Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design and translation of injectable biomaterials

Abstract

Injectable biomaterials, including bulk materials and particulate materials, can be delivered in a minimally invasive way and may provide alternative treatment options for conditions that currently require surgical procedures. However, the design and translation of injectable biomaterials can be complex, as the injectability of a biomaterial is determined by its properties and injection conditions, which can change in the translation from the bench to the clinic. In this Review, we highlight parameters that affect the injectability of biomaterials, outlining design considerations for both injectable bulk and particle materials, and examining safety and testing considerations. We then discuss different delivery routes and applications of injectable biomaterials, including subcutaneous, nervous tissue, intraocular, intracardiac, intramuscular and intravascular injection, in addition to orthopaedic applications, highlighting clinically approved approaches and promising preclinical outcomes. Moreover, we survey applications of injectable biomaterials related to women’s health, and provide an outlook on the translational challenges and opportunities of injectable biomaterials.

Key points

  • Injectability of biomaterials depends on material viscosity, injection speed, injection volume, injection device and the time for liquid-to-solid transition.

  • Biomaterials can be made injectable through a variety of methods, which need to be tailored to the intended application.

  • Considering clinical application and delivery conditions early in the design of injectable biomaterials can aid the translation of new injectable biomaterials.

  • Injectable biomaterials have been used for applications in various tissues and for the treatment of different conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors that affect biomaterial injectability.
Fig. 2: Assessing biomaterial injectability.
Fig. 3: Injectable biomaterials.
Fig. 4: Injection routes.

Similar content being viewed by others

References

  1. Zhou, H. et al. Injectable biomaterials for translational medicine. Mater. Today 28, 81–97 (2019).

    Article  Google Scholar 

  2. Spector, M. & Lim, T. C. Injectable biomaterials: a perspective on the next wave of injectable therapeutics. Biomed. Mater. 11, 014110 (2016).

    Article  Google Scholar 

  3. Cho, K.-H., Uthaman, S., Park, I.-K. & Cho, C.-S. Injectable biomaterials in plastic and reconstructive surgery: a review of the current status. Tissue Eng. Regen. Med. 15, 559–574 (2018).

    Article  Google Scholar 

  4. Damme, L. V., Blondeel, P. & Vlierberghe, S. V. Injectable biomaterials as minimal invasive strategy towards soft tissue regeneration — an overview. J. Phys. Mater. 4, 022001 (2021).

    Article  Google Scholar 

  5. Watt, R. P., Khatri, H. & Dibble, A. R. G. Injectability as a function of viscosity and dosing materials for subcutaneous administration. Int. J. Pharm. 554, 376–386 (2019).

    Article  Google Scholar 

  6. Binabaji, E., Ma, J. & Zydney, A. L. Intermolecular interactions and the viscosity of highly concentrated monoclonal antibody solutions. Pharm. Res. 32, 3102–3109 (2015).

    Article  Google Scholar 

  7. Crescenzi, V., Francescangeli, A., Renier, D. & Bellini, D. New cross-linked and sulfated derivatives of partially deacetylated hyaluronan: synthesis and preliminary characterization. Biopolymers 64, 86–94 (2002).

    Article  Google Scholar 

  8. Colby, R. H. Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol. Acta 49, 425–442 (2010).

    Article  Google Scholar 

  9. Li, Y., Qiao, C., Shi, L., Jiang, Q. & Li, T. Viscosity of collagen solutions: influence of concentration, temperature, adsorption, and role of intermolecular interactions. J. Macromol. Sci. Part B 53, 893–901 (2014).

    Article  Google Scholar 

  10. Horkay, F., Douglas, J. F. & Raghavan, S. R. Rheological properties of cartilage glycosaminoglycans and proteoglycans. Macromolecules 54, 2316–2324 (2021).

    Article  Google Scholar 

  11. Zhao, C. et al. Evaluation the injectability of injectable microparticle delivery systems on the basis of injection force and discharged rate. Eur. J. Pharm. Biopharm. 190, 58–72 (2023).

    Article  Google Scholar 

  12. Maisonneuve, B. G. C., Roux, D. C. D., Thorn, P. & Cooper-White, J. J. Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions. Biomacromolecules 14, 4388–4397 (2013).

    Article  Google Scholar 

  13. Robinson, T. E. et al. Filling the gap: a correlation between objective and subjective measures of injectability. Adv. Healthc. Mater. 9, 1901521 (2020).

    Article  Google Scholar 

  14. Prasetyono, T. O. H. & Adhistana, P. Laboratory study on injection force measurement on syringe and needle combinations. Malays. J. Med. Sci. 26, 66–76 (2019).

    Article  Google Scholar 

  15. Xue, C. et al. Synthesis of injectable shear-thinning biomaterials of various compositions of gelatin and synthetic silicate nanoplatelet. Biotechnol. J. 15, 1900456 (2020).

    Article  Google Scholar 

  16. Krisdiyanto, Bin Raja Ghazilla, R. A., Azuddin, M., Bin Ahmad Hairuddin, M. K. F. & Risdiana, N. An analysis of the effect of syringe barrel volume on performance and user perception. Medicine 102, e33983 (2023).

    Article  Google Scholar 

  17. Urrea, F. A., Casanova, F., Orozco, G. A. & García, J. J. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels. J. Mech. Behav. Biomed. Mater. 56, 98–105 (2016).

    Article  Google Scholar 

  18. Allmendinger, A. et al. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions. Eur. J. Pharm. Biopharm. 87, 318–328 (2014).

    Article  Google Scholar 

  19. Arora, M., Chan, E. K. S., Gupta, S. & Diwan, A. D. Polymethylmethacrylate bone cements and additives: a review of the literature. World J. Orthop. 4, 67–74, (2013).

    Article  Google Scholar 

  20. Park, K. M. & Park, K. D. In situ cross-linkable hydrogels as a dynamic matrix for tissue regenerative medicine. Tissue Eng. Regen. Med. 15, 547–557 (2018).

    Article  Google Scholar 

  21. Delaey, J., Dubruel, P. & Van Vlierberghe, S. Shape-memory polymers for biomedical applications. Adv. Funct. Mater. 30, 1909047 (2020).

