Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Skin-inspired soft bioelectronic materials, devices and systems

Abstract

Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.

Key points

  • Bioelectronic materials and devices with skin-inspired properties, including being soft, stretchable, self-healing, biodegradable and permeable, form natural interfaces with the human body.

  • Molecular engineering approaches provide flexibility in designing dielectric, conducting and semiconducting polymers with desired mechanical, electrical, chemical and physical properties.

  • Skin-like soft bioelectronic devices can be used for on-skin health monitoring and epidermal signal conditioning with high fidelity, reliability and user comfort.

  • Tissue-like soft bioelectronic devices interface with organs and tissue seamlessly for signal recording and modulation with minimal tissue damage and immunological response.

  • Translational applications of soft bioelectronic devices require system-level consideration, including wireless communication units, power sources, interconnects and encapsulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A whole-body health monitoring system based on soft and stretchable organic electronic materials and devices.
Fig. 2: On-skin soft bioelectronic devices.
Fig. 3: Implantable soft bioelectronic devices.
Fig. 4: Strategies for wireless communication and system-level integration in skin-inspired bioelectronic devices.

Similar content being viewed by others

References

  1. Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). This review article discusses material and device design in skin-like electronics to mimic the skin’s ability to sense and generate biomimetic signals.

    Article  Google Scholar 

  2. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  Google Scholar 

  3. Kim, J., Campbell, A. S., De Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  Google Scholar 

  4. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  Google Scholar 

  5. Sunwoo, S.-H. et al. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter 3, 1923–1947 (2020).

    Article  Google Scholar 

  6. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  Google Scholar 

  7. Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article  Google Scholar 

  8. Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  Google Scholar 

  9. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl Med. 14, eabn6036 (2022).

    Article  Google Scholar 

  10. Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article  Google Scholar 

  11. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  Google Scholar 

  12. Yang, J. C. et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019).

    Article  Google Scholar 

  13. Yao, K. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 893–903 (2022).

    Article  Google Scholar 

  14. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  Google Scholar 

  15. Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article  Google Scholar 

  16. Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article  Google Scholar 

  17. Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article  Google Scholar 

  18. Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article  Google Scholar 

  19. Wang, G.-J. N., Gasperini, A. & Bao, Z. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 4, 1700429 (2018).

    Article  Google Scholar 

  20. Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017). This article reviews stretchable organic semiconductors from molecular and morphological levels.

    Article  Google Scholar 

  21. Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article  Google Scholar 

  22. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  Google Scholar 

  23. Tran, H. et al. Stretchable and fully degradable semiconductors for transient electronics. ACS Cent. Sci. 5, 1884–1891 (2019).

    Article  Google Scholar 

  24. Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).

    Article  Google Scholar 

  25. Rao, Y. L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).

    Article  Google Scholar 

  26. Huang, Y. W. et al. High mobility preservation of near amorphous conjugated polymers in the stretched states enabled by biaxially-extended conjugated side-chain design. Chem. Mater. 32, 7370–7382 (2020).

    Article  Google Scholar 

  27. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  Google Scholar 

  28. Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article  Google Scholar 

  29. Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Article  Google Scholar 

  30. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). This article is the first demonstration of intrinsically stretchable organic transistor arrays.

    Article  Google Scholar 

  31. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  Google Scholar 

  32. Peña-Alcántara, A. et al. Effect of molecular weight on the morphology of a polymer semiconductor–thermoplastic elastomer blend. Adv. Electron. Mater. 9, 2201055 (2023).

    Article  Google Scholar 

  33. Nikzad, S. et al. Inducing molecular aggregation of polymer semiconductors in a secondary insulating polymer matrix to enhance charge transport. Chem. Mater. 32, 897–905 (2020).

    Article  Google Scholar 

  34. Liu, K., Tran, H., Feig, V. R. & Bao, Z. Biodegradable and stretchable polymeric materials for transient electronic devices. MRS Bull. 45, 96–102 (2020).

    Article  Google Scholar 

  35. Li, N. et al. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 381, 686–693 (2023).

    Article  Google Scholar 

  36. Xue, Z., Song, H., Rogers, J. A., Zhang, Y. & Huang, Y. Mechanically-guided structural designs in stretchable inorganic electronics. Adv. Mater. 32, 1902254 (2020).

