Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-resolution projection-based 3D bioprinting

Abstract

Projection-based 3D printing is a vat polymerization printing method that works by generating bitmaps as dynamic masks to project onto a photosensitive material surface for layer-by-layer curing. Projection-based 3D printing has the highest resolution/time for manufacturing ratio among all 3D printing technologies; however, projection-based 3D bioprinting, which uses bioinks as printing materials that contain cells and/or biomolecules, suffers from low printing resolution, with a substantial gap between the theoretical and the actual resolution. In this Review, we summarize the steps and challenges to achieve high-resolution projection-based 3D bioprinting and provide pragmatic optimization strategies for tissue engineering and regenerative medicine applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Projection-based 3D printing resolutions and configurations.
Fig. 2: Step 1: constructing a precision light field.
Fig. 3: Step 2: bioinks response to light field.
Fig. 4: Step 3: maintaining mechanical equilibrium.

Similar content being viewed by others

References

  1. He, Y., Gao, Q. & Jin, Y. Cell Assembly with 3D Bioprinting (Wiley‐VCH, 2022).

  2. Seo, J. W. et al. Cell-laden gelatin methacryloyl bioink for the fabrication of Z-stacked hydrogel scaffolds for tissue engineering. Polymers 12, 3027 (2020).

    Article  Google Scholar 

  3. Fang, Y. et al. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv. Sci. 10, e2205744 (2023).

    Article  Google Scholar 

  4. Li, H., Yu, K., Zhang, P., Ye, Y. & Shu, Q. A printability study of multichannel nerve guidance conduits using projection-based three-dimensional printing. J. Biomater. Appl. 37, 538–550 (2022).

    Article  Google Scholar 

  5. Wang, Y., Xue, D. & Mei, D. Projection-based continuous 3D printing process with the grayscale display method. J. Manuf. Sci. Eng. 142, 1–25 (2020).

    Article  Google Scholar 

  6. Gu, Z. et al. Perfusable vessel-on-a-chip for antiangiogenic drug screening with coaxial bioprinting. Int. J. Bioprint. 8, 619 (2022).

    Article  Google Scholar 

  7. Nie, J. et al. Construction of multi-scale vascular chips and modelling of the interaction between tumours and blood vessels. Mater. Horiz. 7, 82–92 (2020).

    Article  Google Scholar 

  8. He, C. et al. Rapid and mass manufacturing of soft hydrogel microstructures for cell patterns assisted by 3D printing. Bio-Des. Manuf. 5, 641–659 (2022).

    Article  Google Scholar 

  9. Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021).

    Article  Google Scholar 

  10. Heinrich, M. A. et al. 3D bioprinting: from benches to translational applications. Small 15, e1805510 (2019).

    Article  Google Scholar 

  11. Gao, Q., He, Y., Fu, J. Z., Liu, A. & Ma, L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61, 203–215 (2015).

    Article  Google Scholar 

  12. Chahal, D., Ahmadi, A. & Cheung, K. C. Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol. Bioeng. 109, 2932–2940 (2012).

    Article  Google Scholar 

  13. Hua, W. J. et al. Fluid bath-assisted 3D printing for biomedical applications: from pre- to postprinting stages. ACS Biomater. Sci. Eng. 7, 4736–4756 (2021).

    Article  Google Scholar 

  14. Budharaju, H., Sundaramurthi, D. & Sethuraman, S. Embedded 3D bioprinting — an emerging strategy to fabricate biomimetic and large vascularized tissue constructs. Bioact. Mater. 32, 356–384 (2024).

    Google Scholar 

  15. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article  Google Scholar 

  16. Zhang, P. & Abate, A. R. High‐definition single‐cell printing: cell‐by‐cell fabrication of biological structures. Adv. Mater. 32, e2005346 (2020).

    Article  Google Scholar 

  17. Zhou, X., Wu, H., Wen, H. & Zheng, B. Advances in single-cell printing. Micromachines 13, 80 (2022).

    Article  Google Scholar 

  18. Ng, W. L. et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 12, 022001 (2020).

    Article  Google Scholar 

  19. Murphy, C. A., Lim, K. S. & Woodfield, T. B. F. Next evolution in organ-scale biofabrication: bioresin design for rapid high-resolution vat polymerization. Adv. Mater. 34, e2107759 (2022).