    Article  Google Scholar 

  22. Avery, R. K. et al. An injectable shear-thinning biomaterial for endovascular embolization. Sci. Transl. Med. 8, 365ra156–365ra156 (2016).

    Article  Google Scholar 

  23. Hernandez, M. J., Zelus, E. I., Spang, M. T., Braden, R. L. & Christman, K. L. Dose optimization of decellularized skeletal muscle extracellular matrix hydrogels for improving perfusion and subsequent validation in an aged hindlimb ischemia model. Biomater. Sci. 8, 3511–3521 (2020).

    Article  Google Scholar 

  24. Standard Specification for Acrylic Bone Cement ASTM F451-21 (ASTM International, 2021).

  25. Xu, H. H. K. et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 5, 1–19 (2017).

    Article  Google Scholar 

  26. He, Y., Trotignon, J. P., Loty, B., Tcharkhtchi, A. & Verdu, J. Effect of antibiotics on the properties of poly(methylmethacrylate)-based bone cement. J. Biomed. Mater. Res. 63, 800–806 (2002).

    Article  Google Scholar 

  27. Caló, E. & Khutoryanskiy, V. V. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015).

    Article  Google Scholar 

  28. Nele, V., Wojciechowski, J. P., Armstrong, J. P. K. & Stevens, M. M. Tailoring gelation mechanisms for advanced hydrogel applications. Adv. Funct. Mater. 30, 2002759 (2020).

    Article  Google Scholar 

  29. Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2011).

    Article  Google Scholar 

  30. Bae, J. W., Choi, J. H., Lee, Y. & Park, K. D. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. J. Tissue Eng. Regen. Med. 9, 1225–1232 (2015).

    Article  Google Scholar 

  31. Yu, Y. et al. Recent advances in thermo-sensitive hydrogels for drug delivery. J. Mater. Chem. B 9, 2979–2992 (2021).

    Article  Google Scholar 

  32. Park, S. H. et al. An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater. 11, 30 (2019).

    Article  Google Scholar 

  33. Carlini, A. S. et al. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat. Commun. 10, 1735 (2019).

    Article  Google Scholar 

  34. Ruvinov, E., Leor, J. & Cohen, S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32, 565–578 (2011).

    Article  Google Scholar 

  35. Wolf, M. T. et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33, 7028–7038 (2012).

    Article  Google Scholar 

  36. Huynh, D. P., Im, G. J., Chae, S. Y., Lee, K. C. & Lee, D. S. Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. J. Control. Rel. 137, 20–24 (2009).

    Article  Google Scholar 

  37. Janarthanan, G. & Noh, I. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. J. Mater. Sci. Technol. 63, 35–53 (2021).

    Article  Google Scholar 

  38. Yousefiasl, S., Zare, I., Ghovvati, M. & Ghomi, M. in Stimuli-Responsive Materials for Biomedical Applications 203–229 (American Chemical Society, 2023).

  39. Li, Z., Zhu, Y. & Matson, J. B. pH-responsive self-assembling peptide-based biomaterials: designs and applications. ACS Appl. Bio Mater. 5, 4635–4651 (2022).

    Article  Google Scholar 

  40. Chen, M. H. et al. Injectable supramolecular hydrogel/microgel composites for therapeutic delivery. Macromol. Biosci. 19, e1800248 (2019).

    Article  Google Scholar 

  41. Uman, S., Dhand, A. & Burdick, J. A. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J. Appl. Polym. Sci. 137, 48668 (2020).

    Article  Google Scholar 

  42. Wang, L. et al. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nat. Biomed. Eng. 5, 1157–1173 (2021).

    Article  Google Scholar 

  43. Eggermont, L. J., Rogers, Z. J., Colombani, T., Memic, A. & Bencherif, S. A. Injectable cryogels for biomedical applications. Trends Biotechnol. 38, 418–431 (2020).

    Article  Google Scholar 

  44. Montgomery, M. et al. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 16, 1038–1046 (2017).

    Article  Google Scholar 

  45. Filipczak, N., Pan, J., Yalamarty, S. S. K. & Torchilin, V. P. Recent advancements in liposome technology. Adv. Drug. Deliv. Rev. 156, 4–22 (2020).

    Article  Google Scholar 

  46. Rosellini, E. et al. Influence of injectable microparticle size on cardiac progenitor cell response. J. Appl. Biomater. Funct. Mater. 16, 241–251 (2018).

    Google Scholar 

  47. Patel, Z. S., Yamamoto, M., Ueda, H., Tabata, Y. & Mikos, A. G. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 4, 1126–1138 (2008).

    Article  Google Scholar 

  48. Hadidi, N. & Pazuki, G. Preparation, characterization and in-vivo efficacy study of glatiramer acetate (GA)-hydrogel-microparticles as novel drug delivery system for GA in RRMS. Sci. Rep. 12, 22042 (2022).

    Article  Google Scholar 

  49. Skop, N. B., Calderon, F., Levison, S. W., Gandhi, C. D. & Cho, C. H. Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomater. 9, 6834–6843 (2013).

    Article  Google Scholar 

  50. Hou, S. et al. Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration. Biomaterials 223, 119458 (2019).

    Article  Google Scholar 

  51. Roosa, C. A., Ma, M., Chhabra, P., Brayman, K. & Griffin, D. Delivery of dissociated islets cells within microporous annealed particle scaffold to treat type 1 diabetes. Adv. Ther. 5, 2200064 (2022).

    Article  Google Scholar 

  52. Li, C. et al. 3D-printed hydrogel particles containing PRP laden with TDSCs promote tendon repair in a rat model of tendinopathy. J. Nanobiotechnol. 21, 177 (2023).

    Article  Google Scholar 

  53. Riley, L., Schirmer, L. & Segura, T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr. Opin. Biotechnol. 60, 1–8 (2019).

