Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanoscale anisotropy for biomedical applications

Abstract

Nanoparticles exhibit anisotropy when distinct features can be identified along different axes. Such disruption in shape and/or composition symmetry can change how nanoparticles behave and interact with the surrounding environment compared with their isotropic counterparts. Anisotropic combinations can be limitless and show potential for tackling biological barriers and developing programmable, targeted, and combined delivery of bioactive molecules, mainly when featuring autonomous motion. In this Review, we summarize the main methods for the generation of anisotropic particles at the nanoscale. We further discuss how geometric cues or the incorporation of propulsive agents (chemically or physically driven) improve transport across biological fluids, promote cellular adhesion and internalization, and/or increase tissue penetration. We finally highlight considerations for the design of anisotropic nanoparticles and the precise control over morphology and properties, in addition to the challenges for clinical translation.

Key points

  • Anisotropic systems exhibit specific spatial-dependent properties based on shape, chemical composition and/or physical responsiveness.

  • Precise engineering of anisotropic nanoparticles remains challenging and could benefit from the introduction of biocompatible materials.

  • Introducing a virtually unlimited combination array of anisotropic cues into nanoparticle design expands their applicability for combined drug delivery, targeting and theranostics.

  • Methodologies to assess nanoparticle–biological environment interactions and transport require further standardization for successful clinical translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Techniques commonly used for the fabrication of different types of anisotropic NPs for biomedical applications.
Fig. 2: Anisotropic NPs designed for improved transport in biorelevant media.
Fig. 3: Selected strategies based on shape anisotropy for tackling biological barriers.
Fig. 4: Examples of anisotropic nanomotors for combinational therapies.

Similar content being viewed by others

References

  1. Talebian, S. et al. Facts and figures on materials science and nanotechnology progress and investment. ACS Nano 15, 15940–15952 (2021).

    Google Scholar 

  2. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Google Scholar 

  3. Pearce, A. K., Wilks, T. R., Arno, M. C. & O’Reilly, R. K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat. Rev. Chem. 5, 21–45 (2020).

    Google Scholar 

  4. Wadhwa, N. & Berg, H. C. Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20, 161–173 (2022).

    Google Scholar 

  5. Constantino, M. A., Jabbarzadeh, M., Fu, H. C. & Bansil, R. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2, e1601661 (2016).

    Google Scholar 

  6. Mesarec, L. et al. Normal red blood cells’ shape stabilized by membrane’s in-plane ordering. Sci. Rep. 9, 19742 (2019).

    Google Scholar 

  7. Iino, R., Kinbara, K. & Bryant, Z. Introduction: molecular motors. Chem. Rev. 120, 1–4 (2020).

    Google Scholar 

  8. Erickson, R. P., Jia, Z., Gross, S. P. & Yu, C. C. How molecular motors are arranged on a cargo is important for vesicular transport. PLoS Comput. Biol. 7, e1002032 (2011).

    MathSciNet  Google Scholar 

  9. Luque, A., Zandi, R. & Reguera, D. Optimal architectures of elongated viruses. Proc. Natl Acad. Sci. USA 107, 5323–5328 (2010).

    Google Scholar 

  10. Welsch, S. et al. Electron tomography reveals the steps in filovirus budding. PLoS Pathog. 6, e1000875 (2010).

    Google Scholar 

  11. Zhang, Q. et al. Entry dynamics of single Ebola virus revealed by force tracing. ACS Nano 14, 7046–7054 (2020).

    Google Scholar 

  12. Choi, H., Jeong, S. H., Kim, T. Y., Yi, J. & Hahn, S. K. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact. Mater. 9, 54–62 (2022).

    Google Scholar 

  13. Walker, D., Käsdorf, B. T., Jeong, H. H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).

    Google Scholar 

  14. Lin, R., Yu, W., Chen, X. & Gao, H. Self-propelled micro/nanomotors for tumor targeting delivery and therapy. Adv. Healthc. Mater. 10, e2001212 (2021).

    Google Scholar 

  15. Adriani, G. et al. The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials 33, 5504–5513 (2012).

    Google Scholar 

  16. Thome, C. P., Hoertdoerfer, W. S., Bendorf, J. R., Lee, J. G. & Shields, C. W. Electrokinetic active particles for motion-based biomolecule detection. Nano Lett. 23, 2379–2387 (2023).

    Google Scholar 

  17. Ifra, Thodikayil, A. T. & Saha, S. Compositionally anisotropic colloidal surfactant decorated with dual metallic nanoparticles as a pickering emulsion stabilizer and their application in catalysis. ACS Appl. Mater. Interfaces 14, 23436–23451 (2022).

    Google Scholar 

  18. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Google Scholar 

  19. Hu, S.-H. & Gao, X. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 132, 7234–7237 (2010).

    Google Scholar 

  20. Decuzzi, P. et al. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 141, 320–327 (2010).

    Google Scholar 

  21. Zhang, L. et al. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials 181, 113–125 (2018).

    Google Scholar 

  22. Winkler, J. S., Barai, M. & Tomassone, M. S. Dual drug-loaded biodegradable Janus particles for simultaneous co-delivery of hydrophobic and hydrophilic compounds. Exp. Biol. Med. 244, 1162–1177 (2019).