    Article  Google Scholar 

  37. Rafeedi, T. & Lipomi, D. J. Multiple pathways to stretchable electronics. Science 378, 1174–1175 (2022).

    Article  Google Scholar 

  38. Jang, K. I. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017).

    Article  Google Scholar 

  39. Zhang, Y. et al. A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015).

    Article  Google Scholar 

  40. Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).

    Article  Google Scholar 

  41. Li, J. et al. Stretchable piezoelectric biocrystal thin films. Nat. Commun. 14, 6562 (2023).

    Article  Google Scholar 

  42. Tang, X., He, Y. & Liu, J. Soft bioelectronics for cardiac interfaces. Biophys. Rev. 3, 011301 (2022).

    Article  Google Scholar 

  43. Su, Y. et al. In-plane deformation mechanics for highly stretchable electronics. Adv. Mater. 29, 1604989 (2017).

    Article  Google Scholar 

  44. Zhang, Y. et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062–8070 (2013).

    Article  Google Scholar 

  45. Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article  Google Scholar 

  46. Yu, Y., Prassas, I., Muytjens, C. M. J. & Diamandis, E. P. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J. Proteom. 155, 40–48 (2017).

    Article  Google Scholar 

  47. Sana, F. et al. Wearable devices for ambulatory cardiac monitoring. J. Am. Coll. Cardiol. 75, 1582–1592 (2020).

    Article  Google Scholar 

  48. Jabaudon, D., Sztajzel, J., Sievert, K., Landis, T. & Sztajzel, R. Usefulness of ambulatory 7-day ECG monitoring for the detection of atrial fibrillation and flutter after acute stroke and transient ischemic attack. Stroke 35, 1647–1651 (2004).

    Article  Google Scholar 

  49. Karmen, C. L., Reisfeld, M. A., McIntyre, M. K., Timmermans, R. & Frishman, W. The clinical value of heart rate monitoring using an Apple watch. Cardiol. Rev. 27, 60–62 (2019).

    Article  Google Scholar 

  50. Bai, Y., Hibbing, P., Mantis, C. & Welk, G. J. Comparative evaluation of heart rate-based monitors: Apple watch vs Fitbit Charge HR. J. Sports Sci. 36, 1734–1741 (2018).

    Article  Google Scholar 

  51. Etiwy, M. et al. Accuracy of wearable heart rate monitors in cardiac rehabilitation. Cardiovasc. Diagn. Ther. 9, 262–271 (2019).

    Article  Google Scholar 

  52. Velasco-Bosom, S. et al. Conducting polymer–ionic liquid electrode arrays for high-density surface electromyography. Adv. Healthc. Mater. 10, 2100374 (2021).

    Article  Google Scholar 

  53. Lee, S., Ozlu, B., Eom, T., Martin, D. C. & Shim, B. S. Electrically conducting polymers for bio-interfacing electronics: from neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens. Bioelectron. 170, 112620 (2020).

    Article  Google Scholar 

  54. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article  Google Scholar 

  55. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  Google Scholar 

  56. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019). This article is the first demonstration of wireless wearable sensor systems for vital sign monitoring in neonatal intensive care units.

    Article  Google Scholar 

  57. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article  Google Scholar 

  58. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article  Google Scholar 

  59. Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article  Google Scholar 

  60. Wang, X., Yu, J., Cui, Y. & Li, W. Research progress of flexible wearable pressure sensors. Sens. Actuators A Phys. 330, 112838 (2021).

    Article  Google Scholar 

  61. Souri, H. et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Intell. Syst. 2, 2000039 (2020).

    Article  Google Scholar 

  62. Amjadi, M., Kyung, K. U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).

    Article  Google Scholar 

  63. Arman Kuzubasoglu, B. & Kursun Bahadir, S. Flexible temperature sensors: a review. Sens. Actuators A Phys. 315, 112282 (2020).

    Article  Google Scholar 

  64. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article  Google Scholar 

  65. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  Google Scholar 

  66. Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Article  Google Scholar 

  67. Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022).

    Article  Google Scholar 

  68. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  Google Scholar 

  69. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article  Google Scholar 

  70. Bandodkar, A. J., Jeang, W. J., Ghaffari, R. & Rogers, J. A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 12, 1–22 (2019).

    Article  Google Scholar 

  71. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl Med. 8, ra165 (2016).

    Article  Google Scholar 

  72. Wu, J., Liu, H., Chen, W., Ma, B. & Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 1, 346–360 (2023).

    Article  Google Scholar 

  73. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). This article demonstrate a fully integrated wearable system for sweat biomarker monitoring, including ions and metabolites.