    Article  Google Scholar 

  54. Qazi, T. H. & Burdick, J. A. Granular hydrogels for endogenous tissue repair. Biomater. Biosyst. 1, 100008 (2021).

    Google Scholar 

  55. Sung, Y. K. & Kim, S. W. Recent advances in polymeric drug delivery systems. Biomater. Res. 24, 12 (2020).

    Article  Google Scholar 

  56. Yin, Y. et al. Nanogel: a versatile nano-delivery system for biomedical applications. Pharmaceutics 12, 290 (2020).

    Article  Google Scholar 

  57. Chandrakala, V., Aruna, V. & Angajala, G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 5, 1593–1615 (2022).

    Article  Google Scholar 

  58. Frickenstein, A. N. et al. Mesoporous silica nanoparticles: properties and strategies for enhancing clinical effect. Pharmaceutics 13, 570 (2021).

    Article  Google Scholar 

  59. Jenjob, R., Phakkeeree, T., Seidi, F., Theerasilp, M. & Crespy, D. Emulsion techniques for the production of pharmacological nanoparticles. Macromol. Biosci. 19, e1900063 (2019).

    Article  Google Scholar 

  60. Sodhi, H. S. & Panitch, A. A comparison of electrosprayed vs vortexed glycosaminoglycan–peptide nanoparticle platform for protection and improved delivery of therapeutic peptides. Colloids Surf. B: Biointerfaces 222, 113112 (2023).

    Article  Google Scholar 

  61. Deloney, M., Garoosi, P., Dartora, V. F. C., Christiansen, B. A. & Panitch, A. Hyaluronic acid-binding, anionic, nanoparticles inhibit ECM degradation and restore compressive stiffness in aggrecan-depleted articular cartilage explants. Pharmaceutics 13, 1503 (2021).

    Article  Google Scholar 

  62. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  Google Scholar 

  63. Kingston, B. R. et al. Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano 15, 14080–14094 (2021).

    Article  Google Scholar 

  64. & Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. https://doi.org/10.1038/s44222-024-00154-9 (2024).

    Article  Google Scholar 

  65. Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article  Google Scholar 

  66. Pearce, A. K. & O’Reilly, R. K. Insights into active targeting of nanoparticles in drug delivery: advances in clinical studies and design considerations for cancer nanomedicine. Bioconjugate Chem. 30, 2300–2311 (2019).

    Article  Google Scholar 

  67. Nguyen, M. M. et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv. Mater. 27, 5547–5552 (2015).

    Article  Google Scholar 

  68. Chien, M.-P. et al. Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. J. Am. Chem. Soc. 135, 18710–18713 (2013).

    Article  Google Scholar 

  69. Heida, R. et al. Assessing the immunomodulatory effect of size on the uptake and immunogenicity of influenza- and hepatitis B subunit vaccines in vitro. Pharmaceuticals 15, 887 (2022).

    Article  Google Scholar 

  70. Patil, S., Sandberg, A., Heckert, E., Self, W. & Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28, 4600–4607 (2007).

    Article  Google Scholar 

  71. Shang, L., Nienhaus, K. & Nienhaus, G. U. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol. 12, 5 (2014).

    Article  Google Scholar 

  72. Sanità, G., Carrese, B. & Lamberti, A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2020.587012 (2020).

  73. Corbo, C. et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11, 81–100 (2016).

    Article  Google Scholar 

  74. Hillel, A. T. et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med. 3, 93ra67 (2011).

    Article  Google Scholar 

  75. Young, J. L. et al. In vivo response to dynamic hyaluronic acid hydrogels. Acta Biomater. 9, 7151–7157 (2013).

    Article  Google Scholar 

  76. Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).

    Article  Google Scholar 

  77. Reinhart, A.-G. et al. Investigations into mRNA lipid nanoparticles shelf-life stability under nonfrozen conditions. Mol. Pharmaceutics 20, 6492–6503 (2023).

    Article  Google Scholar 

  78. Yano, K., Tsuyuki, K., Watanabe, N., Kasanuki, H. & Yamato, M. The regulation of allogeneic human cells and tissue products as biomaterials. Biomaterials 34, 3165–3173 (2013).

    Article  Google Scholar 

  79. Usach, I., Martinez, R., Festini, T. & Peris, J. E. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv. Ther. 36, 2986–2996 (2019).

    Article  Google Scholar 

  80. Mathaes, R., Koulov, A., Joerg, S. & Mahler, H. C. Subcutaneous injection volume of biopharmaceuticals — pushing the boundaries. J. Pharm. Sci. 105, 2255–2259 (2016).

    Article  Google Scholar 

  81. Kim, H., Park, H. & Lee, S. J. Effective method for drug injection into subcutaneous tissue. Sci. Rep. 7, 9613 (2017).

    Article  Google Scholar 

  82. Chen, W., Yung, B. C., Qian, Z. & Chen, X. Improving long-term subcutaneous drug delivery by regulating material–bioenvironment interaction. Adv. Drug. Deliv. Rev. 127, 20–34 (2018).

    Article  Google Scholar 

  83. Sartor, O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 61, 25–31 (2003).

    Article  Google Scholar 

  84. Stevens, G. L., Dawson, G. & Zummo, J. Clinical benefits and impact of early use of long-acting injectable antipsychotics for schizophrenia. Early Interv. Psychiatry 10, 365–377 (2016).

    Article  Google Scholar 

  85. Butreddy, A., Gaddam, R. P., Kommineni, N., Dudhipala, N. & Voshavar, C. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int. J. Mol. Sci. 22, 8884 (2021).

    Article  Google Scholar 

  86. Zhou, J. et al. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Mol. Pharm. 17, 1502–1515 (2020).

    Article  Google Scholar 

  87. Anselmo, A. C. & Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Rel. 190, 15–28 (2014).

    Article  Google Scholar 

  88. Kasse, C. M. et al. Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot. Biomater. Sci. 11, 2065–2079 (2023).

    Article  Google Scholar 

  89. Annabi, N. et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 26, 85–123 (2014).

    Article  Google Scholar 

  90. Guo, J., Fang, W. & Wang, F. Injectable fillers: current status, physicochemical properties, function mechanism, and perspectives. RSC Adv. 13, 23841–23858 (2023).

    Article  Google Scholar 

  91. Solomon, P., Ng, C. L., Kerzner, J. & Rival, R. Facial soft tissue augmentation with bellafill: a review of 4 years of clinical experience in 212 patients. Plastic Surg. 29, 98–102 (2021).