    Article  Google Scholar 

  20. Moroni, L. et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 36, 384–402 (2018). This article standardizes commonly used terminology in biofabrication and compares the efficiency of various 3D printing technologies.

    Article  Google Scholar 

  21. Li, W. et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 26, 106039 (2023).

    Article  Google Scholar 

  22. He, C. F. et al. Formation theory and printability of photocurable hydrogel for 3D bioprinting. Adv. Funct. Mater. 33, 2301209 (2023). This article reports the forming theoretical model of 3D bioprinting hydrogels.

    Article  Google Scholar 

  23. Yu, C. et al. A sequential 3D bioprinting and orthogonal bioconjugation approach for precision tissue engineering. Biomaterials 258, 120294 (2020).

    Article  Google Scholar 

  24. Kunwar, P. et al. High-resolution 3D printing of stretchable hydrogel structures using optical projection lithography. ACS Appl. Mater. Interfaces 12, 1640–1649 (2020).

    Article  Google Scholar 

  25. Sun, Y., Yu, K., Gao, Q. & He, Y. Projection-based 3D bioprinting for hydrogel scaffold manufacturing. Bio-Des. Manuf. 5, 633–639 (2022).

    Article  Google Scholar 

  26. Vidler, C., Crozier, K. & Collins, D. Ultra-resolution scalable microprinting. Microsyst. Nanoeng. 9, 67 (2023).

    Article  Google Scholar 

  27. You, S. T. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023). This article reports the highest resolution high-density cell printing currently available.

    Article  Google Scholar 

  28. Raman, R. et al. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 5, 610–619 (2016).

    Article  Google Scholar 

  29. Boston Micro Fabrication. MicroArch® S230. BMF https://bmf3d.com/product/s230/ (2024).

  30. Engineering For Life. Projection-Based 3D Bioprinter EFL-BP-8601. EFL-Tech http://en.efl-tech.com/index.php?c=show&id=224 (2022).

  31. Creality Store. HALOT-MAGE PRO 8K Resin 3D Printer. Creality https://store.creality.com/uk/products/halot-mage-pro-8k-resin-3d-printer?spm=..collection_08006392-7bda-4357-92d4-f9f743e1fd44.albums_1.1 (2024).

  32. Yu, K. et al. Printability during projection-based 3D bioprinting. Bioact. Mater. 11, 254–267 (2022). This article provides a detailed analysis on the printability of projection-based 3D bioprinting.

    Google Scholar 

  33. Bhanvadia, A. A., Farley, R. T., Noh, Y. & Nishida, T. High-resolution stereolithography using a static liquid constrained interface. Commun. Mater. https://doi.org/10.1038/s43246-021-00145-y (2021).

  34. Li, Y. et al. High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Addit. Manuf. 30, 100889 (2019).

    Google Scholar 

  35. Chen, J. et al. DLP 3D printing of high-resolution root scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. Biomater. Adv. 151, 213475 (2023).

    Article  Google Scholar 

  36. He, N. et al. Photoinhibiting via simultaneous photoabsorption and free-radical reaction for high-fidelity light-based bioprinting. Nat. Commun. 14, 3063 (2023). This article reports a biocompatible reactive photoabsorber.

    Article  Google Scholar 

  37. Zhou, J. & Wu, R. Digital micromirror device. Chin. J. Liq. Cryst. Disp. 18, 445–449 (2003).

    Google Scholar 

  38. Jinsong, C. Error characteristic of control system of digital mask manufacture. Chin. J. Liq. Cryst. Disp. 22, 607–610 (2007).

    Google Scholar 

  39. Chi, Z. Optimized Mask Image Projection for Large-Area Based Additive Manufacturing Process (University of Southern California, 2011).

  40. Ye, H. Optimized Mask Image Projection-Based Additive Manufacturing and Its Biomedical Applications (State University of New York at Buffalo, 2018).

  41. Sun, Y. et al. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection based 3D bioprinting. Biofabrication https://doi.org/10.1088/1758-5090/aba413 (2020).

  42. Li, Y. et al. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit. Manuf. https://doi.org/10.1016/j.addma.2020.101716 (2021).

  43. Chen, S., Shi, X., Chinnathambi, S., Wu, H. & Hanagata, N. Generation of microgrooved silica nanotube membranes with sustained drug delivery and cell contact guidance ability by using a Teflon microfluidic chip. Sci. Technol. Adv. Mater. 14, 015005 (2013).

    Article  Google Scholar 

  44. Leclech, C. & Villard, C. Cellular and subcellular contact guidance on microfabricated substrates. Front. Bioeng. Biotechnol. 8, 551505 (2020).

    Article  Google Scholar 

  45. Nguyen, A. T., Sathe, S. R. & Yim, E. K. From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J. Phys. Condens. Matter 28, 183001 (2016).

    Article  Google Scholar 

  46. Ferraris, S. et al. Topographical and biomechanical guidance of electrospun fibers for biomedical applications. Polymers 12, 2896 (2020).

    Article  Google Scholar 

  47. Yu, C. et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials 194, 1–13 (2019).

    Article  Google Scholar 

  48. Sultan, M. T., Lee, O. J., Lee, J. S. & Park, C. H. Three-dimensional digital light-processing bioprinting using silk fibroin-based bio-ink: recent advancements in biomedical applications. Biomedicines 10, 3224 (2022).

    Article  Google Scholar 

  49. Kim, M. H. & Lin, C. C. Poly(ethylene glycol)-norbornene as a photoclick bioink for digital light processing 3D bioprinting. ACS Appl. Mater. Interfaces 15, 2737–2746 (2023).

    Article  Google Scholar 

  50. You, S. et al. Mitigating scattering effects in light-based three-dimensional printing using machine learning. J. Manuf. Sci. Eng. 142, 1–23 (2020).

    Article  Google Scholar 

  51. Ehsan, A. A., Rahim, M. S., Woei, H. C. & IEEE. In IEEE Regional Symposium on Micro and Nanoelectronics (IEEE-RSM) 160–163 (2019).

  52. Isarn, I. et al. Digital light processing-3D printing of thermoset materials with high biodegradability from amino acid-derived acrylamide monomers. Macromol. Rapid Commun. 44, e2300132 (2023).

    Article  Google Scholar 

  53. Lopez-Larrea, N. et al. Fast visible-light 3D printing of conductive PEDOT:PSS hydrogels. Macromol. Rapid Commun. 45, e2300229 (2023).

    Article  Google Scholar 

  54. Ittipratheep, N. et al. 3D Printed Assembly and Software Development for Silicon Photonics Sensor Device Measurement. In Proc. 4th International Conference on Photonics Solutions (ICPS2019) (eds Kawanishi, T. et al.) 113310E (SPIE, 2020).

  55. Elim, H. I., Cai, B., Sugihara, O., Kaino, T. & Adschiri, T. Rayleigh scattering study and particle density determination of a high refractive index TiO2 nanohybrid polymer. Phys. Chem. Chem. Phys. 13, 4470–4475 (2011).

    Article  Google Scholar 

  56. Strehmel, B. et al. Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0. Beilstein J. Org. Chem. 16, 415–444 (2020).

    Article  Google Scholar 

  57. Stevens, L. M., Tagnon, C. & Page, Z. A. ‘Invisible’ digital light processing 3D printing with near infrared light. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.1c22046 (2022).

  58. Noshadi, I. et al. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater. Sci. 5, 2093–2105 (2017).

    Article  Google Scholar 

  59. Ge, Q. et al. Projection micro stereolithography based 3D printing and its applications. Int. J. Extreme Manuf. https://doi.org/10.1088/2631-7990/ab8d9a (2020).

  60. Dirk, S. M. et al. Fabrication of neural interfaces using 3D projection micro-stereolithography. US Patent 09,555,583 (2017).

  61. Quan, H. et al. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 5, 110–115 (2020).

    Google Scholar 

  62. Nakajima, H. Optical Design Using Excel: Practical Calculations for Laser Optical Systems 1–30 (Wiley, 2015).

  63. Park, S. C., Park, M. K. & Kang, M. G. Super-resolution image reconstruction: a technical overview. IEEE Signal. Process. Mag. 20, 21–36 (2003).

    Article  Google Scholar 

  64. Sing, M. N. Bartlett, T. A., McDonald, W. C. & Kempf, J. M. Super resolution projection: leveraging the MEMS speed to double or quadruple the resolution. In Proc. Emerging Digital Micromirror Device Based Systems and Applications XI (eds Douglass, M. R. et al.) 109320R (SPIE, 2019).

  65. Bauckhage, Y. & Heinrich, A. Curing subpixel structures for high-resolution printing of translucent materials using standard DLP-projectors. In Proc. Emerging Digital Micromirror Device Based Systems and Applications XII (eds Ehmke, J. & Lee, B. L.) 1129408 (SPIE, 2020).

  66. Guan, J. et al. Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning. Biofabrication https://doi.org/10.1088/1758-5090/ac3b92 (2021).

  67. Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).

    Article  Google Scholar 

  68. Schurmann, M., Scholze, J., Muller, P., Guck, J. & Chan, C. J. Cell nuclei have lower refractive index and mass density than cytoplasm. J. Biophoton. 9, 1068–1076 (2016).

    Article  Google Scholar 

  69. Lei, H. & Fan, D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 421, 129578 (2021).

    Article  Google Scholar 

  70. An, P. et al. A mechanically adaptive ‘all-sugar’ hydrogel for cell-laden injection. Eur. Polym. J. 174, 111328 (2022).

    Article  Google Scholar 

  71. Schwab, A. et al. Printability and shape fidelity of bioinks in 3D bioprinting. Chem. Rev. 120, 11028–11055 (2020).

    Article  Google Scholar 

  72. Santoni, S., Gugliandolo, S. G., Sponchioni, M., Moscatelli, D. & Colosimo, B. M. 3D bioprinting: current status and trends — a guide to the literature and industrial practice. Bio-Des. Manuf. 5, 14–42 (2021).

    Article  Google Scholar 

  73. Omidian, H. & Park, K. Fundamentals and Applications of Controlled Release Drug Delivery 1st edn (eds Siepmann, J. et al.) Ch. 4 (Springer, 2012).

  74. Fei, J. et al. Progress in photocurable 3D printing of photosensitive polyurethane: a review. Macromol. Rapid Commun. 44, e2300211 (2023).

    Article  Google Scholar 

  75. Yue, K. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015).

    Article  Google Scholar 

  76. Synofzik, J., Heene, S., Jonczyk, R. & Blume, C. Ink-structing the future of vascular tissue engineering: a review of the physiological bioink design. Bio-Des. Manuf. 7, 181–205 (2024).

    Article  Google Scholar 

  77. Zhao, P. et al. Rapid printing of 3D porous scaffolds for breast reconstruction. Bio-Des. Manuf. 6, 691–703 (2023).

    Article  Google Scholar 

  78. Lei, X. et al. Porous hydrogel arrays for hepatoma cell spheroid formation and drug resistance investigation. Bio-Des. Manuf. 4, 842–850 (2021).

    Article  Google Scholar 

  79. Vila, A. et al. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Biofabrication 12, 025008 (2020).

    Article  Google Scholar 

  80. Groll, J. et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11, 013001 (2018). This article provides the definitions of bioinks and biomaterial inks.

    Article  Google Scholar 

  81. Pantani, R. & Turng, L.-S. Manufacturing of advanced biodegradable polymeric components. J. Appl. Polym. Sci. https://doi.org/10.1002/app.42889 (2015).

  82. Zanon, M. et al. Visible light-induced crosslinking of unmodified gelatin with PEGDA for DLP-3D printable hydrogels. Eur. Polym. J. 160, 110813 (2021).

    Article  Google Scholar 

  83. Warr, C. et al. Biocompatible PEGDA resin for 3D printing. ACS Appl. Bio Mater. 3, 2239–2244 (2020).

    Article  Google Scholar 

  84. Yu, C. et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem. Rev. 120, 10695–10743 (2020).

    Article  Google Scholar 

  85. Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009).

    Article  Google Scholar 

  86. Xu, H. Q., Casillas, J., Krishnamoorthy, S. & Xu, C. X. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed. Mater. 15, 055021 (2020).

    Article  Google Scholar 

  87. Seo, J. W., Kim, G. M., Choi, Y., Cha, J. M. & Bae, H. Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. Int. J. Mol. Sci. 23, 5428 (2022).

    Article  Google Scholar 

  88. Yin, X., Wang, L., Nie, J. & Yang, J. Synthesis and properties of a novel benzophenone photoinitiator. Imaging Sci. Photochem. 36, 200–209 (2018).

    Google Scholar 

  89. Yang, Y., Zhou, Y., Lin, X., Yang, Q. & Yang, G. Printability of external and internal structures based on digital light processing 3D printing technique. Pharmaceutics 12, 207 (2020).

    Article  Google Scholar 

  90. Huh, J. et al. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication https://doi.org/10.1088/1758-5090/abfd7a (2021).

  91. Dolinski, N. D. et al. Solution mask liquid lithography (SMaLL) for one-step, multimaterial 3D printing. Adv. Mater. 30, e1800364 (2018).

    Article  Google Scholar 

  92. Zhao, X. et al. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nat. Commun. 12, 2873 (2021).

    Article  Google Scholar 

  93. Reed, W., Guterman, L., Tundo, P. & Fendler, J. H. Polymerized surfactant vesicles: kinetics and mechanism of photopolymerization. J. Am. Chem. Soc. 106, 1897–1907 (1984).

    Article  Google Scholar 

  94. Terazima, M., Nogami, Y. & Tominaga, T. Diffusion of a radical from an initiator of a free radical polymerization: a radical from AIBN. Chem. Phys. Lett. 332, 503–507 (2000).

    Article  Google Scholar 

  95. Donkers, R. L. & Leaist, D. G. Diffusion of free radicals in solution. TEMPO, diphenylpicrylhydrazyl, and nitrosodisulfonate. J. Phys. Chem. B 101, 304–308 (1997).

    Article  Google Scholar 

  96. Zhang, A. P. et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266–4270 (2012).

    Article  Google Scholar 

  97. Hsu, S. H. et al. High‐speed one‐photon 3D nanolithography using controlled initiator depletion and inhibitor transport. Adv. Opt. Mater. 10, 202102262 (2021).

    Google Scholar 

  98. Badria, A., Hutchinson, D. J., Sanz del Olmo, N. & Malkoch, M. Acrylate‐free tough 3D printable thiol‐ene thermosets and composites for biomedical applications. J. Appl. Polym. Sci. https://doi.org/10.1002/app.53046 (2022).

  99. Montgomery, S. M., Hamel, C. M., Skovran, J. & Qi, H. J. A reaction–diffusion model for grayscale digital light processing 3D printing. Extr. Mech. Lett. 53, 101714 (2022).

    Article  Google Scholar 

  100. Boothe, T. et al. A tunable refractive index matching medium for live imaging cells, tissues and model organisms. eLife 6, e27240 (2017).

    Google Scholar 

  101. Nie, J. et al. Vessel-on-a-chip with hydrogel-based microfluidics. Small 14, e1802368 (2018).

    Article  Google Scholar 

  102. Lv, S. et al. Micro/nanofabrication of brittle hydrogels using 3D printed soft ultrafine fiber molds for damage-free demolding. Biofabrication 12, 025015 (2020).

    Article  Google Scholar 

  103. Ligon, S. C., Husar, B., Wutzel, H., Holman, R. & Liska, R. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev. 114, 557–589 (2014).

    Article  Google Scholar 

  104. Jariwala, A. S. et al. Modeling effects of oxygen inhibition in mask‐based stereolithography. Rapid Prototyp. J. 17, 168–175 (2011).

    Article  Google Scholar 

  105. Lalevée, J. & Fouassier, J. P. Recent advances in sunlight induced polymerization: role of new photoinitiating systems based on the silyl radical chemistry. Polym. Chem. 2, 1107–1113 (2011).

    Article  Google Scholar 

  106. Courtecuisse, F., Belbakra, A., Croutxé-Barghorn, C., Allonas, X. & Dietlin, C. Zirconium complexes to overcome oxygen inhibition in free-radical photopolymerization of acrylates: kinetic, mechanism, and depth profiling. J. Polym. Sci. A Polym. Chem. 49, 5169–5175 (2011).

    Article  Google Scholar 

  107. Lim, K. S. et al. Visible light cross‐linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth. Macromol. Biosci. 19, e1900098 (2019).

    Article  Google Scholar 

  108. Hoyle, C. E., Lowe, A. B. & Bowman, C. N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010).

    Article  Google Scholar 

  109. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. Engl. 49, 1540–1573 (2010).

    Article  Google Scholar 

  110. Yagci, Y., Jockusch, S. & Turro, N. J. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43, 6245–6260 (2010).

    Article  Google Scholar 

  111. You, S., Wang, P., Schimelman, J., Hwang, H. H. & Chen, S. High-fidelity 3D printing using flashing photopolymerization. Addit. Manuf. 30, 100834 (2019).

    Google Scholar 

  112. Orikasa, K., Bacca, N. & Agarwal, A. Meso/macro-scale ultra-soft materials’ mechanical property evaluation device and testbed. Rev. Sci. Instrum. 92, 073904 (2021).

    Article  Google Scholar 

  113. Diamantides, N. et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication 9, 034102 (2017).

    Article  Google Scholar 

  114. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    Article  Google Scholar 

  115. Kim, S. H. et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9, 1620 (2018).

    Article  Google Scholar 

  116. Li, Y. et al. Vat photopolymerization bioprinting with a dynamic support bath. Addit. Manuf. 69, 103533 (2023).

    Google Scholar 

  117. Elomaa, L. et al. Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. J. Mater. Chem. B 3, 8348–8358 (2015).

    Article  Google Scholar 

  118. Shanjani, Y., Pan, C. C., Elomaa, L. & Yang, Y. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7, 045008 (2015).

    Article  Google Scholar 

  119. Sun, A. X., Lin, H., Beck, A. M., Kilroy, E. J. & Tuan, R. S. Projection stereolithographic fabrication of human adipose stem cell-incorporated biodegradable scaffolds for cartilage tissue engineering. Front. Bioeng. Biotechnol. 3, 115 (2015).

    Article  Google Scholar 

  120. Na, K. et al. Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J. Ind. Eng. Chem. 61, 340–347 (2018).

    Article  Google Scholar 

  121. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015). The oxygen-permeable membrane proposed in this article has become the mainstream design solution for current printers.

    Article  Google Scholar 

  122. Santoliquido, O., Colonabo, P. & Ortona, A. Additive manufacturing of ceramic components by digital light processing: a comparison between the ‘bottom-up’ and the ‘top-down’ approaches. J. Eur. Ceram. Soc. 39, 2140–2148 (2019).

    Article  Google Scholar 

  123. Beh, C. W. et al. A fluid-supported 3D hydrogel bioprinting method. Biomaterials 276, 121034 (2021).

    Article  Google Scholar 

  124. Zhang, S. et al. A review on the progress of 3D printing materials. China Plast. 30, 7–14 (2016).

    Google Scholar 

  125. Dewaele, M., Truffier-Boutry, D., Devaux, J. & Leloup, G. Volume contraction in photocured dental resins: the shrinkage–conversion relationship revisited. Dent. Mater. 22, 359–365 (2006).

    Article  Google Scholar 

  126. Westbeek, S., Remmers, J. J. C., van Dommelen, J. A. W., Maalderink, H. H. & Geers, M. G. D. Prediction of the deformed geometry of vat photo-polymerized components using a multi-physical modeling framework. Addit. Manuf. 40, 101922 (2021).

    Google Scholar 

  127. Zhang, Q. et al. Design for the reduction of volume shrinkage-induced distortion in digital light processing 3D printing. Extr. Mech. Lett. 48, 101403 (2021).

    Article  Google Scholar 

  128. Gong, J. et al. Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nat. Commun. 11, 1267 (2020).

    Article  Google Scholar 

  129. Grigoryan, B. et al. Development, characterization, and applications of multi-material stereolithography bioprinting. Sci. Rep. 11, 3171 (2021).

    Article  Google Scholar 

  130. Liu, H. B. et al. Theoretical and experimental research on multi-layer vessel-like structure printing based on 3D bio-printing technology. Micromachines 12, 1517 (2021).

    Article  Google Scholar 

  131. Kim, Y. et al. Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. Organogenesis 14, 1–12 (2018).

    Article  Google Scholar 

  132. Thomas, A. et al. Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography. Acta Biomater. 117, 121–132 (2020).

    Article  Google Scholar 

  133. Enderle, J. D. & Bronzino, J. D. Introduction to Biomedical Engineering (Elsevier Inc., 2011).

  134. Miller, K. L. et al. Rapid 3D bioprinting of a human iPSC-derived cardiac micro-tissue for high-throughput drug testing. Organs-on-a-Chip https://doi.org/10.1016/j.ooc.2021.100007 (2021).

  135. Ma, X. et al. 3D printed micro-scale force gauge arrays to improve human cardiac tissue maturation and enable high throughput drug testing. Acta Biomater. https://doi.org/10.1016/j.actbio.2018.12.026 (2019).

    Article  Google Scholar 

  136. Zhu, W. et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124, 106–115 (2017).

    Article  Google Scholar 

  137. Ricard-Blum, S. & Vallet, S. D. Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol. 7576, 170–189 (2019).

    Article  Google Scholar 

  138. Dengjel, J., Bruckner-Tuderman, L. & Nyström, A. Skin proteomics — analysis of the extracellular matrix in health and disease. Exp. Rev. Proteom. 17, 377–391 (2020).

    Article  Google Scholar 

  139. Vu, B., Souza, G. R. & Dengjel, J. Scaffold-free 3D cell culture of primary skin fibroblasts induces profound changes of the matrisome. Matrix Biol. Plus 11, 100066 (2021).

    Article  Google Scholar 

  140. Chan, V. et al. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip 12, 88–98 (2012).

    Article  Google Scholar 

  141. Kuang, X. et al. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 5, eaav5790 (2019).

    Article  Google Scholar 

  142. Schwartz, J. J. & Boydston, A. J. Multimaterial actinic spatial control 3D and 4D printing. Nat. Commun. 10, 791 (2019).

    Article  Google Scholar 

  143. Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, e1800242 (2018).

    Article  Google Scholar 

  144. Kowsari, K., Akbari, S., Wang, D., Fang, N. X. & Ge, Q. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Print. Addit. Manuf. 5, 185–193 (2018).

    Article  Google Scholar 

  145. Yue, L. et al. Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nat. Commun. 14, 1251 (2023).

    Article  Google Scholar 

  146. Yue, L. et al. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat. Commun. 14, 5519 (2023).

    Article  Google Scholar 

  147. Chen, Y. et al. A spatiotemporal controllable biomimetic skin for accelerating wound repair. Small 20, e2310556 (2024).

    Article  Google Scholar 

  148. Gibson, I., Rosen, D. & Stucker, B. in Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (eds Gibson, I., Rosen, D. & Stucker, B.) 63–106 (Springer, 2015).

  149. Li, W. et al. Recent advances in formulating and processing biomaterial inks for vat polymerization‐based 3D printing. Adv. Healthc. Mater. 9, e2000156 (2020).

    Article  Google Scholar 

  150. Chartrain, N. A., Williams, C. B. & Whittington, A. R. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 74, 90–111 (2018).

    Article  Google Scholar 

  151. Huang, J., Qin, Q. & Wang, J. A review of stereolithography: processes and systems. Processes 8, 1138 (2020).

    Article  Google Scholar 

  152. Skoog, S. A., Goering, P. L. & Narayan, R. J. Stereolithography in tissue engineering. J. Mater. Sci.-Mater. Med. 25, 845–856 (2014).

    Article  Google Scholar 

  153. Melchels, F. P. W., Feijen, J. & Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010).

    Article  Google Scholar 

  154. Monneret, S. et al. Dynamic UV microstereolithography. Eur. Phys. J. Appl. Phys. 20, 213–218 (2002).

    Article  Google Scholar 

  155. Monneret, S., Loubere, V. & Corbel, S. Microstereolithography using a dynamic mask generator and a noncoherent visible light source. In Proc. Design, Test, and Microfabrication of MEMS and MOEMS (eds Courtois, B. et al.) 553–561 (SPIE, 1999).

  156. Chatwin, C. et al. UV microstereolithography system that uses spatial light modulator technology. Appl. Opt. 37, 7514–7522 (1998).

    Article  Google Scholar 

  157. Dudley, D., Duncan, W. M. & Slaughter, J. Emerging digital micromirror device (DMD) applications. In Proc. MOEMS Display and Imaging Systems (ed. Urey, H.) 14–25 (SPIE, 2003).

  158. Zhang, J., Hu, Q., Wang, S., Tao, J. & Gou, M. Digital light processing based three-dimensional printing for medical applications. Int. J. Bioprint. 6, 242 (2019).

    Article  Google Scholar 

  159. Lu, Y., Mapili, G., Suhali, G., Chen, S. & Roy, K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77A, 396–405 (2006).

    Article  Google Scholar 

  160. Xing, J.-F., Zheng, M.-L. & Duan, X.-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031–5039 (2015).

    Article  Google Scholar 

  161. Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).

    Article  Google Scholar 

  162. Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article  Google Scholar 

  163. Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article  Google Scholar 

  164. Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photon. 16, 784–791 (2022).

    Article  Google Scholar 

  165. Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).

    Article  Google Scholar 

  166. Banin, U. & Millo, O. Tunneling and optical spectroscopy of semiconductor nanocrystals. Annu. Rev. Phys. Chem. 54, 465–492 (2003).

    Article  Google Scholar 

  167. Rostami, A. & Rahmani, A. A proposal for high resolution photolithography using optical limiters. Laser Phys. Lett. 1, 462–467 (2004).

    Article  Google Scholar 

  168. Malinowski, P. E. et al. High resolution photolithography for direct view active matrix organic light-emitting diode augmented reality displays. J. Soc. Inf. Disp. 26, 128–136 (2018).

    Article  Google Scholar 

  169. Fiedziuszko, S. J. Satellites and microwaves. In Proc. 14th International Conference on Microwaves, Radar and Wireless Communications 937–953 (IEEE, 2002).

  170. Liu, H., Wan, L. & Lu, Y. High precision positioning technology for long distance ocean engineering based on Beidou satellite navigation system. Bull. Survey. Mapp. 0, 62–66 (2017).

    Google Scholar 

  171. Guo, R., Liu, L., Li, X., Cheng, Y. & Chang, Z. Precise orbit determination for GEO satellites based on both satellite clock offsets and station clock offsets. Chin. J. Space Sci. 32, 405–411 (2012).

    Article  Google Scholar 

  172. Ding, M. et al. Separation and characterization of silk fibroin with different molecular weight. J. Text. Res. 42, 46–53 (2021).

    Google Scholar 

  173. Xu, M. Q. et al. Molecular structural properties of extracted gelatin from Yak skin as analysed based on molecular weight. Int. J. Food Prop. 20, S543–S555 (2017).

    Article  Google Scholar 

  174. Daly, A. C. & Lim, K. S. High resolution lithography 3D bioprinting. Trends Biotechnol. 41, 262–263 (2023).

    Article  Google Scholar 

  175. Zhang, B. et al. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J. Mater. Chem. B 6, 3246–3253 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (grant numbers: 52235007, T2121004 and 52325504).

Author information

Authors and Affiliations

Authors

Contributions

C.-F.H. and T.-H.Q. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Yong He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Chan Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, CF., Qiao, TH., Wang, GH. et al. High-resolution projection-based 3D bioprinting. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00218-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00218-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research