    Article  Google Scholar 

  74. Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

    Article  Google Scholar 

  75. Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

    Article  Google Scholar 

  76. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article  Google Scholar 

  77. Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).

    Article  Google Scholar 

  78. Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 7, 1541–1555 (2023).

    Article  Google Scholar 

  79. Chatterjee, S., Thakur, R. S., Yadav, R. N., Gupta, L. & Raghuvanshi, D. K. Review of noise removal techniques in ECG signals. IET Signal. Process. 14, 569–590 (2020).

    Article  Google Scholar 

  80. Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article  Google Scholar 

  81. Zhao, Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 378, 1222–1227 (2022).

    Article  Google Scholar 

  82. Park, B. et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 376, 624–629 (2022).

    Article  Google Scholar 

  83. Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article  Google Scholar 

  84. Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article  MathSciNet  Google Scholar 

  85. Rashid, R. B. et al. Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. Sci. Adv. 7, eabh1055 (2021).

  86. Wang, J. et al. Nanomesh organic electrochemical transistor for comfortable on-skin electrodes with local amplifying function. ACS Appl. Electron. Mater. 2, 3601–3609 (2020).

    Article  Google Scholar 

  87. Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Article  Google Scholar 

  88. Lathi, B. P. & Ding, Z. Modern Digital and Analog Communication Systems (Oxford Univ. Press, 2018).

  89. Chatterjee, B., Mohseni, P. & Sen, S. Bioelectronic sensor nodes for the internet of bodies. Annu. Rev. Biomed. Eng. 25, 101–129 (2023).

    Article  Google Scholar 

  90. Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article  Google Scholar 

  91. Boutry, C. M. et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018).

    Article  Google Scholar 

  92. You, I. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020).

    Article  Google Scholar 

  93. Su, Q. et al. A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins. Sci. Adv. 7, eabi4563 (2021).

    Article  Google Scholar 

  94. Yan, Y. et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021).

    Article  Google Scholar 

  95. Dahiya, R. et al. Large-area soft e-skin: the challenges beyond sensor designs. Proc. IEEE 107, 2016–2033 (2019).

    Article  Google Scholar 

  96. Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 7, 511–519 (2023).

    Article  Google Scholar 

  97. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Article  Google Scholar 

  98. Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    Article  Google Scholar 

  99. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). This article presents a soft and integrated system for touch-based haptic applications to deliver pressure, vibration or motion to wearers.

    Article  Google Scholar 

  100. Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).

    Article  Google Scholar 

  101. Yang, T.-H. et al. Recent advances and opportunities of active materials for haptic technologies in virtual and augmented reality. Adv. Funct. Mater. 31, 2008831 (2021).

    Article  Google Scholar 

  102. Root, S. E. et al. Ionotactile stimulation: nonvolatile ionic gels for human–machine interfaces. ACS Omega 3, 662–666 (2018).

    Article  Google Scholar 

  103. Carpenter, C. W. et al. Electropneumotactile stimulation: multimodal haptic actuators enabled by a stretchable conductive polymer on inflatable pockets. Adv. Mater. Technol. 5, 1901119 (2020).

    Article  Google Scholar 

  104. Ji, X. et al. Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators. Adv. Funct. Mater. 31, 2006639 (2021).

    Article  Google Scholar 

  105. Chen, S., Chen, Y., Yang, J., Han, T. & Yao, S. Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human-machine interactions. npj Flex. Electron. 7, 1 (2023).

    Article  Google Scholar 

  106. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article  Google Scholar 

  107. Huang, Y. et al. Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Mater. Today Phys. 22, 100602 (2022).

    Article  Google Scholar 

  108. Chen, Y. et al. How is flexible electronics advancing neuroscience research? Biomaterials 268, 120559 (2021).

    Article  Google Scholar 

  109. Chiang, C.-H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl Med. 12, eaay4682 (2020).

    Article  Google Scholar 

  110. Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023). This review article provides critical insight into the unique advantages of soft bioelectronic devices for brain–machine interfaces.

    Article  Google Scholar 

  111. Lecomte, A., Descamps, E. & Bergaud, C. A review on mechanical considerations for chronically-implanted neural probes. J. Neural Eng. 15, 031001 (2018).

    Article  Google Scholar 

  112. Kozai, T. D., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    Article  Google Scholar 

  113. Koo, J. H., Song, J.-K., Kim, D.-H. & Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 3, 1528–1540 (2021).

    Article  Google Scholar 

  114. Shi, Z. et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding. Adv. Sci. 6, 1801617 (2019).

    Article  Google Scholar 

  115. Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  Google Scholar 

  116. Khodagholy, D. et al. Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  Google Scholar 

  117. Zhang, A. et al. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023).

    Article  Google Scholar 

  118. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article  Google Scholar 

  119. Liang, Y., Offenhäusser, A., Ingebrandt, S. & Mayer, D. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. Adv. Healthc. Mater. 10, 2100061 (2021).

    Article  Google Scholar 

  120. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  Google Scholar 

  121. Liu, Y., Feig, V. R. & Bao, Z. Conjugated polymer for implantable electronics toward clinical application. Adv. Healthc. Mater. 10, 2001916 (2021).

    Article  Google Scholar 

  122. Xu, N. et al. Functional connectivity of the brain across rodents and humans. Front. Neurosci. 16, 816331 (2022).

    Article  Google Scholar 

  123. Musk, E. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article  Google Scholar 

  124. Alivisatos, A. P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    Article  Google Scholar 

  125. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  Google Scholar 

  126. Xu, C., Wu, F., Yu, P. & Mao, L. In vivo electrochemical sensors for neurochemicals: recent update. ACS Sens. 4, 3102–3118 (2019).

    Article  Google Scholar 

  127. Wen, X. et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens. Bioelectron. 131, 37–45 (2019).

    Article  Google Scholar 

  128. Zhao, C. et al. Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).

    Article  Google Scholar 

  129. Wu, G. et al. Implantable aptamer-graphene microtransistors for real-time monitoring of neurochemical release in vivo. Nano Lett. 22, 3668–3677 (2022).

    Article  Google Scholar 

  130. Ou, Y., Buchanan, A. M., Witt, C. E. & Hashemi, P. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal. Methods 11, 2738–2755 (2019).

    Article  Google Scholar 

  131. Shin, H. et al. Sensitive and selective measurement of serotonin in vivo using fast cyclic square-wave voltammetry. Anal. Chem. 92, 774–781 (2020).

    Article  Google Scholar 

  132. Li, S. et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats. ACS Nano 17, 18525–18538 (2023).

    Article  Google Scholar 

  133. Li, H., Wang, J. & Fang, Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsyst. Nanoeng. 9, 4 (2023).

    Article  Google Scholar 

  134. Canales, A., Park, S., Kilias, A. & Anikeeva, P. Multifunctional fibers as tools for neuroscience and neuroengineering. Acc. Chem. Res. 51, 829–838 (2018).

    Article  Google Scholar 

  135. Lee, M., Shim, H. J., Choi, C. & Kim, D.-H. Soft high-resolution neural interfacing probes: materials and design approaches. Nano Lett. 19, 2741–2749 (2019).

    Article  Google Scholar 

  136. Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01833-5 (2023).

  137. Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019). This article reviews flexible and stretchable bioelectronic devices for cardiovascular monitoring and therapy.

    Article  Google Scholar 

  138. Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    Article  Google Scholar 

  139. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  Google Scholar 

  140. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  Google Scholar 

  141. Wang, S. et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022).

    Article  Google Scholar 

  142. Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).

    Article  Google Scholar 

  143. Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article  Google Scholar 

  144. Ryu, H. et al. Materials and design approaches for a fully bioresorbable, electrically conductive and mechanically compliant cardiac patch technology. Adv. Sci. 10, 2303429 (2023).

    Article  Google Scholar 

  145. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  Google Scholar 

  146. Woods, G. A., Rommelfanger, N. J. & Hong, G. Bioinspired materials for in vivo bioelectronic neural interfaces. Matter 3, 1087–1113 (2020).

    Article  Google Scholar 

  147. Parastarfeizabadi, M. & Kouzani, A. Z. Advances in closed-loop deep brain stimulation devices. J. Neuroeng. Rehabil. 14, 79 (2017).

    Article  Google Scholar 

  148. He, F., Lycke, R., Ganji, M., Xie, C. & Luan, L. Ultraflexible neural electrodes for long-lasting intracortical recording. iScience 23, 101387 (2020).

    Article  Google Scholar 

  149. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  Google Scholar 

  150. Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article  Google Scholar 

  151. Lee, J. H., Kim, H., Kim, J. H. & Lee, S.-H. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16, 959–976 (2016).