    Article  Google Scholar 

  92. Urdiales-Galvez, F. et al. Treatment of soft tissue filler complications: expert consensus recommendations. Aesthetic Plastic Surg. 42, 498–510 (2018).

    Article  Google Scholar 

  93. Cassuto, D., Bellia, G. & Schiraldi, C. An overview of soft tissue fillers for cosmetic dermatology: from filling to regenerative medicine. Clin. Cosmet. Invest. Dermatol. 14, 1857–1866 (2021).

    Article  Google Scholar 

  94. Jacovella, P. F. Use of calcium hydroxylapatite (Radiesse) for facial augmentation. Clin. Interven. Aging 3, 161–174 (2008).

    Article  Google Scholar 

  95. Engelhard, P., Humble, G. & Mest, D. Safety of sculptra: a review of clinical trial data. J. Cosmet. Laser Ther. 7, 201–205 (2005).

    Article  Google Scholar 

  96. Choi, M. et al. The volumetric analysis of fat graft survival in breast reconstruction. Plast. Reconstr. Surg. 131, 185–191 (2013).

    Article  Google Scholar 

  97. Kreger, S. T. & Voytik-Harbin, S. L. Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biol. 28, 336–346 (2009).

    Article  Google Scholar 

  98. Adam Young, D., Bajaj, V. & Christman, K. L. Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J. Biomed. Mater. Res. Part A 102, 1641–1651 (2014).

    Article  Google Scholar 

  99. Anderson, A. E. et al. An immunologically active, adipose-derived extracellular matrix biomaterial for soft tissue reconstruction: concept to clinical trial. npj Regen. Med. 7, 6 (2022).

    Article  Google Scholar 

  100. Roth, G. A. et al. Injectable hydrogels for sustained codelivery of subunit vaccines enhance humoral immunity. ACS Cent. Sci. 6, 1800–1812 (2020).

    Article  Google Scholar 

  101. Hao, H. et al. Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel. Nat. Biomed. Eng. 7, 928–942 (2023).

    Article  Google Scholar 

  102. Super, M. et al. Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. Nat. Biomed. Eng. 6, 8–18 (2022).

    Article  Google Scholar 

  103. Amer, M. H., Rose, F., Shakesheff, K. M., Modo, M. & White, L. J. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. npj Regen. Med. 2, 23 (2017).

    Article  Google Scholar 

  104. Samal, J. & Segura, T. Injectable biomaterial shuttles for cell therapy in stroke. Brain Res. Bull. 176, 25–42 (2021).

    Article  Google Scholar 

  105. Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    Article  Google Scholar 

  106. Nih, L. R. et al. Engineered HA hydrogel for stem cell transplantation in the brain: biocompatibility data using a design of experiment approach. Data Brief. 10, 202–209 (2017).

    Article  Google Scholar 

  107. Nih, L. R., Sideris, E., Carmichael, S. T. & Segura, T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. https://doi.org/10.1002/adma.201606471 (2017).

  108. Ballios, B. G. et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Rep. 4, 1031–1045 (2015).

    Article  Google Scholar 

  109. Zhong, J. et al. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil. Neural Repair. 24, 636–644 (2010).

    Article  Google Scholar 

  110. Nance, E., Pun, S. H., Saigal, R. & Sellers, D. L. Drug delivery to the central nervous system. Nat. Rev. Mater. 7, 314–331 (2021).

    Article  Google Scholar 

  111. De Andres, J. et al. Intrathecal drug delivery: advances and applications in the management of chronic pain patient. Front. Pain. Res. 3, 900566 (2022).

    Article  Google Scholar 

  112. Fowler, M. J. et al. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug. Delivery Rev. 165-166, 77–95 (2020).

    Article  Google Scholar 

  113. Adank, D. N. et al. Comparative intracerebroventricular and intrathecal administration of a nanomolar macrocyclic melanocortin receptor agonist MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro]) decreases food intake in mice. ACS Chem. Neurosci. 11, 3051–3063 (2020).

    Article  Google Scholar 

  114. Shen, H. et al. Advances in biomaterial-based spinal cord injury repair. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202110628 (2021).

    Article  Google Scholar 

  115. Deng, W. S. et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen. Res. 15, 1686–1700 (2020).

    Article  Google Scholar 

  116. Austin, J. W. et al. The effects of intrathecal injection of a hyaluronan-based hydrogel on inflammation, scarring and neurobehavioural outcomes in a rat model of severe spinal cord injury associated with arachnoiditis. Biomaterials 33, 4555–4564 (2012).

    Article  Google Scholar 

  117. Kang, C. E., Baumann, M. D., Tator, C. H. & Shoichet, M. S. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury. Cell Tissues Organs 197, 55–63 (2013).

    Article  Google Scholar 

  118. Fornasari, B. E., Carta, G., Gambarotta, G. & Raimondo, S. Natural-based biomaterials for peripheral nerve injury repair. Front. Bioeng. Biotechnol. 8, 554257 (2020).

    Article  Google Scholar 

  119. Angius, D. et al. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials 33, 8034–8039 (2012).

    Article  Google Scholar 

  120. Prest, T. A. et al. Safety and efficacy of an injectable nerve-specific hydrogel in a rodent crush injury model. Muscle Nerve 65, 247–255 (2022).

    Article  Google Scholar 

  121. Kong, Y. et al. Injectable, antioxidative, and neurotrophic factor-deliverable hydrogel for peripheral nerve regeneration and neuropathic pain relief. Appl. Mater. Today 24, 101090 (2021).

    Article  Google Scholar 

  122. Thacker, M., Tseng, C. L. & Lin, F. H. Substitutes and colloidal system for vitreous replacement and drug delivery: recent progress and future prospective. Polymers 13, 121 (2020).

    Article  Google Scholar 

  123. Annaka, M. et al. Design of an injectable in situ gelation biomaterials for vitreous substitute. Biomacromolecules 12, 4011–4021 (2011).

    Article  Google Scholar 

  124. Xue, K. et al. A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomater. Sci. 8, 926–936 (2020).

    Article  Google Scholar 

  125. Allyn, M. M., Luo, R. H., Hellwarth, E. B. & Swindle-Reilly, K. E. Considerations for polymers used in ocular drug delivery. Front. Med. 8, 787644 (2021).