    Google Scholar 

  23. Jiao, M., Li, W., Yu, Y. & Yu, Y. Anisotropic presentation of ligands on cargos modulates degradative function of phagosomes. Biophys. Rep. 2, 100041 (2022).

    Google Scholar 

  24. Shaghaghi, B., Khoee, S. & Bonakdar, S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. Int. J. Pharm. 559, 1–12 (2019).

    Google Scholar 

  25. Wang, Z. et al. Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv. Sci. 6, 1901690 (2019).

    Google Scholar 

  26. Niikura, K. et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7, 3926–3938 (2013).

    Google Scholar 

  27. Zhang, W., Choi, H., Yu, B. & Kim, D.-H. Synthesis of iron oxide nanocube patched Janus magnetic nanocarriers for cancer therapeutic applications. Chem. Comm. 56, 8810–8813 (2020).

    Google Scholar 

  28. Zhang, M. et al. Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 8, 8067–8077 (2017).

    Google Scholar 

  29. Rossi, F., Khoo, E. H., Su, X. & Thanh, N. T. K. Study of the effect of anisotropic gold nanoparticles on plasmonic coupling with a photosensitizer for antimicrobial film. ACS Appl. Bio Mater. 3, 315–326 (2020).

    Google Scholar 

  30. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018).

    Google Scholar 

  31. Harmsen, S. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl Med. 7, 271ra277 (2015).

    Google Scholar 

  32. Tian, Y. et al. Gold nanostars functionalized with amine-terminated PEG for X-ray/CT imaging and photothermal therapy. J. Mater. Chem. B 3, 4330–4337 (2015).

    Google Scholar 

  33. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Google Scholar 

  34. Soleimany, A., Khoee, S., Dias, S. & Sarmento, B. Exploring low-power single-pulsed laser-triggered two-photon photodynamic/photothermal combination therapy using a gold nanostar/graphene quantum dot nanohybrid. ACS Appl. Mater. Interfaces 15, 20811–20821 (2023).

    Google Scholar 

  35. Li, Z. et al. Ce6-conjugated and polydopamine-coated gold nanostars with enhanced photoacoustic imaging and photothermal/photodynamic therapy to inhibit lung metastasis of breast cancer. Nanoscale 12, 22173–22184 (2020).

    Google Scholar 

  36. Rolland, J. P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).

    Google Scholar 

  37. Hasan, W. et al. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 12, 287–292 (2012).

    Google Scholar 

  38. Galloway, A. L. et al. Development of a nanoparticle-based influenza vaccine using the PRINT technology. Nanomedicine 9, 523–531 (2013).

    Google Scholar 

  39. Glangchai, L. C., Caldorera-Moore, M., Shi, L. & Roy, K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J. Control. Release 125, 263–272 (2008).

    Google Scholar 

  40. Zhang, X. et al. Controllable subtractive nanoimprint lithography for precisely fabricating paclitaxel-loaded PLGA nanocylinders to enhance anticancer efficacy. ACS Appl. Mater. Interfaces 12, 14797–14805 (2020).

    Google Scholar 

  41. Esteban-Fernández de Ávila, B. et al. Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: toward rapid cell apoptosis. ACS Nano 11, 5367–5374 (2017).

    Google Scholar 

  42. Ruiz-Gómez, S., Fernández-González, C. & Perez, L. Electrodeposition as a tool for nanostructuring magnetic materials. Micromachines 13, 1223 (2022).

    Google Scholar 

  43. Kang, C. & Honciuc, A. Self-assembly of Janus nanoparticles into transformable suprastructures. J. Phys. Chem. Lett. 9, 1415–1421 (2018).

    Google Scholar 

  44. Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 306, 98–101 (2004).

    Google Scholar 

  45. Khoee, S. & Nouri, A. in Design and Development of New Nanocarriers (ed. Grumezescu, A. M.) 145–180 (Elsevier, 2018).

  46. Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Google Scholar 

  47. Liu, X. et al. Multicompartment micelles based on hierarchical co-assembly of PCL-b-PEG and PCL-b-P4VP diblock copolymers. RSC Adv. 6, 5312–5319 (2016).

    Google Scholar 

  48. Hua, Z. et al. Anisotropic polymer nanoparticles with controlled dimensions from the morphological transformation of isotropic seeds. Nat. Commun. 10, 5406 (2019).

    Google Scholar 

  49. Penfold, N. J. W., Yeow, J., Boyer, C. & Armes, S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett. 8, 1029–1054 (2019).

    Google Scholar 

  50. Karagoz, B. et al. Polymerization-induced self-assembly (PISA) – control over the morphology of nanoparticles for drug delivery applications. Polym. Chem. 5, 350–355 (2014).

    Google Scholar 

  51. Li, Z. et al. Glyco-platelets with controlled morphologies via crystallization-driven self-assembly and their shape-dependent interplay with macrophages. ACS Macro Lett. 8, 596–602 (2019).

    Google Scholar 

  52. Inam, M. et al. 1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chem. Sci. 8, 4223–4230 (2017).

    Google Scholar 

  53. Zhang, J. et al. Shape memory actuation of Janus nanoparticles with amphipathic cross-linked network. ACS Macro Lett. 5, 1317–1321 (2016).

    Google Scholar 

  54. Yan, B. et al. Investigating switchable nanostructures in shape memory process for amphipathic Janus nanoparticles. ACS Appl. Mater. Interfaces 10, 36249–36258 (2018).

    Google Scholar 

  55. Keller, S., Toebes, B. J. & Wilson, D. A. Active, autonomous, and adaptive polymeric particles for biomedical applications. Biomacromolecules 20, 1135–1145 (2018).

    Google Scholar 

  56. Sun, J., Mathesh, M., Li, W. & Wilson, D. A. Enzyme-powered nanomotors with controlled size for biomedical applications. ACS Nano 13, 10191–10200 (2019).

    Google Scholar 

  57. Champion, J. A., Katare, Y. K. & Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA 104, 11901–11904 (2007).

    Google Scholar 

  58. Ben-Akiva, E. et al. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci. Adv. 6, eaay9035 (2020).

    Google Scholar 

  59. Florez, L. et al. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 8, 2222–2230 (2012).

    Google Scholar 

  60. Sun, Z. et al. Self-propelled Janus nanocatalytic robots guided by magnetic resonance imaging for enhanced tumor penetration and therapy. J. Am. Chem. Soc. 145, 11019–11032 (2023).

    Google Scholar 

  61. Chen, Z. et al. Enzyme-powered Janus nanomotors launched from intratumoral depots to address drug delivery barriers. Chem. Eng. J. 375, 122109 (2019).

    Google Scholar 

  62. Delcea, M. et al. Anisotropic multicompartment micro- and nano-capsules produced via embedding into biocompatible PLL/HA films. Chem. Comm. 47, 2098–2100 (2011).

    Google Scholar 

  63. Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    Google Scholar 

  64. Kloberg, M. J. et al. Surface-anisotropic Janus silicon quantum dots via masking on 2D silicon nanosheets. Adv. Mater. 33, e2100288 (2021).

    Google Scholar 

  65. Yang, Q., de Vries, M. H., Picchioni, F. & Loos, K. A novel method of preparing metallic Janus silica particles using supercritical carbon dioxide. Nanoscale 5, 10420–10427 (2013).

    Google Scholar 

  66. Yang, Q., Miao, X. & Loos, K. Fabrication of nano-sized hybrid Janus particles from strawberry-like hierarchical composites. Macromol. Chem. Phys. 219, 1800267 (2018).

    Google Scholar 

  67. Mani, K. A., Yaakov, N., Itzhaik Alkotzer, Y., Zelikman, E. & Mechrez, G. A robust fabrication method for amphiphilic Janus particles via immobilization on polycarbonate microspheres. Polymers 10, 900 (2018).

    Google Scholar 

  68. Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B. & Capron, I. Cellulosic nanorods of various aspect ratios for oil in water pickering emulsions. Soft Matter 9, 952–959 (2013).

    Google Scholar 

  69. Hunter, S. J. & Armes, S. P. Pickering emulsifiers based on block copolymer nanoparticles prepared by polymerization-induced self-assembly. Langmuir 36, 15463–15484 (2020).

    Google Scholar 

  70. Jiang, S. & Granick, S. Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 24, 2438–2445 (2007).

    Google Scholar 

  71. Zhao, Z., Wang, W., Xiao, J., Chen, Y. & Cao, Y. Interfacial engineering of pickering emulsion co-stabilized by zein nanoparticles and Tween 20: effects of the particle size on the interfacial concentration of gallic acid and the oxidative stability. Nanomaterials 10, 1068 (2020).

    Google Scholar 

  72. Robin, B. et al. Tuning morphology of Pickering emulsions stabilised by biodegradable PLGA nanoparticles: how PLGA characteristics influence emulsion properties. J. Colloid Interface Sci. 595, 202–211 (2021).

    Google Scholar 

  73. Cai, S. et al. pH-responsive superstructures prepared via the assembly of Fe3O4 amphipathic Janus nanoparticles. Regen. Biomater. 5, 251–259 (2018).

    Google Scholar 

  74. Kadam, R., Ghawali, J., Waespy, M., Maas, M. & Rezwan, K. Janus nanoparticles designed for extended cell surface attachment. Nanoscale 12, 18938–18949 (2020).

    Google Scholar 

  75. Wang, J., Jansen, J. A. & Yang, F. Electrospraying: possibilities and challenges of engineering carriers for biomedical applications-a mini review. Front. Chem. 7, 258 (2019).

    Google Scholar 

  76. Sanchez-Vazquez, B., Amaral, A. J. R., Yu, D. G., Pasparakis, G. & Williams, G. R. Electrosprayed Janus particles for combined photo-chemotherapy. AAPS PharmSciTech 18, 1460–1468 (2017).

    Google Scholar 

  77. Li, K. et al. Enhanced fluorescent intensity of magnetic-fluorescent bifunctional PLGA microspheres based on Janus electrospraying for bioapplication. Sci. Rep. 8, 17117 (2018).

    Google Scholar 

  78. Hwang, S. et al. Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions. Phys. Chem. Chem. Phys. 12, 11894–11899 (2010).

    Google Scholar 

  79. Roh, K. H., Martin, D. C. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 4, 759–763 (2005).

    Google Scholar 

  80. Gregory, J. V. et al. Programmable delivery of synergistic cancer drug combinations using bicompartmental nanoparticles. Adv. Healthc. Mater. 9, e2000564 (2020).

    Google Scholar 

  81. Ge, K. et al. Gold nanorods with spatial separation of CeO2 deposition for plasmonic-enhanced antioxidant stress and photothermal therapy of Alzheimer’s disease. ACS Appl. Mater. Interfaces 14, 3662–3674 (2022).

    Google Scholar 

  82. Ye, J. et al. Quantitative photoacoustic diagnosis and precise treatment of inflammation in vivo using activatable theranostic nanoprobe. Adv. Funct. Mater. 30, 2001771 (2020).

    Google Scholar 

  83. Li, Q. et al. Nanosized Janus AuNR-Pt motor for enhancing NIR-II photoacoustic imaging of deep tumor and Pt2+ ion-based chemotherapy. ACS Nano 16, 7947–7960 (2022).

    Google Scholar 

  84. Li, R. et al. In situ production of Ag/polymer asymmetric nanoparticles via a powerful light-driven technique. J. Am. Chem. Soc. 141, 19542–19545 (2019).

    Google Scholar 

  85. Ji, X. et al. Multifunctional parachute-like nanomotors for enhanced skin penetration and synergistic antifungal therapy. ACS Nano 15, 14218–14228 (2021).

    Google Scholar 

  86. Dehghani, E., Salami-Kalajahi, M. & Roghani-Mamaqani, H. Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids Surf. B 170, 85–91 (2018).

    Google Scholar 

  87. Dehghani, E., Salami-Kalajahi, M. & Roghani-Mamaqani, H. Fabricating cauliflower-like and dumbbell-like Janus particles: loading and simultaneous release of DOX and ibuprofen. Colloids Surf. B 173, 155–163 (2019).

    Google Scholar 

  88. Dehghani, E., Barzgari-Mazgar, T., Salami-Kalajahi, M. & Kahaie-Khosrowshahi, A. A pH-controlled approach to fabricate electrolyte/non-electrolyte Janus particles with low cytotoxicity as carriers of DOX. Mater. Chem. Phys 249, 123000 (2020).

    Google Scholar 

  89. Li, Y. et al. Morphology evolution of Janus dumbbell nanoparticles in seeded emulsion polymerization. J. Colloid Interface Sci. 543, 34–42 (2019).

    Google Scholar 

  90. Vatankhah, Z., Dehghani, E., Salami-Kalajahi, M. & Roghani-Mamaqani, H. Seed’s morphology-induced core-shell composite particles by seeded emulsion polymerization for drug delivery. Colloids Surf. B 191, 111008 (2020).

    Google Scholar 

  91. Meyer, R. A. & Green, J. J. Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 191–207 (2016).

    Google Scholar 

  92. Zhang, L., Chen, Q., Ma, Y. & Sun, J. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl. Bio Mater. 3, 107–120 (2019).

    Google Scholar 

  93. Hasani-Sadrabadi, M. M. et al. Morphological tuning of polymeric nanoparticles via microfluidic platform for fuel cell applications. J. Am. Chem. Soc. 134, 18904–18907 (2012).

    Google Scholar 

  94. Angly, J. et al. Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles. ACS Nano 7, 6465–6477 (2013).

    Google Scholar 

  95. Sun, X. T. et al. Microfluidic preparation of polymer-lipid Janus microparticles with staged drug release property. J. Colloid Interface Sci. 553, 631–638 (2019).

    Google Scholar 

  96. Xie, H., She, Z.-G., Wang, S., Sharma, G. & Smith, J. W. One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28, 4459–4463 (2012).

    Google Scholar 

  97. Hao, N., Nie, Y., Tadimety, A., Closson, A. B. & Zhang, J. X. J. Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials. Mater. Res. Lett. 5, 584–590 (2017).

    Google Scholar 

  98. Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    Google Scholar 

  99. Zhang, Y. & Hess, H. Chemically-powered swimming and diffusion in the microscopic world. Nat. Rev. Chem. 5, 500–510 (2021).

    Google Scholar 

  100. Saper, G. & Hess, H. Synthetic systems powered by biological molecular motors. Chem. Rev. 120, 288–309 (2020).

    Google Scholar 

  101. Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Google Scholar 

  102. Tu, Y., Peng, F. & Wilson, D. A. Motion manipulation of micro‐ and nanomotors. Adv. Mater. 29, 1701970 (2017).

    Google Scholar 

  103. Peng, F., Tu, Y. & Wilson, D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289–5310 (2017).

    Google Scholar 

  104. Li, N. et al. Chemotactic NO/H2S nanomotors realizing cardiac targeting of G-CSF against myocardial ischemia-reperfusion injury. ACS Nano 17, 12573–12593 (2023).

    Google Scholar 

  105. Peng, F., Tu, Y., van Hest, J. C. & Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 54, 11662–11665 (2015).

    Google Scholar 

  106. Liu, X. et al. Enzyme-powered hollow nanorobots for active microsampling enabled by thermoresponsive polymer gating. ACS Nano 16, 10354–10363 (2022).

    Google Scholar 

  107. Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

    Google Scholar 

  108. Schattling, P. S., Ramos-Docampo, M. A., Salgueiriño, V. & Städler, B. Double-fueled Janus swimmers with magnetotactic behavior. ACS Nano 11, 3973–3983 (2017).

    Google Scholar 

  109. Abdelmohsen, L. K. et al. Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10, 2652–2660 (2016).

    Google Scholar 

  110. Wang, L. et al. Continuous microfluidic self-assembly of hybrid Janus-like vesicular motors: autonomous propulsion and controlled release. Small 11, 3762–3767 (2015).

    Google Scholar 

  111. Archer, R. A. et al. pH‐responsive catalytic Janus motors with autonomous navigation and cargo‐release functions. Adv. Funct. Mater. 30, 2000324 (2020).

    Google Scholar 

  112. Díez, P. et al. Ultrafast directional Janus Pt-mesoporous silica nanomotors for smart drug delivery. ACS Nano 15, 4467–4480 (2021).

    Google Scholar 

  113. Wu, Z. et al. Water-powered cell-mimicking Janus micromotor. Adv. Funct. Mater. 25, 7497–7501 (2015).

    Google Scholar 

  114. Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015).

    Google Scholar 

  115. Peng, F. et al. A peptide functionalized nanomotor as an efficient cell penetrating tool. Chem. Comm. 53, 1088–1091 (2017).

    Google Scholar 

  116. Tu, Y. et al. Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano 11, 1957–1963 (2017).

    Google Scholar 

  117. Pijpers, I. A. B. et al. Hybrid biodegradable nanomotors through compartmentalized synthesis. Nano Lett. 20, 4472–4480 (2020).

    Google Scholar 

  118. Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl Med. 4, 149ra119 (2012).

    Google Scholar 

  119. Ma, X., Hortelão, A. C., Patiño, T. & Sánchez, S. Enzyme catalysis to power micro/nanomachines. ACS Nano 10, 9111–9122 (2016).

    Google Scholar 

  120. Ma, X. et al. Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15, 7043–7050 (2015).

    Google Scholar 

  121. Rucinskaite, G., Thompson, S. A., Paterson, S. & de la Rica, R. Enzyme-coated Janus nanoparticles that selectively bind cell receptors as a function of the concentration of glucose. Nanoscale 9, 5404–5407 (2017).

    Google Scholar 

  122. Toebes, B. J., Cao, F. & Wilson, D. A. Spatial control over catalyst positioning on biodegradable polymeric nanomotors. Nat. Commun. 10, 5308 (2019).

    Google Scholar 

  123. Wang, L., Hortelão, A. C., Huang, X. & Sánchez, S. Lipase-powered mesoporous silica nanomotors for triglyceride degradation. Angew. Chem. Int. Ed. 58, 7992–7996 (2019).

    Google Scholar 

  124. Fu, D., Ye, Y., Gao, C., Xie, D. & Peng, F. Bienzymatic spiky Janus nanomotors powered by histamine. ChemNanoMat 8, e202200152 (2022).

    Google Scholar 

  125. Hu, Y., Li, Z. & Sun, Y. Ultrasmall enzyme/light-powered nanomotor facilitates cholesterol detection. J. Colloid Interface Sci. 621, 341–351 (2022).

    Google Scholar 

  126. Patiño, T. et al. Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J. Am. Chem. Soc. 140, 7896–7903 (2018).

    Google Scholar 

  127. Llopis-Lorente, A. et al. Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano 13, 12171–12183 (2019).

    Google Scholar 

  128. Arque, X. et al. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors. ACS Nano 16, 7547–7558 (2022).

    Google Scholar 

  129. Hortelão, A. C., Carrascosa, R., Murillo-Cremaes, N., Patiño, T. & Sánchez, S. Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13, 429–439 (2019).

    Google Scholar 

  130. Valles, M., Pujals, S., Albertazzi, L. & Sánchez, S. Enzyme purification improves the enzyme loading, self-propulsion, and endurance performance of micromotors. ACS Nano 16, 5615–5626 (2022).

    Google Scholar 

  131. Hao, L.-W. et al. Microfluidic-directed magnetic controlling supraballs with multi-responsive anisotropic photonic crystal structures. J. Mater. Sci. Technol. 81, 203–211 (2021).

    Google Scholar 

  132. Zhang, B. et al. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. Sci. Adv. 9, eadc8978 (2023).

    Google Scholar 

  133. Wu, Z. et al. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52, 7000–7003 (2013).

    Google Scholar 

  134. Wan, M. et al. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10, 966 (2019).

    Google Scholar 

  135. Wu, Z. et al. Carrier-free trehalose-based nanomotors targeting macrophages in inflammatory plaque for treatment of atherosclerosis. ACS Nano 16, 3808–3820 (2022).

    Google Scholar 

  136. Li, J., Mayorga‐Martinez, C. C., Ohl, C. D. & Pumera, M. Ultrasonically propelled micro‐ and nanorobots. Adv. Funct. Mater. 32, 2102265 (2022).

    Google Scholar 

  137. Garcia-Gradilla, V. et al. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7, 9232–9240 (2013).

    Google Scholar 

  138. Garcia-Gradilla, V. et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 10, 4154–4159 (2014).

    Google Scholar 

  139. Esteban-Fernández de Ávila, B. et al. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10, 4997–5005 (2016).

    Google Scholar 

  140. Cardoso, V. F. et al. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 7, 1700845 (2018).

    Google Scholar 

  141. Gao, W., Sattayasamitsathit, S., Manesh, K. M., Weihs, D. & Wang, J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132, 14403–14405 (2010).

    Google Scholar 

  142. Schamel, D. et al. Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8, 8794–8801 (2014).

    Google Scholar 

  143. Ghosh, A., Paria, D., Rangarajan, G. & Ghosh, A. Velocity fluctuations in helical propulsion: how small can a propeller be. J. Phys. Chem. Lett. 5, 62–68 (2014).

    Google Scholar 

  144. Venugopalan, P. L., Jain, S., Shivashankar, S. & Ghosh, A. Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale 10, 2327–2332 (2018).

    Google Scholar 

  145. Venugopalan, P. L. et al. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 14, 1968–1975 (2014).

    Google Scholar 

  146. Ramachandran, R. V. et al. How safe are magnetic nanomotors: from cells to animals. Bio. Adv. 140, 213048 (2022).

    Google Scholar 

  147. Shen, Y. et al. Adaptive control of nanomotor swarms for magnetic-field-programmed cancer cell destruction. ACS Nano 15, 20020–20031 (2021).

    Google Scholar 

  148. Xu, L., Mou, F., Gong, H., Luo, M. & Guan, J. Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46, 6905–6926 (2017).

    Google Scholar 

  149. Shao, J. et al. Erythrocyte membrane modified Janus polymeric motors for thrombus therapy. ACS Nano 12, 4877–4885 (2018).

    Google Scholar 

  150. Peng, X. et al. Opto-thermoelectric microswimmers. Light Sci. Appl. 9, 141 (2020).

    Google Scholar 

  151. Sridhar, V. et al. Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability. Proc. Natl Acad. Sci. USA 117, 24748–24756 (2020).

    Google Scholar 

  152. Cao, S. et al. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nat. Commun. 12, 2077 (2021).

    Google Scholar 

  153. Chen, S. et al. Dual-source powered nanomotor with integrated functions for cancer photo-theranostics. Biomaterials 288, 121744 (2022).

    Google Scholar 

  154. Zheng, S. et al. Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Adv. Funct. Mater. 31, 2100936 (2021).

    Google Scholar 

  155. Liu, J. et al. Rotary biomolecular motor-powered supramolecular colloidal motor. Sci. Adv. 9, eabg3015 (2023).

    Google Scholar 

  156. Zhou, D. et al. Light-ultrasound driven collective “firework” behavior of nanomotors. Adv. Sci. 5, 1800122 (2018).

    Google Scholar 

  157. Li, J. et al. Magneto-acoustic hybrid nanomotor. Nano Lett. 15, 4814–4821 (2015).

    Google Scholar 

  158. Shao, J. et al. Twin-engine Janus supramolecular nanomotors with counterbalanced motion. J. Am. Chem. Soc. 144, 11246–11252 (2022).

    Google Scholar 

  159. Yu, M. et al. Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett. 16, 7176–7182 (2016).

    Google Scholar 

  160. Guo, M. et al. Impacts of particle shapes on the oral delivery of drug nanocrystals: mucus permeation, transepithelial transport and bioavailability. J. Control. Release 307, 64–75 (2019).

    Google Scholar 

  161. Bao, C. et al. Enhanced transport of shape and rigidity-tuned α-lactalbumin nanotubes across intestinal mucus and cellular barriers. Nano Lett. 20, 1352–1361 (2020).

    Google Scholar 

  162. Sosnik, A., das Neves, J. & Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog. Polym. Sci. 39, 2030–2075 (2014).

    Google Scholar 

  163. Wang, Z. H. et al. Self-thermophoretic nanoparticles enhance intestinal mucus penetration and reduce pathogenic bacteria interception in colorectal cancer. Adv. Funct. Mater. 33, 2212013 (2023).

    Google Scholar 

  164. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    Google Scholar 

  165. Xiong, F. et al. Superparamagnetic anisotropic nano-assemblies with longer blood circulation in vivo: a highly efficient drug delivery carrier for leukemia therapy. Nanoscale 8, 17085–17089 (2016).

    Google Scholar 

  166. Zhou, Z. et al. Linear-dendritic drug conjugates forming long circulating nanorods for cancer-drug delivery. Biomaterials 34, 5722–5735 (2013).

    Google Scholar 

  167. Kapate, N., Clegg, J. R. & Mitragotri, S. Non-spherical micro- and nanoparticles for drug delivery: progress over 15 years. Adv. Drug Deliv. Rev. 177, 113807 (2021).

    Google Scholar 

  168. van de Ven, A. L. et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J. Control. Release 158, 148–155 (2012).

    Google Scholar 

  169. Jurney, P. et al. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow. J. Control. Release 245, 170–176 (2017).

    Google Scholar 

  170. Cooley, M. et al. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 10, 15350–15364 (2018).

    Google Scholar 

  171. Gupta, R., Badhe, Y., Mitragotri, S. & Rai, B. Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations. Nanoscale 12, 6318–6333 (2020).

    Google Scholar 

  172. Sikder, A., Pearce, A. K., Kumar, C. M. S. & O’Reilly, R. K. Elucidating the role of multivalency, shape, size and functional group density on antibacterial activity of diversified supramolecular nanostructures enabled by templated assembly. Mater. Horiz. 10, 171–178 (2023).

    Google Scholar 

  173. Anselmo, A. C. et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8, 11243–11253 (2014).

    Google Scholar 

  174. Barua, S. et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl Acad. Sci. USA 110, 3270–3275 (2013).

    Google Scholar 

  175. Wong, S. H. D. et al. Anisotropic nanoscale presentation of cell adhesion ligand enhances the recruitment of diverse integrins in adhesion structures and mechanosensing-dependent differentiation of stem cells. Adv. Funct. Mater. 29, 1806822 (2019).

    Google Scholar 

  176. Da Silva-Candal, A. et al. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J. Control. Release 309, 94–105 (2019).

    Google Scholar 

  177. Acter, S., Vidallon, M. L. P., Crawford, S., Tabor, R. F. & Teo, B. M. Bowl-shaped mesoporous polydopamine nanoparticles for size-dependent endocytosis into HeLa cells. ACS Appl. Nano Mater. 4, 9536–9546 (2021).

    Google Scholar 

  178. Acter, S., Vidallon, M. L. P., Crawford, S., Tabor, R. F. & Teo, B. M. Efficient cellular internalization and transport of bowl‐shaped polydopamine particles. Part. Part. Syst. Charact. 37, 2000166 (2020).

    Google Scholar 

  179. Talamini, L. et al. Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles. ACS Nano 11, 5519–5529 (2017).

    Google Scholar 

  180. García-Álvarez, R., Hadjidemetriou, M., Sánchez-Iglesias, A., Liz-Marzán, L. M. & Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 10, 1256–1264 (2018).

    Google Scholar 

  181. Joseph, A. et al. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 3, e1700362 (2017).

    Google Scholar 

  182. Brown, T. D., Habibi, N., Wu, D., Lahann, J. & Mitragotri, S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood-brain barrier. ACS Biomater. Sci. Eng. 6, 4916–4928 (2020).

    Google Scholar 

  183. Kolhar, P. et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl Acad. Sci. USA 110, 10753–10758 (2013).

    Google Scholar 

  184. Nowak, M., Brown, T. D., Graham, A., Helgeson, M. E. & Mitragotri, S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med. 5, e10153 (2020).

    Google Scholar 

  185. Han, S. et al. Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting. J. Control. Release 357, 606–619 (2023).

    Google Scholar 

  186. Ju, Y. et al. Monodisperse Au-Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 11, 9239–9248 (2017).

    Google Scholar 

  187. Deng, Q. et al. Biological mediator-propelled nanosweeper for nonpharmaceutical thrombus therapy. ACS Nano 15, 6604–6613 (2021).

    Google Scholar 

  188. Xie, S. et al. Self-propelling nanomotors integrated with biofilm microenvironment-activated NO release to accelerate healing of bacteria-infected diabetic wounds. Adv. Healthc. Mater. 11, e2201323 (2022).

    Google Scholar 

  189. Wibroe, P. P. et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat. Nanotechnol. 12, 589–594 (2017).

    Google Scholar 

  190. Kumar, S., Anselmo, A. C., Banerjee, A., Zakrewsky, M. & Mitragotri, S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 220, 141–148 (2015).

    Google Scholar 

  191. Shukla, S. et al. The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv. Healthc. Mater. 4, 874–882 (2015).

    Google Scholar 

  192. Li, Z. et al. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 5, 1059–1064 (2016).

    Google Scholar 

  193. Meyer, R. A. et al. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small 11, 1519–1525 (2015).

    Google Scholar 

  194. Hassani Najafabadi, A. et al. Cancer immunotherapy via targeting cancer stem cells using vaccine nanodiscs. Nano Lett. 20, 7783–7792 (2020).

    Google Scholar 

  195. Kuai, R. et al. Robust anti-tumor T cell response with efficient intratumoral infiltration by nanodisc cancer immunotherapy. Adv. Ther. 3, 2000094 (2020).

    Google Scholar 

  196. Kadiyala, P. et al. High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019).

    Google Scholar 

  197. Scheetz, L. et al. Synthetic high-density lipoprotein nanodiscs for personalized immunotherapy against gliomas. Clin. Cancer Res. 26, 4369–4380 (2020).

    Google Scholar 

  198. Tazaki, T. et al. Shape-dependent adjuvanticity of nanoparticle-conjugated RNA adjuvants for intranasal inactivated influenza vaccines. RSC Adv. 8, 16527–16536 (2018).

    Google Scholar 

  199. Wang, Z. et al. Fluidity-guided assembly of Au@Pt on liposomes as a catalase-powered nanomotor for effective cell uptake in cancer cells and plant leaves. ACS Nano 16, 9019–9030 (2022).

    Google Scholar 

  200. Ou, J. et al. MnO2-based nanomotors with active Fenton-like Mn2+ delivery for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces 13, 38050–38060 (2021).

    Google Scholar 

  201. Yang, Z. et al. Ultrasmall enzyme-powered Janus nanomotor working in blood circulation system. ACS Nano 17, 6023–6035 (2023).

    Google Scholar 

  202. Choi, H., Cho, S. H. & Hahn, S. K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano 14, 6683–6692 (2020).

    Google Scholar 

  203. Tong, F. et al. Carbon monoxide-propelled nanomotors as an active treatment for renal injury. Appl. Mater. Today 32, 101823 (2023).

    Google Scholar 

  204. Kiristi, M. et al. Lysozyme-based antibacterial nanomotors. ACS Nano 9, 9252–9259 (2015).

    Google Scholar 

  205. Hansen-Bruhn, M. et al. Active intracellular delivery of a Cas9/sgRNA complex using ultrasound-propelled nanomotors. Angew. Chem. Int. Ed. 57, 2657–2661 (2018).

    Google Scholar 

  206. Wang, W. et al. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53, 3201–3204 (2014).

    Google Scholar 

  207. Pal, M. et al. Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 30, e1800429 (2018).

    Google Scholar 

  208. Zhang, X. et al. NIR-propelled Janus nanomotors for active photoacoustic imaging and synergistic photothermal/chemodynamic therapy. J. Colloid Interface Sci. 648, 457–472 (2023).

    Google Scholar 

  209. Meng, J. et al. Pyroelectric Janus nanomotors to promote cell internalization and synergistic tumor therapy. J. Control. Release 357, 342–355 (2023).

    Google Scholar 

  210. Liu, Y. et al. NIR-II-activated yolk-shell nanostructures as an intelligent platform for Parkinsonian therapy. ACS Appl. Bio Mater. 3, 6876–6887 (2020).

    Google Scholar 

  211. Jarvis, M., Krishnan, V. & Mitragotri, S. Nanocrystals: a perspective on translational research and clinical studies. Bioeng. Transl. Med. 4, 5–16 (2019).

    Google Scholar 

  212. Jahn, M. R. et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur. J. Pharm. Biopharm. 78, 480–491 (2011).

    Google Scholar 

  213. Takahashi, N., Higashi, K., Ueda, K., Yamamoto, K. & Moribe, K. Determination of nonspherical morphology of doxorubicin-loaded liposomes by atomic force microscopy. J. Pharm. Sci. 107, 717–726 (2018).

    Google Scholar 

  214. Ekanem, E. E., Zhang, Z. & Vladisavljevic, G. T. Facile production of biodegradable bipolymer patchy and patchy Janus particles with controlled morphology by microfluidic routes. Langmuir 33, 8476–8482 (2017).

    Google Scholar 

  215. Cao, X., Li, W., Ma, T. & Dong, H. One-step fabrication of polymeric hybrid particles with core–shell, patchy, patchy Janus and Janus architectures via a microfluidic-assisted phase separation process. RSC Adv. 5, 79969–79975 (2015).

    Google Scholar 

  216. Du, J. & O’Reilly, R. K. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chem. Soc. Rev. 40, 2402–2416 (2011).

    Google Scholar 

  217. Walther, A. & Muller, A. H. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

    Google Scholar 

  218. Lesov, I. et al. Bottom-up synthesis of polymeric micro- and nanoparticles with regular anisotropic shapes. Macromolecules 51, 7456–7462 (2018).

    Google Scholar 

  219. Verhoef, J. J. F. et al. Iron nanomedicines induce Toll-like receptor activation, cytokine production and complement activation. Biomaterials 119, 68–77 (2017).

    Google Scholar 

  220. Scott, L. J. Ferric carboxymaltose: a review in iron deficiency. Drugs 78, 479–493 (2018).

    Google Scholar 

Download references

Acknowledgements

H.A. and J.d.N. gratefully acknowledge Fundação para a Ciência e a Tecnologia, Portugal, for financial support (2020.06264.BD fellowship and CEECIND/01280/2018 contract under the Individual CEEC Program, respectively).

Author information

Authors and Affiliations

Authors

Contributions

All authors substantially contributed to the conceptualization of the article, data search and discussion of content. H.A. wrote the initial draft of the manuscript. G.T., B.S. and J.d.N. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Giovanni Traverso, Bruno Sarmento or José das Neves.

Ethics declarations

Competing interests

Financial competing interests for G.T. that may be interpreted as related to the current manuscript include current and prior funding (Supplementary Tables 2 and 3) from Novo Nordisk, CSL Vifor, Hoffman La Roche, Oracle, Draper Laboratory, Massachusetts Institute of Technology (MIT) Lincoln Laboratory, National Institutes of Health (National Institute of Biomedical Imaging and Bioengineering, National Cancer Institute, Advanced Research Projects Agency for Health), Bill and Melinda Gates Foundation, The Leona M. and Harry B. Helmsley Charitable Trust, Karl van Tassel (1925) Career Development Professor, MIT and the Defense Advanced Research Projects Agency, as well as employment by the MIT and Brigham and Women’s Hospital (Supplementary Table 1). Personal financial interests include equity/stock (Lyndra Therapeutics, Suono Bio, Vivtex, Celero Systems, Syntis Bio), board of directors membership and/or consulting (Lyndra Therapeutics, Novo Nordisk, Suono Bio, Vivtex, Celero Systems, Syntis Bio) and royalties (past and potentially in the future) from licensed and/or optioned intellectual property (Lyndra Therapeutics, Novo Nordisk, Suono Bio, Vivtex, Celero Systems, Syntis Bio, Johns Hopkins, MIT, and Mass General Brigham Innovation). Complete details of all relationships for-profit and not-for-profit for G.T. can be found in the Supplementary Information. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Takuro Niidome and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, H., Traverso, G., Sarmento, B. et al. Nanoscale anisotropy for biomedical applications. Nat Rev Bioeng 2, 609–625 (2024). https://doi.org/10.1038/s44222-024-00169-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-024-00169-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research