 310 (2018).

    Article  Google Scholar 

  159. Martin, R. M. et al. Highly efficient and marker-free genome editing of human pluripotent stem cells by CRISPR-Cas9 RNP and AAV6 donor-mediated homologous recombination. Cell Stem Cell 24, 821–828.e5 (2019).

    Article  Google Scholar 

  160. Maurissen, T. L. & Woltjen, K. Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation. Nat. Commun. 11, 2876 (2020).

    Article  Google Scholar 

  161. Bodai, Z., Bishop, A. L., Gantz, V. M. & Komor, A. C. Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nat. Commun. 13, 2351 (2022).

    Article  Google Scholar 

  162. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  Google Scholar 

  163. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  Google Scholar 

  164. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  Google Scholar 

  165. Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

    Article  Google Scholar 

  166. Taha, E. A., Lee, J. & Hotta, A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: trends and challenges. J. Control. Release 342, 345–361 (2022).

    Article  Google Scholar 

  167. Wolff, J. H. & Mikkelsen, J. G. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J. Biomed. Sci. 29, 79 (2022).

    Article  Google Scholar 

  168. Canté-Barrett, K. et al. Lentiviral gene transfer into human and murine hematopoietic stem cells: size matters. BMC Res. Notes 9, 312 (2016).

    Article  Google Scholar 

  169. Mitchell, R. S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234 (2004).

    Article  Google Scholar 

  170. Wang, G. P., Ciuffi, A., Leipzig, J., Berry, C. C. & Bushman, F. D. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 17, 1186–1194 (2007).

    Article  Google Scholar 

  171. Wu, S. C. et al. piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl Acad. Sci. USA 103, 15008–15013 (2006).

    Article  Google Scholar 

  172. Mitra, R., Fain-Thornton, J. & Craig, N. L. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J. 27, 1097–1109 (2008).

    Article  Google Scholar 

  173. Nakanishi, H., Higuchi, Y., Kawakami, S., Yamashita, F. & Hashida, M. piggyBac transposon-mediated long-term gene expression in mice. Mol. Ther. 18, 707–714 (2010).

    Article  Google Scholar 

  174. Horie, K. et al. Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc. Natl Acad. Sci. USA 98, 9191–9196 (2001).

    Article  Google Scholar 

  175. Fischer, S. E., Wienholds, E. & Plasterk, R. H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl Acad. Sci. USA 98, 6759–6764 (2001).

    Article  Google Scholar 

  176. Yoshida, J. et al. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci. Rep. 7, 43613 (2017).

    Article  Google Scholar 

  177. Huang, X. et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol. Ther. 18, 1803–1813 (2010).

    Article  Google Scholar 

  178. Liew, C. G., Draper, J. S., Walsh, J., Moore, H. & Andrews, P. W. Transient and stable transgene expression in human embryonic stem cells. Stem Cells 25, 1521–1528 (2007).

    Article  Google Scholar 

  179. Hotta, A. & Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J. Cell. Biochem. 105, 940–948 (2008).

    Article  Google Scholar 

  180. Sasu, B. J. et al. Detection of chromosomal alteration after infusion of gene-edited allogeneic CAR T cells. Mol. Ther. 31, 676–685 (2023).

    Article  Google Scholar 

  181. Zhao, Y., Stepto, H. & Schneider, C. K. Development of the first World Health Organization lentiviral vector standard: toward the production control and standardization of lentivirus-based gene therapy products. Hum. Gene Ther. Methods 28, 205–214 (2017).

    Article  Google Scholar 

  182. Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 118, 3143–3150 (2008).

    Article  Google Scholar 

  183. Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118, 3132–3142 (2008).

    Article  Google Scholar 

  184. Sugita, S. et al. Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Rep. 7, 619–634 (2016).

    Article  Google Scholar 

  185. Brehm, M. A., Shultz, L. D., Luban, J. & Greiner, D. L. Overcoming current limitations in humanized mouse research. J. Infect. Dis. 208, S125–S130 (2013).

    Article  Google Scholar 

  186. Herndler-Brandstetter, D. et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc. Natl Acad. Sci. USA 114, E9626–E9634 (2017).

    Article  Google Scholar 

  187. Matsuda, M. et al. Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci. Alliance 2, e201800195 (2019).

    Article  Google Scholar 

  188. Katano, I. et al. Predominant development of mature and functional human NK cells in a novel human IL-2–producing transgenic NOG mouse. J. Immunol. 194, 3513–3525 (2015).

    Article  Google Scholar 

  189. Brehm, M. A. et al. Lack of acute xenogeneic graft-versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J. 33, 3137–3151 (2019).

    Article  Google Scholar 

  190. Morizane, A. et al. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate. Stem Cell Rep. 1, 283–292 (2013).

    Article  Google Scholar 

  191. Bjornson-Hooper, Z. B. et al. A comprehensive atlas of immunological differences between humans, mice, and non-human primates. Front. Immunol. 13, 867015 (2022).