    Article  Google Scholar 

  126. Mushtaq, Y. et al. Intravitreal fluocinolone acetonide implant (ILUVIEN((R))) for the treatment of retinal conditions. a review of clinical studies. Drug. Design Dev. Ther. 17, 961–975 (2023).

    Article  Google Scholar 

  127. Testi, I. & Pavesio, C. Preliminary evaluation of YUTIQ (fluocinolone acetonide intravitreal implant 0.18 mg) in posterior uveitis. Ther. Deliv. 10, 621–625 (2019).

    Article  Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05695417 (2023).

  129. Park, J. et al. In situ cross-linking hydrogel as a vehicle for retinal progenitor cell transplantation. Cell Transpl. 28, 596–606 (2019).

    Article  Google Scholar 

  130. Tang, Z. et al. Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials 194, 57–72 (2019).

    Article  Google Scholar 

  131. Hernandez, M. J. & Christman, K. L. Designing acellular injectable biomaterial therapeutics for treating myocardial infarction and peripheral artery disease. JACC Basic Transl. Sci. 2, 212–226 (2017).

    Article  Google Scholar 

  132. He, S. et al. Advances in injectable hydrogel strategies for heart failure treatment. Adv. Healthc. Mater. 12, e2300029 (2023).

    Article  Google Scholar 

  133. Zhu, Y., Matsumura, Y. & Wagner, W. R. Ventricular wall biomaterial injection therapy after myocardial infarction: advances in material design, mechanistic insight and early clinical experiences. Biomaterials 129, 37–53 (2017).

    Article  Google Scholar 

  134. Purcell, B. P. et al. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: effects on left ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 315, H814–h825 (2018).

    Article  Google Scholar 

  135. Li, Y. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 7, eabd6740 (2021).

    Article  Google Scholar 

  136. Lee, L. C. et al. Algisyl-LVR with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int. J. Cardiol. 168, 2022–2028 (2013).

    Article  Google Scholar 

  137. Mann, D. L. et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur. J. Heart Fail. 18, 314–325 (2016).

    Article  Google Scholar 

  138. Seif-Naraghi, S. B. et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5, 173ra125 (2013).

    Article  Google Scholar 

  139. Traverse, J. H. et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic. Transl. Sci. 4, 659–669 (2019).

    Article  Google Scholar 

  140. Koudstaal, S. et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J. Cardiovasc. Transl. Res. 7, 232–241 (2014).

    Article  Google Scholar 

  141. Zhu, D. et al. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 12, 1412 (2021).

    Article  Google Scholar 

  142. Polizzotti, B. D., Arab, S. & Kuhn, B. Intrapericardial delivery of gelfoam enables the targeted delivery of Periostin peptide after myocardial infarction by inducing fibrin clot formation. PLoS ONE 7, e36788 (2012).

    Article  Google Scholar 

  143. Garcia, J. R. et al. Minimally invasive delivery of hydrogel-encapsulated amiodarone to the epicardium reduces atrial fibrillation. Circ. Arrhythmia Electrophysiol. 11, e006408 (2018).

    Article  Google Scholar 

  144. Greenblatt, D. J. & Koch-Weser, J. Intramuscular injection of drugs. N. Engl. J. Med. 295, 542–546 (1976).

    Article  Google Scholar 

  145. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  Google Scholar 

  146. Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017).

    Article  Google Scholar 

  147. Panther, L. et al. 112. Interim results from a phase 2, randomized, observer-blind, placebo-controlled, dose-finding trial of an mRNA-based cytomegalovirus vaccine in healthy adults. Open Forum Infect. Dis. https://doi.org/10.1093/ofid/ofac492.190 (2022).

  148. Atalis, A. et al. Nanoparticle-delivered TLR4 and RIG-I agonists enhance immune response to SARS-CoV-2 subunit vaccine. J. Control. Rel. 347, 476–488 (2022).

    Article  Google Scholar 

  149. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article  Google Scholar 

  150. Clark, A. et al. In situ forming biomaterials as muscle void fillers for the provisional treatment of volumetric muscle loss injuries. Mater. Today Bio 22, 100781 (2023).

    Article  Google Scholar 

  151. Basurto, I. M. et al. Photoreactive hydrogel stiffness influences volumetric muscle loss repair. Tissue Eng. Part A 28, 312–329 (2022).

    Article  Google Scholar 

  152. Cezar, C. A. et al. Biologic-free mechanically induced muscle regeneration. Proc. Natl Acad. Sci. USA 113, 1534–1539 (2016).

    Article  Google Scholar 

  153. Ungerleider, J. L. & Christman, K. L. Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cell Transl. Med. 3, 1090–1099 (2014).

    Article  Google Scholar 

  154. Ungerleider, J. L. et al. Extracellular matrix hydrogel promotes tissue remodeling, arteriogenesis, and perfusion in a rat hindlimb ischemia model. JACC Basic. Transl. Sci. 1, 32–44 (2016).

    Article  Google Scholar 

  155. Li, C. et al. Bioengineering strategies for the treatment of peripheral arterial disease. Bioact. Mater. 6, 684–696 (2021).

    Google Scholar 

  156. Li, C. et al. Antioxidative and angiogenic hyaluronic acid-based hydrogel for the treatment of peripheral artery disease. ACS Appl. Mater. Interfaces 13, 45224–45235 (2021).

    Article  Google Scholar 

  157. Lee, S. J. et al. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell-derived endothelial cells encapsulated in a nanomatrix gel. Circulation 136, 1939–1954 (2017).

    Article  Google Scholar 

  158. Anderson, E. M. et al. VEGF and IGF delivered from alginate hydrogels promote stable perfusion recovery in ischemic hind limbs of aged mice and young rabbits. J. Vasc. Res. 54, 288–298 (2017).

    Article  Google Scholar 

  159. Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H. & Kim, S. K. Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 72, 269–281 (2015).

    Article  Google Scholar 

  160. Liu, M. et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017).

    Article  Google Scholar 

  161. Kumar, V., Ricks, M., Abouel-Enin, S. & Dunlop, D. G. Long term results of impaction bone grafting using a synthetic graft (Apapore) in revision hip surgery. J. Orthop. 14, 290–293 (2017).

    Article  Google Scholar 

  162. Khairoun, I., Boltong, M. G., Driessens, F. C. & Planell, J. A. Some factors controlling the injectability of calcium phosphate bone cements. J. Mater. Sci. Mater Med. 9, 425–428 (1998).

    Article  Google Scholar 

  163. Dohm, M. et al. A randomized trial comparing balloon kyphoplasty and vertebroplasty for vertebral compression fractures due to osteoporosis. Am. J. Neuroradiol. 35, 2227–2236 (2014).

    Article  Google Scholar 

  164. Cazzato, R. L. et al. Percutaneous long bone cementoplasty for palliation of malignant lesions of the limbs: a systematic review. Cardiovasc. Intervent Radiol. 38, 1563–1572 (2015).

    Article  Google Scholar 

  165. Stark, M., DeBernardis, D., McDowell, C., Ford, E. & McMillan, S. Percutaneous skeletal fixation of painful subchondral bone marrow edema utilizing an injectable, synthetic, biocompatible hyaluronic acid-based bone graft substitute. Arthrosc. Tech. 9, e1645–e1650 (2020).

    Article  Google Scholar 

  166. Cammisa, F. P. Jr. et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29, 660–666 (2004).

    Article  Google Scholar 

  167. Langston, J. R., DeHaan, A. M. & Huff, T. W. Staged total hip arthroplasty in a patient with hip dysplasia and a large pertrochanteric bone cyst. Arthroplast. Today 2, 57–61 (2016).

    Article  Google Scholar 

  168. Haugen, H. J., Basu, P., Sukul, M., Mano, J. F. & Reseland, J. E. Injectable biomaterials for dental tissue regeneration. Int. J.Mol. Sci. 21, 3442 (2020).

    Article  Google Scholar 

  169. Wang, H. H. et al. Application of enamel matrix derivative (Emdogain) in endodontic therapy: a comprehensive literature review. J. Endod. 44, 1066–1079 (2018).

    Article  Google Scholar 

  170. Wehling, P., Evans, C., Wehling, J. & Maixner, W. Effectiveness of intra-articular therapies in osteoarthritis: a literature review. Ther. Adv. Musculoskelet. Dis. 9, 183–196 (2017).

    Article  Google Scholar 

  171. Mancipe Castro, L. M., Garcia, A. J. & Guldberg, R. E. Biomaterial strategies for improved intra-articular drug delivery. J. Biomed. Mater. Res. Part. A 109, 426–436 (2021).

    Article  Google Scholar 

  172. Cao, Y., Ma, Y., Tao, Y., Lin, W. & Wang, P. Intra-articular drug delivery for osteoarthritis treatment. Pharmaceutics 13, 2166 (2021).

    Article  Google Scholar 

  173. Geiger, B. C., Wang, S., Padera, R. F. Jr., Grodzinsky, A. J. & Hammond, P. T. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci. Transl. Med. 10, eaat8800 (2018).

    Article  Google Scholar 

  174. Joshi, N. et al. Towards an arthritis flare-responsive drug delivery system. Nat. Commun. 9, 1275 (2018).

    Article  Google Scholar 

  175. Ligorio, C., Hoyland, J. A. & Saiani, A. Self-assembling peptide hydrogels as functional tools to tackle intervertebral disc degeneration. Gels https://doi.org/10.3390/gels8040211 (2022).

    Article  Google Scholar 

  176. Elliott, D. M. et al. The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 33, 588–596 (2008).

    Article  Google Scholar 

  177. Panebianco, C. J., Meyers, J. H., Gansau, J., Hom, W. W. & Iatridis, J. C. Balancing biological and biomechanical performance in intervertebral disc repair: a systematic review of injectable cell delivery biomaterials. Eur. Cell Mater. 40, 239–258 (2020).

    Article  Google Scholar 

  178. Boyd, L. M. & Carter, A. J. Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Eur. Spine J. 15, S414–S421 (2006).

    Article  Google Scholar 

  179. Berlemann, U. et al. Nucleoplasty with NuCore injectable nucleus replacement for herniated lumbar disc: a multicenter study with a minimum five-year follow-up. J. Spine Neurosurg. https://doi.org/10.4172/2325-9701.1000214 (2016).

    Article  Google Scholar 

  180. Berlemann, U. & Schwarzenbach, O. An injectable nucleus replacement as an adjunct to microdiscectomy: 2 year follow-up in a pilot clinical study. Eur. Spine J. 18, 1706–1712 (2009).

    Article  Google Scholar 

  181. Yamada, K., Iwasaki, N. & Sudo, H. Biomaterials and cell-based regenerative therapies for intervertebral disc degeneration with a focus on biological and biomechanical functional repair: targeting treatments for disc herniation. Cells 11, 602 (2022).

    Article  Google Scholar 

  182. Lokoff, A. & Maynes, J. T. The incidence, significance, and management of accidental intra-arterial injection: a narrative review. Can. J. Anesthesia 66, 576–592 (2019).

    Article  Google Scholar 

  183. Dedrick, R. L. Arterial drug infusion: pharmacokinetic problems and pitfalls. J. Natl Cancer Inst. 80, 84–89 (1988).

    Article  Google Scholar 

  184. Mott, B. T. et al. Current indications for intraarterial chemotherapy in neurointerventional surgery. Stroke Vasc. Interv. Neurol. https://doi.org/10.1161/svin.122.000425 (2023).

    Article  Google Scholar 

  185. Lewandowski, R. J., Geschwind, J. F., Liapi, E. & Salem, R. Transcatheter intraarterial therapies: rationale and overview. Radiology 259, 641–657 (2011).

    Article  Google Scholar 

  186. Norman, P. E. & Powell, J. T. Site specificity of aneurysmal disease. Circulation 121, 560–568 (2010).

    Article  Google Scholar 

  187. Kosova, E. & Ricciardi, M. Cardiac catheterization. J. Am. Med. Assoc. 317, 2344 (2017).

    Article  Google Scholar 

  188. Hu, J. et al. Advances in biomaterials and technologies for vascular embolization. Adv. Mater. 31, e1901071 (2019).

    Article  Google Scholar 

  189. Ko, G. et al. Recent progress in liquid embolic agents. Biomaterials 287, 121634 (2022).

    Article  Google Scholar 

  190. Koganemaru, M. et al. Management of visceral artery embolization using 0.010-inch detachable microcoils. Diagn. Interv. Radiol. 20, 345–348 (2014).

    Article  Google Scholar 

  191. Cekirge, H. S. et al. Late angiographic and clinical follow-up results of 100 consecutive aneurysms treated with Onyx reconstruction: largest single-center experience. Neuroradiology 48, 113–126 (2006).

    Article  Google Scholar 

  192. Barnett, B. P., Hughes, A. H., Lin, S., Arepally, A. & Gailloud, P. H. In vitro assessment of EmboGel and UltraGel radiopaque hydrogels for the endovascular treatment of aneurysms. J. Vasc. Interv. Radiol. 20, 507–512 (2009).

    Article  Google Scholar 

  193. Obsidio Conformable Embolic: Limited Market Evaluation (LME) Report (Boston Scientific, 2024).

  194. Leor, J. et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol. 54, 1014–1023 (2009).

    Article  Google Scholar 

  195. Rao, S. V. et al. Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. J. Am. Coll. Cardiol. 68, 715–723 (2016).

    Article  Google Scholar 

  196. Rane, A. A. et al. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS ONE 6, e21571 (2011).

    Article  Google Scholar 

  197. Spang, M. T. et al. Intravascularly infused extracellular matrix as a biomaterial for targeting and treating inflamed tissues. Nat. Biomed. Eng. 7, 94–109 (2022).

    Article  Google Scholar 

  198. Piper, R. et al. The mechanistic causes of peripheral intravenous catheter failure based on a parametric computational study. Sci. Rep. 8, 3441 (2018).

    Article  Google Scholar 

  199. Anselmo, A. C. & Mitragotri, S. A review of clinical translation of inorganic nanoparticles. AAPS J. 17, 1041–1054 (2015).

    Article  Google Scholar 

  200. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article  Google Scholar 

  201. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  Google Scholar 

  202. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  Google Scholar 

  203. Kalyane, D. et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 98, 1252–1276 (2019).

    Article  Google Scholar 

  204. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update post COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    Article  Google Scholar 

  205. Pan, D. et al. Erythromer (EM), a nanoscale bio-synthetic artificial red cell: proof of concept and in vivo efficacy results. Blood 128, 1027–1027 (2016).

    Article  Google Scholar 

  206. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  Google Scholar 

  207. Rodriguez-Rivera, G. J. et al. Injectable hydrogel electrodes as conduction highways to restore native pacing. Nat. Commun. 15, 64 (2024).

    Article  Google Scholar 

  208. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    Article  Google Scholar 

  209. Bharadwaj, V. N. et al. Blood-brainbarrier disruption dictates nanoparticle accumulation following experimental brain injury. Nanomedicine 14, 2155–2166 (2018).

    Article  Google Scholar 

  210. Bharadwaj, V. N. et al. Sex-dependent macromolecule and nanoparticle delivery in experimental brain injury. Tissue Eng. Part A 26, 688–701 (2020).

    Article  Google Scholar 

  211. Harris, N. M. et al. Nano-particle delivery of brain derived neurotrophic factor after focal cerebral ischemia reduces tissue injury and enhances behavioral recovery. Pharmacol. Biochem. Behav. 150–151, 48–56 (2016).

    Article  Google Scholar 

  212. Diaz, M. D. et al. Infusible extracellular matrix biomaterial promotes vascular integrity and modulates the inflammatory response in acute traumatic brain injury. Adv. Healthc. Mater. 12, e2300782 (2023).

    Article  Google Scholar 

  213. Swingle, K. L., Ricciardi, A. S., Peranteau, W. H. & Mitchell, M. J. Delivery technologies for women’s health applications. Nat. Rev. Bioeng. 1, 408–425 (2023).

    Article  Google Scholar 

  214. Mirin, A. A. Gender disparity in the funding of diseases by the U.S. National Institutes of Health. J. Women’s Health 30, 956–963 (2021).

    Article  Google Scholar 

  215. de Bree, E., Michelakis, D., Stamatiou, D., Romanos, J. & Zoras, O. Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum 2, 47–62 (2017).

    Article  Google Scholar 

  216. Zhu, S. et al. Highly specific neutrophil-mediated delivery of albumin nanoparticles to ectopic lesion for endometriosis therapy. J. Nanobiotechnol. 21, 81 (2023).

    Article  Google Scholar 

  217. Yuan, M. et al. Effect of A-317491 delivered by glycolipid-like polymer micelles on endometriosis pain. Int. J. Nanomed. 12, 8171–8183 (2017).

    Article  Google Scholar 

  218. Park, Y. et al. Targeted nanoparticles with high heating efficiency for the treatment of endometriosis with systemically delivered magnetic hyperthermia. Small 18, e2107808 (2022).

    Article  Google Scholar 

  219. PrabhuDas, M. et al. Immune mechanisms at the maternal–fetal interface: perspectives and challenges. Nat. Immunol. 16, 328–334 (2015).

    Article  Google Scholar 

  220. Ricciardi, A. S. et al. In utero nanoparticle delivery for site-specific genome editing. Nat. Commun. 9, 2481 (2018).

    Article  Google Scholar 

  221. Farrelly, J. S. et al. Alginate microparticles loaded with basic fibroblast growth factor induce tissue coverage in a rat model of myelomeningocele. J. Pediatric Surg. 54, 80–85 (2019).

    Article  Google Scholar 

  222. Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Rel. 341, 616–633 (2022).

    Article  Google Scholar 

  223. Micheletti, T. et al. Ex-vivo mechanical sealing properties and toxicity of a bioadhesive patch as sealing system for fetal membrane iatrogenic defects. Sci. Rep. 10, 18608 (2020).

    Article  Google Scholar 

  224. Bilic, G. et al. Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. Am. J. Obstet. Gynecol. 202, 85 e81–85 e89 (2010).

    Article  Google Scholar 

  225. Avilla-Royo, E. et al. In vivo sealing of fetoscopy-induced fetal membrane defects by mussel glue. Fetal Diagn. Ther. 49, 518–527 (2022).

    Article  Google Scholar 

  226. Fraser, A. & Catov, J. M. Placental syndromes and long-term risk of hypertension. J. Hum. Hypertens. 37, 671–674 (2023).

    Article  Google Scholar 

  227. Swingle, K. L. et al. Ionizable lipid nanoparticles for in vivo mRNA delivery to the placenta during pregnancy. J. Am. Chem. Soc. 145, 4691–4706 (2023).

    Article  Google Scholar 

  228. Lukacz, E. S., Lawrence, J. M., Contreras, R., Nager, C. W. & Luber, K. M. Parity, mode of delivery, and pelvic floor disorders. Obstet. Gynecol. 107, 1253–1260 (2006).

    Article  Google Scholar 

  229. Brosche, T., Kuhn, A., Lobodasch, K. & Sokol, E. R. Seven-year efficacy and safety outcomes of Bulkamid for the treatment of stress urinary incontinence. Neurourol. Urodyn. 40, 502–508 (2021).

    Article  Google Scholar 

  230. Cross, C. A., English, S. F., Cespedes, R. D. & McGuire, E. J. A followup on transurethral collagen injection therapy for urinary incontinence. J. Urol. 159, 106–108 (1998).

    Article  Google Scholar 

  231. Duran, P. et al. Proregenerative extracellular matrix hydrogel mitigates pathological alterations of pelvic skeletal muscles after birth injury. Sci. Transl. Med. 15, eabj3138 (2023).

    Article  Google Scholar 

  232. Zheng, Z., Yin, J., Cheng, B. & Huang, W. Materials selection for the injection into vaginal wall for treatment of vaginal atrophy. Aesthetic Plastic Surg. 45, 1231–1241 (2021).

    Article  Google Scholar 

  233. Kong, J. et al. Death from pulmonary embolism caused by vaginal injection of hyaluronic acid: a case report and a literature review. Aesthetic Plastic Surg. 47, 1535–1541 (2023).

    Article  Google Scholar 

  234. Shulman, I. et al. Intrathecal injection of autologous mesenchymal stem-cell-derived extracellular vesicles in spinal cord injury: a feasibility study in pigs. Int. J. Mol. Sci. 24, 8240 (2023).

    Article  Google Scholar 

  235. Malysz-Cymborska, I. et al. MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals. Sci. Rep. 8, 16490 (2018).

    Article  Google Scholar 

  236. Lucke, K. & Laqua, H. Silicone Oil in the Treatment of Complicated Retinal Detachments (Springer Berlin, 1990).

  237. Jaffe, G. J. et al. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study. Ophthalmology 113, 1020–1027 (2006).

    Article  Google Scholar 

  238. Figueira, J. et al. A nonrandomized, open-label, multicenter, phase 4 pilot study on the effect and safety of ILUVIEN® in chronic diabetic macular edema patients considered insufficiently responsive to available therapies (RESPOND). Ophthalmic Res. 57, 166–172 (2017).

    Article  Google Scholar 

  239. Boyer, D. S. et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 121, 1904–1914 (2014).

    Article  Google Scholar 

  240. Ladage, D. et al. Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Ther. 18, 979–985 (2011).

    Article  Google Scholar 

  241. Beall, D. P. et al. Prospective and multicenter evaluation of outcomes for quality of life and activities of daily living for balloon kyphoplasty in the treatment of vertebral compression fractures: the EVOLVE trial. Neurosurgery 84, 169–178 (2019).

    Article  Google Scholar 

  242. Heboyan, A. et al. Dental luting cements: an updated comprehensive review. Molecules https://doi.org/10.3390/molecules28041619 (2023).

  243. Yu, J. et al. Results of a pilot study on the safety and early efficacy of novel polymethyl methacrylate microspheres and a hyaluronic acid device for the treatment of low back pain caused by degenerative and diseased intervertebral discs of the lumbar spine. Cureus 13, e16308 (2021).

    Google Scholar 

  244. Berreni, N., Salerno, J., Chevalier, T., Alonso, S. & Mares, P. Evaluation of the effect of multipoint intra-mucosal vaginal injection of a specific cross-linked hyaluronic acid for vulvovaginal atrophy: a prospective bi-centric pilot study. BMC Womens Health 21, 322 (2021).

    Article  Google Scholar 

  245. n-BCA Trail Investigators N-butyl cyanoacrylate embolization of cerebral arteriovenous malformations: results of a prospective, randomized, multi-center trial. Am. J. Neuroradiol. 23, 748–755 (2002).

    Google Scholar 

  246. Frey, N. et al. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction. Circ. Cardiovasc. Interv. 7, 806–812 (2014).

    Article  Google Scholar 

  247. Uziely, B. et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J. Clin. Oncol. 13, 1777–1785 (1995).

    Article  Google Scholar 

  248. Batist, G. et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. 19, 1444–1454 (2001).

    Article  Google Scholar 

  249. Cooke, M., Lamplugh, A., Naudeer, S., Edey, M. & Bhandari, S. Efficacy and tolerability of accelerated-dose low-molecular-weight iron dextran (Cosmofer) in patients with chronic kidney disease. Am. J. Nephrol. 35, 69–74 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the National Heart, Lung, and Blood Institute (R01HL165232, R01HL139001, R01HL146147), the National Institute of Child Health and Human Development (R01HD102184) and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK128639). M.N. thanks the the National Heart, Lung, and Blood Institute for support through T32HL0074444. M.K. thanks the US National Science Foundation for funding support through the Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

M.N. and M.K. contributed equally to the drafting of the manuscript. All authors were involved in the drafting, editing and finalization of the manuscript.

Corresponding author

Correspondence to Karen L. Christman.

Ethics declarations

Competing interests

K.L.C. is co-founder, board member, consultant, and holds equity interest in Ventrix Bio and Karios Technologies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Wenguo Cui, Luigi Ambrosio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M., Karkanitsa, M. & Christman, K.L. Design and translation of injectable biomaterials. Nat Rev Bioeng 2, 810–828 (2024). https://doi.org/10.1038/s44222-024-00213-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-024-00213-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research