    Article  Google Scholar 

  152. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article  Google Scholar 

  153. Huang, Q. A., Dong, L. & Wang, L. F. LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges. J. Microelectromech. Syst. 25, 822–841 (2016).

    Article  Google Scholar 

  154. Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019). This article demonstrates a fully soft and stretchable passive tag system for on-skin vital sign monitoring.

    Article  Google Scholar 

  155. Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021).

    Article  Google Scholar 

  156. Chen, L. Y. et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014).

    Article  Google Scholar 

  157. Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).

    Article  Google Scholar 

  158. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  Google Scholar 

  159. Fernando, S. M. et al. Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis. BMJ 366, l4225 (2019).

    Article  Google Scholar 

  160. Kananian, S., Alexopoulos, G. & Poon, A. S. Y. Robust wireless interrogation of fully-passive RLC sensors. IEEE Trans. Circuits Syst. I 69, 1427–1440 (2022).

    Article  Google Scholar 

  161. Olenik, S., Lee, H. S. & Güder, F. The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021).

    Article  Google Scholar 

  162. Park, Y.-G., Lee, S. & Park, J.-U. Recent progress in wireless sensors for wearable electronics. Sensors 19, 4353 (2019).

    Article  Google Scholar 

  163. Han, S. et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl Med. 10, eaan4950 (2018).

    Article  Google Scholar 

  164. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  Google Scholar 

  165. Matsuhisa, N. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).

    Article  Google Scholar 

  166. Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article  Google Scholar 

  167. Ometov, A. et al. A survey on wearable technology: history, state-of-the-art and current challenges. Comput. Netw. 193, 108074 (2021).

    Article  Google Scholar 

  168. Cai, Y. et al. Mixed-dimensional mxene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6, eabb5367 (2020).

    Article  Google Scholar 

  169. Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2023).

    Article  Google Scholar 

  170. Yuce, M. R. Implementation of wireless body area networks for healthcare systems. Sens. Actuators A 162, 116–129 (2010).

    Article  Google Scholar 

  171. Song, W.-J. et al. Recent progress in stretchable batteries for wearable electronics. Batteries Supercaps 2, 181–199 (2019).

    Article  Google Scholar 

  172. Mackanic, D. G. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019).

    Article  Google Scholar 

  173. Xiao, X. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7, eabl3742 (2021).

    Article  Google Scholar 

  174. Agarwal, K., Jegadeesan, R., Guo, Y. X. & Thakor, N. V. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev. Biomed. Eng. 10, 136–161 (2017).

    Article  Google Scholar 

  175. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2023).

    Article  Google Scholar 

  176. Zhou, Y., Xiao, X., Chen, G., Zhao, X. & Chen, J. Self-powered sensing technologies for human metaverse interfacing. Joule 6, 1381–1389 (2022).

    Article  Google Scholar 

  177. Jeerapan, I., Sempionatto, J. R. & Wang, J. On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30, 1906243 (2020).

    Article  Google Scholar 

  178. Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    Article  Google Scholar 

  179. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human–machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  Google Scholar 

  180. Song, Y. et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6, eaay9842 (2020).

    Article  Google Scholar 

  181. Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).

    Article  Google Scholar 

  182. Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    Article  Google Scholar 

  183. Zhang, Z. et al. High-brightness all-polymer stretchable led with charge-trapping dilution. Nature 603, 624–630 (2022).

    Article  Google Scholar 

  184. Choi, M. K., Yang, J., Hyeon, T. & Kim, D.-H. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron. 2, 10 (2018).

    Article  Google Scholar 

  185. Yang, J. C. et al. Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes. Sci. Adv. 8, eabn3863 (2022).

  186. Lee, B. et al. Stretchable hybrid electronics: combining rigid electronic devices with stretchable interconnects into high-performance on-skin electronics. J. Inf. Disp. 23, 163–184 (2022).

    Article  Google Scholar 

  187. Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021).

    Article  Google Scholar 

  188. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  Google Scholar 

  189. Harrison, C., Tan, D. & Morris, D. Skinput: appropriating the skin as an interactive canvas. Commun. ACM 54, 111–118 (2011).

    Article  Google Scholar 

  190. Koo, J. H., Kim, D. C., Shim, H. J., Kim, T.-H. & Kim, D.-H. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28, 1801834 (2018).

    Article  Google Scholar 

  191. Zhao, Z., Liu, K., Liu, Y., Guo, Y. & Liu, Y. Intrinsically flexible displays: key materials and devices. Natl Sci. Rev. 9, nwac090 (2022).

    Article  Google Scholar 

  192. Dang, W., Vinciguerra, V., Lorenzelli, L. & Dahiya, R. Printable stretchable interconnects. Flex. Print. Electron. 2, 013003 (2017).

    Article  Google Scholar 

  193. Trung, T. Q. & Lee, N.-E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29, 1603167 (2017).

    Article  Google Scholar 

  194. Lv, J., Thangavel, G. & Lee, P. S. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. Nanoscale 15, 434–449 (2023).

    Article  Google Scholar 

  195. Yun, G. et al. Hybrid-filler stretchable conductive composites: from fabrication to application. Small Sci. 1, 2000080 (2021).

    Article  Google Scholar 

  196. Matsuhisa, N. et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5, 1900347 (2019).

    Article  Google Scholar 

  197. Tang, L. X., Shang, J. & Jiang, X. Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7, eabe3778 (2021).

    Article  Google Scholar 

  198. Kim, M.-g, Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).

    Article  Google Scholar 

  199. Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article  Google Scholar 

  200. Lee, G.-H. et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat. Commun. 13, 2643 (2022).

    Article  Google Scholar 

  201. Najafov, H., Mastrogiovanni, D., Garfunkel, E., Feldman, L. C. & Podzorov, V. Photon-assisted oxygen diffusion and oxygen-related traps in organic semiconductors. Adv. Mater. 23, 981–985 (2011).

    Article  Google Scholar 

  202. Park, S., Choi, W., Kim, S. H., Lee, H. & Cho, K. Protonated organic semiconductors: origin of water-induced charge trap generation. Adv. Mater. 35, 2303707 (2023).

    Article  Google Scholar 

  203. Zheng, Y. et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol. 18, 1175–1184 (2023).

    Article  Google Scholar 

  204. Liu, C. et al. Multifunctional materials strategies for enhanced safety of wireless, skin-interfaced bioelectronic devices. Adv. Funct. Mater. 33, 2302256 (2023).

    Article  Google Scholar 

  205. Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. Stretchable seal. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018).

    Article  Google Scholar 

  206. Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023).

    Article  Google Scholar 

  207. Tu, J. & Gao, W. Ethical considerations of wearable technologies in human research. Adv. Healthc. Mater. 10, 2100127 (2021).

    Article  Google Scholar 

  208. US Food and Drug Administration. Use of International Standard ISO 10993-1, “Biological evaluation of medical devices — Part 1: Evaluation and testing within a risk management process” (FDA, 2020).

  209. Johansen, J. D. et al. European society of contact dermatitis guideline for diagnostic patch testing — recommendations on best practice. Contact Dermat. 73, 195–221 (2015).

    Article  Google Scholar 

  210. Lee, E. K., Lee, M. Y., Park, C. H., Lee, H. R. & Oh, J. H. Toward environmentally robust organic electronics: approaches and applications. Adv. Mater. 29, 1703638 (2017).

    Article  Google Scholar 

  211. Yang, Q. et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat. Electron. 5, 526–538 (2022).

    Article  Google Scholar 

  212. Shin, J. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 3, 37–46 (2019).

    Article  Google Scholar 

  213. Kim, G. H. et al. Cnt-au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sens. Actuators B 252, 152–158 (2017).

    Article  Google Scholar 

  214. Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl Med. 8, 344ra386–344ra386 (2016).

    Article  Google Scholar 

  215. Jung, D. et al. Metal-like stretchable nanocomposite using locally-bundled nanowires for skin-mountable devices. Adv. Mater. 35, 2303458 (2023).

    Article  Google Scholar 

  216. Decataldo, F. et al. Stretchable low impedance electrodes for bioelectronic recording from small peripheral nerves. Sci. Rep. 9, 10598 (2019).

    Article  Google Scholar 

  217. Handschuh-Wang, S., Stadler, F. J. & Zhou, X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J. Phys. Chem. C 125, 20113–20142 (2021).

    Article  Google Scholar 

  218. Guo, R. & Liu, J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J. Micromech. Microeng. 27, 104002 (2017).

    Article  Google Scholar 

  219. Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article  Google Scholar 

  220. Han, X. et al. Nanomeshed Si nanomembranes. npj Flex. Electron. 3, 9 (2019).

    Article  Google Scholar 

  221. Mun, J. et al. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 12, 3572 (2021).

    Article  Google Scholar 

  222. Sun, J. et al. Air/liquid interfacial self-assembled intrinsically stretchable IDT-BT film combining a deliberate transfer adherence strategy for stretchable electronics. ACS Appl. Mater. Interfaces 15, 46108–46118 (2023).

    Article  Google Scholar 

  223. Zhao, B. et al. Simultaneous enhancement of stretchability, strength, and mobility in ultrahigh-molecular-weight poly(indacenodithiophene-co-benzothiadiazole). Macromolecules 54, 9896–9905 (2021).

    Article  Google Scholar 

  224. Ding, L. et al. Polymer semiconductors: synthesis, processing, and applications. Chem. Rev. 123, 7421–7497 (2023).

    Article  Google Scholar 

  225. Guan, Y.-S. et al. Elastic electronics based on micromesh-structured rubbery semiconductor films. Nat. Electron. 5, 881–892 (2022).

    Article  Google Scholar 

  226. Shim, H. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat. Electron. 6, 349–359 (2023).

    Article  Google Scholar 

  227. Kim, H.-J., Sim, K., Thukral, A. & Yu, C. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 3, e1701114 (2017).

    Article  Google Scholar 

  228. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  Google Scholar 

  229. Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Article  Google Scholar 

  230. Jiao, H. et al. Intrinsically stretchable all-carbon-nanotube transistors with styrene–ethylene–butylene–styrene as gate dielectrics integrated by photolithography-based process. RSC Adv. 10, 8080–8086 (2020).

    Article  Google Scholar 

  231. Koo, J. H. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6, 137–145 (2023).

    Article  Google Scholar 

  232. Lu, C., Lee, W.-Y., Shih, C.-C., Wen, M.-Y. & Chen, W.-C. Stretchable polymer dielectrics for low-voltage-driven field-effect transistors. ACS Appl. Mater. Interfaces 9, 25522–25532 (2017).

    Article  Google Scholar 

  233. Tan, Y. J. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 19, 182–188 (2020).

    Article  Google Scholar 

  234. Kong, D. et al. Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv. Funct. Mater. 26, 4680–4686 (2016).

    Article  Google Scholar 

  235. Jin, H. et al. Stretchable dual-capacitor multi-sensor for touch-curvature-pressure-strain sensing. Sci. Rep. 7, 10854 (2017).

    Article  Google Scholar 

  236. Ankit et al. High-k, ultrastretchable self-enclosed ionic liquid–elastomer composites for soft robotics and flexible electronics. ACS Appl. Mater. Interfaces 12, 37561–37570 (2020).

    Article  Google Scholar 

  237. Shin, M. et al. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 26, 3706–3711 (2014).

    Article  Google Scholar 

  238. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    Article  Google Scholar 

  239. Ji, X. et al. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12, 2480 (2021).

    Article  Google Scholar 

  240. Tao, X.-M. Virtual and augmented reality enhanced by touch. Nature 575, 453–454 (2019).

    Article  Google Scholar 

  241. Shim, H. J., Sunwoo, S.-H., Kim, Y., Koo, J. H. & Kim, D.-H. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv. Healthc. Mater. 10, 2002105 (2021).

    Article  Google Scholar 

  242. Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, eaaw5296 (2019).

    Article  Google Scholar 

  243. Jung, Y. H. et al. Injectable biomedical devices for sensing and stimulating internal body organs. Adv. Mater. 32, 1907478 (2020).

    Article  Google Scholar 

  244. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    Article  Google Scholar 

  245. Zhao, C. et al. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS Sens. 7, 3644–3653 (2022).

    Article  Google Scholar 

  246. Nelson, C. M., Dewald, J. P. A. & Murray, W. M. In vivo measurements of biceps brachii and triceps brachii fascicle lengths using extended field-of-view ultrasound. J. Biomech. 49, 1948–1952 (2016).

    Article  Google Scholar 

  247. Kawel-Boehm, N. et al. Reference ranges (‘normal values’) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J. Cardiovasc. Magn. Reson. 22, 87 (2020).

    Article  Google Scholar 

  248. Bianchi, F., Hofmann, F., Smith, A. J., Ye, H. & Thompson, M. S. Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction. J. Mech. Behav. Biomed. Mater. 87, 205–212 (2018).

    Article  Google Scholar 

  249. Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81 (2005).

    Article  Google Scholar 

  250. Sloots, J. J., Biessels, G. J. & Zwanenburg, J. J. M. Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI. Neuroimage 210, 116581 (2020).

    Article  Google Scholar 

  251. Sharafkhani, N. et al. Neural tissue-microelectrode interaction: brain micromotion, electrical impedance, and flexible microelectrode insertion. J. Neurosci. Methods 365, 109388 (2022).

    Article  Google Scholar 

  252. Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020).

    Article  Google Scholar 

  253. Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article  Google Scholar 

  254. Cooper, C. et al. Autonomous alignment and self-healing in multilayer soft electronics using dynamic polymers with immiscible backbones. Science 380, 935–941 (2023).

    Article  Google Scholar 

  255. Chiong, J. A., Tran, H., Lin, Y., Zheng, Y. & Bao, Z. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 8, e2101233 (2021).

    Article  Google Scholar 

  256. Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).

    Article  Google Scholar 

  257. Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  Google Scholar 

  258. Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).

    Article  Google Scholar 

  259. Beurskens, N. E. G., Tjong, F. V. Y. & Knops, R. End-of-life management of leadless cardiac pacemaker therapy. Arrhythm. Electrophysiol. Rev. 6, 129–133 (2017). 2017.

    Article  Google Scholar 

  260. Shim, J.-S., Rogers, J. A. & Kang, S.-K. Physically transient electronic materials and devices. Mater. Sci. Eng. R Rep. 145, 100624 (2021).

    Article  Google Scholar 

  261. Han, W. B., Lee, J. H., Shin, J.-W. & Hwang, S.-W. Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, 2002211 (2020).

    Article  Google Scholar 

  262. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018). This article presents a fully biodegradable wireless bioelectronic device for neuroregenerative therapy.

    Article  Google Scholar 

  263. Huang, Q. & Zheng, Z. Pathway to developing permeable electronics. ACS Nano 16, 15537–15544 (2022).

    Article  Google Scholar 

  264. Zhou, W. et al. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14, 5798–5805 (2020).

    Article  Google Scholar 

  265. Yang, X. et al. Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 6, 2000306 (2020).

    Article  Google Scholar 

  266. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article  Google Scholar 

  267. Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023).

    Google Scholar 

  268. Schiavone, G. et al. Guidelines to study and develop soft electrode systems for neural stimulation. Neuron 108, 238–258 (2020).

    Article  Google Scholar 

  269. Merrill, D. R., Bikson, M. & Jefferys, J. G. R. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005).

    Article  Google Scholar 

  270. Ishai, P. B., Talary, M. S., Caduff, A., Levy, E. & Feldman, Y. Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 24, 102001 (2013).

    Article  Google Scholar 

  271. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article  Google Scholar 

  272. Tan, S. T. M. et al. Mixed ionic–electronic conduction, a multifunctional property in organic conductors. Adv. Mater. 34, 2110406 (2022).

    Article  Google Scholar 

  273. Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    Article  Google Scholar 

  274. Keene, S. T., Rao, A. & Malliaras, G. G. The relationship between ionic–electronic coupling and transport in organic mixed conductors. Sci. Adv. 9, eadi3536 (2023).

    Article  Google Scholar 

  275. Li, Y., Li, N., De Oliveira, N. & Wang, S. Implantable bioelectronics toward long-term stability and sustainability. Matter 4, 1125–1141 (2021).

    Article  Google Scholar 

  276. Mariello, M., Kim, K., Wu, K., Lacour, S. P. & Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: materials, technologies, and characterization methods. Adv. Mater. 34, 2201129 (2022).

    Article  Google Scholar 

  277. Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  Google Scholar 

  278. Wang, S. et al. Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J. Mater. Chem. C 10, 6196–6221 (2022).

    Article  Google Scholar 

  279. Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (SENSE-2037304). C.Z. acknowledges funding from an F32 fellowship from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (F32EB034156). Z.B. is a Chan Zuckerberg Biohub San Francisco investigator and an Arc Institute innovation investigator. Z.B. acknowledges support from the Army Research Office (grant no. W911NF-23-1-0282), Stanford Wu Tsai Neuroscience Institute Big Idea Project, Stanford Bio-X and Stanford Wearable Electronics Initiative (eWEAR). The authors thank K. Li and L. Gao for their generous support of the Bao Group’s research at Stanford University. The authors thank Q. Liu for feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.Z., J.P., S.E.R. and Z.B. co-wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Sheng Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Park, J., Root, S.E. et al. Skin-inspired soft bioelectronic materials, devices and systems. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00194-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00194-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research