    Article  Google Scholar 

  192. Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article  Google Scholar 

  193. Foster, M. C. et al. Utility of a safety switch to abrogate CD19.CAR T-cell-associated neurotoxicity. Blood 137, 3306–3309 (2021).

    Article  Google Scholar 

  194. Nishimura, T. et al. Sufficiency for inducible Caspase-9 safety switch in human pluripotent stem cells and disease cells. Gene Ther. 27, 525–534 (2019).

    Article  Google Scholar 

  195. Harding, J., Vintersten-Nagy, K. & Nagy, A. Universal stem cells: making the unsafe safe. Cell Stem Cell 27, 198–199 (2020).

    Article  Google Scholar 

  196. Shi, Z. D., Tchao, J., Wu, L. & Carman, A. J. Precision installation of a highly efficient suicide gene safety switch in human induced pluripotent stem cells. Stem Cells Transl. Med. 9, 1378–1388 (2020).

    Article  Google Scholar 

  197. Liang, Q. et al. Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature 563, 701–704 (2018).

    Article  Google Scholar 

  198. Wiebking, V. et al. Metabolic engineering generates a transgene-free safety switch for cell therapy. Nat. Biotechnol. 38, 1441–1450 (2020).

    Article  Google Scholar 

  199. Introna, M. et al. Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum. Gene Ther. 11, 611–620 (2000).

    Article  Google Scholar 

  200. Wang, X. et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118, 1255–1263 (2011).

    Article  Google Scholar 

  201. Philip, B. et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014).

    Article  Google Scholar 

  202. de Luzy, I. R. et al. Human stem cells harboring a suicide gene improve the safety and standardisation of neural transplants in Parkinsonian rats. Nat. Commun. 12, 3275 (2021).

    Article  Google Scholar 

  203. Wang, D., Quan, Y., Yan, Q., Morales, J. E. & Wetsel, R. A. Targeted disruption of the β2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl. Med. 4, 1234–1245 (2015).

    Article  Google Scholar 

  204. Yoshihara, E. et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606–611 (2020).

    Article  Google Scholar 

  205. Sintov, E. et al. Whole-genome CRISPR screening identifies genetic manipulations to reduce immune rejection of stem cell-derived islets. Stem Cell Rep. 17, 1976–1990 (2022).

    Article  Google Scholar 

  206. Chimienti, R. et al. Engineering of immune checkpoints B7-H3 and CD155 enhances immune compatibility of MHC-I−/ iPSCs for β cell replacement. Cell Rep. 40, 111423 (2022).

    Article  Google Scholar 

  207. Gerace, D. et al. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep. Med. 4, 100879 (2023).

    Article  Google Scholar 

  208. Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).

    Article  Google Scholar 

  209. Locke, J. E., Kumar, V., Anderson, D. & Porrett, P. M. Normal graft function after pig-to-human kidney xenotransplant. JAMA Surg. 158, 1106–1108 (2023).

    Article  Google Scholar 

  210. Mohiuddin, M. M. et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet 402, 397–410 (2023).

    Article  Google Scholar 

  211. Kamatani, T. et al. Evaluation of immunosuppression protocols for MHC-matched allogeneic iPS cell-based transplantation using a mouse skin transplantation model. Inflamm. Regen. 42, 4 (2022).

    Article  Google Scholar 

  212. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  Google Scholar 

  213. Matheus, F., Raveh, T., Oro, A. E., Wernig, M. & Drukker, M. Is hypoimmunogenic stem cell therapy safe in times of pandemics? Stem Cell Rep. 17, 711–714 (2022).

    Article  Google Scholar 

  214. Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 8, 385 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Hui and F. Nakamura for critically reading the manuscript. The authors’ research work is supported by the Japan Agency for Medical Research and Development (AMED) grant numbers JP22bm1123006 and JP23bm1323001 to A.H., and by the Canadian Institutes of Health Research (CIHR) Foundation grants, Canadian Research Chair, Ontario Research Fund and Medicine by Design (University of Toronto) funding to A.N.

Author information

Authors and Affiliations

Authors

Contributions

A.H. initiated the project. All authors contributed to all aspects of the article (researching data, writing, and reviewing and/or editing the manuscript).

Corresponding author

Correspondence to Akitsu Hotta.

Ethics declarations

Competing interests

A.H. declares that he has acted as a scientific advisor for AstraZeneca, CiRA Foundation, Orizuru Therapeutics and Takeda Pharmaceuticals. S.S. declares that she is a scientific founder, employee and stockholder of Sana Biotechnology. A.N. declares that he is a co-founder of panCELLa.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Luis Hidalgo, Ken-ichiro Seino, Luhan Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gene Ontology: https://geneontology.org/

IPD-IMGT/HLA: https://www.ebi.ac.uk/ipd/imgt/hla/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotta, A., Schrepfer, S. & Nagy, A. Genetically engineered hypoimmunogenic cell therapy. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00219-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00219-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing