Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microneedle-based biosensing

A Publisher Correction to this article was published on 05 July 2024

This article has been updated

Abstract

Microneedles (MNs) are microscopic needles that are applied to the skin in a minimally invasive way to facilitate transdermal drug delivery and/or uptake of interstitial fluid from the skin, which contains a variety of metabolites that can serve as biomarkers. The collection of interstitial fluid can be followed by post-sampling analysis or in situ real-time biosensing for disease diagnosis and drug monitoring. The painless and easy administration of MNs is appealing to patients, especially for long-term monitoring. In this Review, we discuss the use of MNs for biosensing purposes. We highlight the different types of MNs and sensing technologies used to develop MN-based biosensors. In addition, we discuss the potential to integrate MNs with wearable devices for real-time monitoring to improve point-of-care testing. Finally, we review the translational hurdles to be considered in bringing this technology from benchtop to bedside.

Key points

  • Skin, as the largest body organ, houses a wide range of metabolites that may be identified as biomarkers for disease prognosis and monitoring.

  • Microneedle (MN) technology is primarily used as a drug-delivery tool; however, there is a paradigm shift toward utilizing MNs for biosensing purposes.

  • MN-based biosensors can provide a powerful platform for high-throughput and rapid disease state diagnosis and monitoring.

  • Developing new sensing modalities can improve the accuracy, precision and sensitivity of MN-based biosensors.

  • MN-based biosensors offer a wide range of benefits for patients who require continuous and convenient health surveillance; however, multiple translational hurdles must be overcome before MN-based biosensors reach the market.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MN-based biosensor timeline and concept.
Fig. 2: Schematic for MN retention and biofluidic extraction mechanisms from the skin.
Fig. 3: Schematic representation of the working principles of MNs for biosensing.
Fig. 4: Advanced proof-of-concept devices with MN biosensors.

Similar content being viewed by others

Change history

References

  1. Houten, S. M. Metabolomics: unraveling the chemical individuality of common human diseases. Ann. Med. 41, 402–407 (2009).

    Article  Google Scholar 

  2. Wishart, D. S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 15, 473–484 (2016).

    Article  Google Scholar 

  3. Lu, H., Zada, S., Yang, L. & Dong, H. Microneedle-based device for biological analysis. Front. Bioeng. Biotechnol. 10, 851134 (2022).

    Article  Google Scholar 

  4. Xue, P. et al. Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics. Appl. Mater. Today 13, 144–157 (2018).

    Article  Google Scholar 

  5. Corrie, S. R., Coffey, J. W., Islam, J., Markey, K. A. & Kendall, M. A. F. Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst 140, 4350–4364 (2015).

    Article  Google Scholar 

  6. Luszczynska, A., Benight, C. C. & Cieslak, R. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review. Eur. Psychol. 14, 51–62 (2009).

    Article  Google Scholar 

  7. Slupsky, C. M. et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem. 79, 6995–7004 (2007).

    Article  Google Scholar 

  8. Liu, Y., Yu, Q., Luo, X., Yang, L. & Cui, Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 7, 75 (2021).

    Article  Google Scholar 

  9. Chung, M., Fortunato, G. & Radacsi, N. Wearable flexible sweat sensors for healthcare monitoring: a review. J. R. Soc. Interface 16, 20190217 (2019).

    Article  Google Scholar 

  10. Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014).

    Article  Google Scholar 

  11. Paliwal, S., Hwang, B. H., Tsai, K. Y. & Mitragotri, S. Diagnostic opportunities based on skin biomarkers. Eur. J. Pharm. Sci. 50, 546–556 (2013).

    Article  Google Scholar 

  12. Himawan, A. et al. Where microneedle meets biomarkers: futuristic application for diagnosing and monitoring localized external organ diseases. Adv. Healthc. Mater. 12, 2202066 (2023).

    Article  Google Scholar 

  13. Jarmusch, A. K. et al. Initial development toward non-invasive drug monitoring via untargeted mass spectrometric analysis of human skin. Anal. Chem. 91, 8062–8069 (2019).

    Article  Google Scholar 

  14. Bodenlenz, M. et al. Open flow microperfusion as a dermal pharmacokinetic approach to evaluate topical bioequivalence. Clin. Pharmacokinet. 56, 91–98 (2017).

    Article  Google Scholar 

  15. Miller, P. R. et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 1, 173 (2018).

    Article  Google Scholar 

  16. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020).

    Article  Google Scholar 

  17. McKenna, P. E. et al. Polymeric microarray patches for enhanced transdermal delivery of the poorly soluble drug olanzapine. ACS Appl. Mater. Interfaces 15, 31300–31319 (2023).

    Article  Google Scholar 

  18. Paris, J. L., Vora, L. K., Torres, M. J., Mayorga, C. & Donnelly, R. F. Microneedle array patches for allergen-specific immunotherapy. Drug Discov. Today 28, 103556 (2023).

    Article  Google Scholar 

  19. Tekko, I. A. Novel bilayer microarray patch‐assisted long‐acting micro‐depot cabotegravir intradermal delivery for HIV pre‐exposure prophylaxis. Adv. Funct. Mater. 32, 2106999 (2022).

    Article  Google Scholar 

  20. Vora, L. K., Courtenay, A. J., Tekko, I. A., Larrañeta, E. & Donnelly, R. F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 146, 290–298 (2020).

    Article  Google Scholar 

  21. Chambers, R. Microdissection studies, III. Some problems in the maturation and fertilization of the echinoderm egg. Biol. Bull. 41, 318–350 (1921).

    Article  Google Scholar 

  22. Rawson, T. M. et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. Lancet Digit. Health 1, e335–e343 (2019).

    Article  Google Scholar 

  23. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  Google Scholar 

  24. MarketsandMarkets. Biosensors Market Size, Share, Industry Growth Analysis Report by Type, Product (Wearable, Non-wearable), Technology, Application (POC, Home Diagnostics, Research Lab, Environmental Monitoring, Food & Beverages, Biodefense), Global Growth Driver and Industry Forecast to 2026 https://www.marketsandmarkets.com/Market-Reports/biosensors-market-798.html (2023).

  25. Larrañeta, E., Lutton, R. E. M., Woolfson, A. D. & Donnelly, R. F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R. Rep. 104, 1–32 (2016).

    Article  Google Scholar 

  26. Rodgers, A. M., Cordeiro, A. S., Kissenpfennig, A. & Donnelly, R. F. Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opin. Drug Deliv. 15, 851–867 (2018).

    Article  Google Scholar 

  27. Vora, L. K. et al. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm. 159, 44–76 (2021).

    Article  Google Scholar 

  28. Cárcamo-Martínez, Á. et al. Hollow microneedles: a perspective in biomedical applications. Int. J. Pharm. 599, 120455 (2021).

    Article  Google Scholar 

  29. Larrañeta, E. & Vora, L. In Microneedles for Drug and Vaccine Delivery and Patient Monitoring (ed. Donnelly, R. F.) 177–205 (Wiley, 2018).

  30. Gowers, S. A. N. et al. Development of a minimally invasive microneedle-based sensor for continuous monitoring of β-lactam antibiotic concentrations in vivo. ACS Sens. 4, 1072–1080 (2019).

    Article  Google Scholar 

  31. Huang, X. et al. 3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsyst. Nanoeng. 9, 25 (2023).

    Article  Google Scholar 

  32. Henry, S., McAllister, D. V., Allen, M. G. & Prausnitz, M. R. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87, 922–925 (1998).

    Article  Google Scholar 

  33. Kim, S., Lee, M. S., Yang, H. S. & Jung, J. H. Enhanced extraction of skin interstitial fluid using a 3D printed device enabling tilted microneedle penetration. Sci. Rep. 11, 14018 (2021).

    Article  Google Scholar 

  34. Chen, L. et al. Local extraction and detection of early stage breast cancers through a microneedle and nano-Ag/MBL film based painless and blood-free strategy. Mater. Sci. Eng. C. 109, 110402 (2020).

    Article  Google Scholar 

  35. Corrie, S. R. et al. Surface-modified microprojection arrays for intradermal biomarker capture, with low non-specific protein binding. Lab Chip 10, 2655–2658 (2010).

    Article  Google Scholar 

  36. Zhang, B. L., Yang, Y., Zhao, Z. Q. & Guo, X. D. A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim. Acta 358, 136917 (2020).

    Article  Google Scholar 

  37. Tortolini, C., Cass, A. E. G., Pofi, R., Lenzi, A. & Antiochia, R. Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection. Microchim. Acta 189, 180 (2022).

    Article  Google Scholar 

  38. Ming, D. K. et al. Real-time continuous measurement of lactate through a minimally invasive microneedle patch: a phase I clinical study. BMJ Innov. 8, 87–94 (2022).

    Article  Google Scholar 

  39. Chinnadayyala, S. R. & Cho, S. Porous platinum black-coated minimally invasive microneedles for non-enzymatic continuous glucose monitoring in interstitial fluid. Nanomaterials 11, 37 (2020).

    Article  Google Scholar 

  40. Wang, Q. et al. Intradermal glycine detection with a wearable microneedle biosensor: the first in vivo assay. Anal. Chem. 94, 11856–11864 (2022).

    Article  Google Scholar 

  41. Dervisevic, M., Alba, M., Adams, T. E., Prieto-Simon, B. & Voelcker, N. H. Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosens. Bioelectron. 192, 113496 (2021).

    Article  Google Scholar 

  42. Senel, M., Dervisevic, M. & Voelcker, N. H. Gold microneedles fabricated by casting of gold ink used for urea sensing. Mater. Lett. 243, 50–53 (2019).

    Article  Google Scholar 

  43. Lee, W. et al. Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Sci. Adv. 7, eabi6290 (2021).

    Article  Google Scholar 

  44. Downs, A. M. et al. Microneedle electrochemical aptamer-based sensing: real-time small molecule measurements using sensor-embedded, commercially-available stainless steel microneedles. Biosens. Bioelectron. 236, 115408 (2023).

    Article  Google Scholar 

  45. Lin, S. et al. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8, eabq4539 (2023).

    Article  Google Scholar 

  46. Zou, Y. et al. Minimally invasive electrochemical continuous glucose monitoring sensors: recent progress and perspective. Biosens. Bioelectron. 225, 115103 (2023).

    Article  Google Scholar 

  47. Parrilla, M., Detamornrat, U., Domínguez-Robles, J., Donnelly, R. F. & De Wael, K. Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose. Talanta 249, 123695 (2022).

    Article  Google Scholar 

  48. Dervisevic, M. et al. Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv. Funct. Mater. 32, 2009850 (2022).

    Article  Google Scholar 

  49. Seaton, B. T. & Heien, M. L. Biocompatible reference electrodes to enhance chronic electrochemical signal fidelity in vivo. Anal. Bioanal. Chem. 413, 6689–6701 (2021).

    Article  Google Scholar 

  50. Bartsch, H. et al. Surface properties and biocompatibility of thick film materials used in ceramic bioreactors. Materialia 5, 100213 (2019).

    Article  Google Scholar 

  51. Ju, J. et al. Surface enhanced raman spectroscopy based biosensor with a microneedle array for minimally invasive in vivo glucose measurements. ACS Sens. 5, 1777–1785 (2020).

    Article  Google Scholar 

  52. Wang, Z. et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 64–76 (2021).

    Article  Google Scholar 

  53. Zeng, Y. et al. Colloidal crystal microneedle patch for glucose monitoring. Nano Today 35, 100984 (2020).

    Article  Google Scholar 

  54. Al Sulaiman, D. et al. Hydrogel-coated microneedle arrays for minimally-invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano 13, 9620 (2019).

    Article  Google Scholar 

  55. Gao, J., Huang, W., Chen, Z., Yi, C. & Jiang, L. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 287, 102–110 (2019).

    Article  Google Scholar 

  56. Nagamine, K., Kubota, J., Kai, H., Ono, Y. & Nishizawa, M. An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed. Microdevices 19, 68 (2017).

    Article  Google Scholar 

  57. Abe, Y. et al. Porous microneedle-based wearable device for monitoring of transepidermal potential. Biomed. Eng. Adv. 1, 100004 (2021).

    Article  Google Scholar 

  58. Lee, H. et al. Porous microneedles on a paper for screening test of prediabetes. Med. Devices Sens. 3, e10109 (2020).

    Article  Google Scholar 

  59. Liu, P. et al. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. J. Mater. Chem. B 8, 2032–2039 (2020).

    Article  Google Scholar 

  60. Detamornrat, U., McAlister, E., Hutton, A. R. J., Larrañeta, E. & Donnelly, R. F. The role of 3D printing technology in microengineering of microneedles. Small 18, 2106392 (2022).

    Article  Google Scholar 

  61. Bollella, P., Sharma, S., Cass, A. E. G., Tasca, F. & Antiochia, R. Minimally invasive glucose monitoring using a highly porous gold microneedles-based biosensor: characterization and application in artificial interstitial fluid. Catalysts 9, 580 (2019).

    Article  Google Scholar 

  62. Li, C. G. et al. One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15, 3286–3292 (2015).

    Article  Google Scholar 

  63. Ranamukhaarachchi, S. A., Padeste, C., Häfeli, U. O., Stoeber, B. & Cadarso, V. J. Design considerations of a hollow microneedle-optofluidic biosensing platform incorporating enzyme-linked assays. J. Micromech. Microeng. 28, 024002 (2018).

    Article  Google Scholar 

  64. Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management. ACS Sens. 4, 2196–2204 (2019).

    Article  Google Scholar 

  65. Joshi, P., Riley, P. R., Mishra, R., Azizi Machekposhti, S. & Narayan, R. Transdermal polymeric microneedle sensing platform for fentanyl detection in biofluid. Biosensors 12, 198 (2022).

    Article  Google Scholar 

  66. Miller, P. R. et al. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta 88, 739–742 (2012).

    Article  Google Scholar 

  67. Miller, P. R. et al. Microneedle-based transdermal sensor for on-chip potentiometric determination of K+. Adv. Healthc. Mater. 3, 876–881 (2014).

    Article  Google Scholar 

  68. Jiang, X. & Lillehoj, P. B. Microneedle-based skin patch for blood-free rapid diagnostic testing. Microsyst. Nanoeng. 6, 96 (2020).

    Article  Google Scholar 

  69. Windmiller, J. R. et al. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136, 1846–1851 (2011).

    Article  Google Scholar 

  70. Donnelly, R. F. et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 22, 4879–4890 (2012).

    Article  Google Scholar 

  71. Tekko, I. A. et al. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int. J. Pharm. 586, 119580 (2020).

    Article  Google Scholar 

  72. Al-Kasasbeh, R. et al. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv. Transl. Res. 10, 690–705 (2020).

    Article  Google Scholar 

  73. Caffarel-Salvador, E. et al. Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One 10, e0145644 (2016).

    Article  Google Scholar 

  74. Chang, H. et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv. Mater. 29, 1702243 (2017).

    Article  Google Scholar 

  75. Zhu, J. et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small 16, 1905910 (2020).

    Article  Google Scholar 

  76. Romanyuk, A. V. et al. Collection of analytes from microneedle patches. Anal. Chem. 86, 10520–10523 (2014).

    Article  Google Scholar 

  77. He, R. et al. A hydrogel microneedle patch for point‐of‐care testing based on skin interstitial fluid. Adv. Healthc. Mater. 9, 1901201 (2020).

    Article  Google Scholar 

  78. Xu, N. et al. Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level. Analyst 147, 1478–1491 (2022).

    Article  Google Scholar 

  79. Vicente-Perez, E. M. et al. Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur. J. Pharm. Biopharm. 117, 400–407 (2017).

    Article  Google Scholar 

  80. Beauchamp, R. O. et al. A critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol. 22, 143–174 (1992).

    Article  Google Scholar 

  81. Zheng, M. et al. Osmosis-powered hydrogel microneedles for microliters of skin interstitial fluid extraction within minutes. Adv. Healthc. Mater. 9, 1901683 (2020).

    Article  Google Scholar 

  82. Babity, S. et al. Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function. J. Control. Rel. 327, 350–359 (2020).

    Article  Google Scholar 

  83. He, R. et al. A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health‐related biomarkers. Adv. Sci. 8, 2103030 (2021).

    Article  Google Scholar 

  84. Vora, L. K. Novel bilayer dissolving microneedle arrays with concentrated plga nano-microparticles for targeted intradermal delivery: proof of concept. J. Control. Rel. 265, 93–101 (2017).

    Article  Google Scholar 

  85. Li, M., Vora, L. K., Peng, K. & Donnelly, R. F. Trilayer microneedle array assisted transdermal and intradermal delivery of dexamethasone. Int. J. Pharm. 612, 121295 (2021).

    Article  Google Scholar 

  86. Vora, L. K., Vavia, P. R., Larrañeta, E., Bell, S. E. & Donnelly, R. F. Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug. J. Interdiscip. Nanomed. 3, 89–101 (2018).

    Article  Google Scholar 

  87. Li, S., Kim, Y., Lee, J. W. & Prausnitz, M. R. Microneedle patch tattoos. iScience 25, 105014 (2022).

    Article  Google Scholar 

  88. McCrudden, M. T. C. et al. Design, formulation, and evaluation of novel dissolving microarray patches containing rilpivirine for intravaginal delivery. Adv. Healthc. Mater. 8, 1801510 (2019).

    Article  Google Scholar 

  89. Donnelly, R. F. et al. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: a pilot study centred on pharmacist intervention and a patient information leaflet. Pharm. Res. 31, 1989–1999 (2014).

    Article  Google Scholar 

  90. Ripolin, A. et al. Successful application of large microneedle patches by human volunteers. Int. J. Pharm. 521, 92–101 (2017).

    Article  Google Scholar 

  91. Vicente-Pérez, E. M. et al. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm. Res. 33, 3072–3080 (2016).

    Article  Google Scholar 

  92. Li, H. et al. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 6, 2181–2190 (2021).

    Article  Google Scholar 

  93. Yang, B., Fang, X. & Kong, J. Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Adv. Funct. Mater. 30, 2000591 (2020).

    Article  Google Scholar 

  94. Damiati, S. & Schuster, B. Electrochemical biosensors based on S-layer proteins. Sensors 20, 1721 (2020).

    Article  Google Scholar 

  95. Chinnadayyala, S. R., Park, J., Satti, A. T., Kim, D. & Cho, S. Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles. Electrochim. Acta 369, 137691 (2021).

    Article  Google Scholar 

  96. Zheng, Y. et al. A wearable microneedle-based extended gate transistor for real-time detection of sodium in interstitial fluids. Adv. Mater. 34, 2108607 (2022).

    Article  Google Scholar 

  97. Wang, R., Jiang, X., Wang, W. & Li, Z. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B Chem. 224, 750–758 (2017).

    Article  Google Scholar 

  98. O’Mahony, C. et al. Microneedle-based electrodes with integrated through-silicon via for biopotential recording. Sens. Actuators Phys. 186, 130–136 (2012).

    Article  Google Scholar 

  99. Lozano, J. & Stoeber, B. Fabrication and characterization of a microneedle array electrode with flexible backing for biosignal monitoring. Biomed. Microdevices 23, 53 (2021).

    Article  Google Scholar 

  100. Takeuchi, K., Takama, N., Kinoshita, R., Okitsu, T. & Kim, B. Flexible and porous microneedles of PDMS for continuous glucose monitoring. Biomed. Microdevices 22, 79 (2020).

    Article  Google Scholar 

  101. Valdés-Ramírez, G. et al. Microneedle-based self-powered glucose sensor. Electrochem. Commun. 47, 58–62 (2014).

    Article  Google Scholar 

  102. Zhao, L., Wen, Z., Jiang, F., Zheng, Z. & Lu, S. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring. RSC Adv. 10, 6163–6171 (2020).

    Article  Google Scholar 

  103. Bollella, P., Sharma, S., Cass, A. E. G. & Antiochia, R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019).

    Article  Google Scholar 

  104. Windmiller, J. R. et al. Bicomponent microneedle array biosensor for minimally-invasive glutamate monitoring. Electroanalysis 23, 2302–2309 (2011).

    Article  Google Scholar 

  105. Mohan, A. M. V., Windmiller, J. R., Mishra, R. K. & Wang, J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 91, 574–579 (2017).

    Article  Google Scholar 

  106. Ciui, B. et al. Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv. Healthc. Mater. 7, 1701264 (2018).

    Article  Google Scholar 

  107. Fang, L. et al. Differential amperometric microneedle biosensor for wearable levodopa monitoring of Parkinson’s disease. Biosensors 12, 102 (2022).

    Article  Google Scholar 

  108. Park, S. et al. Highly-sensitive single-step sensing of levodopa by swellable microneedle-mounted nanogap sensors. Biosens. Bioelectron. 220, 114912 (2023).

    Article  Google Scholar 

  109. Mishra, R. K., Vinu Mohan, A. M., Soto, F., Chrostowski, R. & Wang, J. A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. Analyst 142, 918–924 (2017).

    Article  Google Scholar 

  110. Rawson, T. M. et al. Towards a minimally invasive device for beta-lactam monitoring in humans. Electrochem. Commun. 82, 1–5 (2017).

    Article  Google Scholar 

  111. Seo, J. W. et al. Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals. Sci. Adv. 8, eabk2901 (2022).

    Article  Google Scholar 

  112. Jina, A. et al. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8, 483–487 (2014).

    Article  Google Scholar 

  113. Miller, P. et al. Towards an integrated microneedle total analysis chip for protein detection. Electroanalysis 28, 1305–1310 (2016).

    Article  Google Scholar 

  114. García-Guzmán, J. J., Pérez-Ràfols, C., Cuartero, M. & Crespo, G. A. Toward in vivo transdermal pH sensing with a validated microneedle membrane electrode. ACS Sens. 6, 1129–1137 (2021).

    Article  Google Scholar 

  115. Ranamukhaarachchi, S. A. et al. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci. Rep. 6, 29175 (2016).

    Article  Google Scholar 

  116. Rachim, V. P. & Chung, W. Y. Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sens. Actuators B Chem. 286, 173–180 (2019).

    Article  Google Scholar 

  117. Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  Google Scholar 

  118. Erickson, D., Mandal, S., Yang, A. H. J. & Cordovez, B. Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid. Nanofluidics 4, 33–52 (2008).

    Article  Google Scholar 

  119. Fan, X. & White, I. M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011).

    Article  Google Scholar 

  120. Liu, Y. et al. Skin-interfaced deep-tissue sensing patch via microneedle waveguides. Adv. Mater. Technol. 7, 2200468 (2022).

    Article  Google Scholar 

  121. Zhang, P. et al. Wearable transdermal colorimetric microneedle patch for Uric acid monitoring based on peroxidase-like polypyrrole nanoparticles. Anal. Chim. Acta 1212, 339911 (2022).

    Article  Google Scholar 

  122. Zhang, X., Chen, G., Bian, F., Cai, L. & Zhao, Y. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv. Mater. 31, 1902825 (2019).

    Article  Google Scholar 

  123. Linh, V. T. N. et al. Bioinspired plasmonic nanoflower-decorated microneedle for label-free intradermal sensing. Appl. Surf. Sci. 551, 149411 (2021).

    Article  Google Scholar 

  124. Strambini, L. M. et al. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens. Bioelectron. 66, 162–168 (2015).

    Article  Google Scholar 

  125. Blicharz, T. M. et al. Microneedle-based device for the one-step painless collection of capillary blood samples. Nat. Biomed. Eng. 2, 151–157 (2018).

    Article  Google Scholar 

  126. Li, C. G., Dangol, M., Lee, C. Y., Jang, M. & Jung, H. A self-powered one-touch blood extraction system: a novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator. Lab Chip 15, 382–390 (2015).

    Article  Google Scholar 

  127. Siemens Healthineers. DCA Vantage® Analyzer https://www.siemens-healthineers.com/en-uk/diabetes/diabetes/dca-vantage-analyzer (2023).

  128. Abbott. Alere Afiniontm AS100 Analyzer Product Demo Library https://www.globalpointofcare.abbott/en/support/product-demos/afinion.html (2023).

  129. Dixon, R. V. et al. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm. Sin. B 11, 2344–2361 (2021).

    Article  Google Scholar 

  130. Rao, A. R. et al. Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga haematococcus pluvialis. J. Agric. Food Chem. 61, 3842–3851 (2013).

    Article  Google Scholar 

  131. Song, S. et al. A CMOS VEGF sensor for cancer diagnosis using a peptide aptamer-based functionalized microneedle. IEEE Trans. Biomed. Circuits Syst. 13, 1288–1299 (2019).

    Article  Google Scholar 

  132. Yang, H. et al. A swellable bilateral microneedle patch with core-shell structure for rapid lactate analysis and early melanoma diagnosis. Chem. Eng. J. 455, 140730 (2023).

    Article  Google Scholar 

  133. Pundir, C. S., Narwal, V. & Batra, B. Determination of lactic acid with special emphasis on biosensing methods: a review. Biosens. Bioelectron. 86, 777–790 (2016).

    Article  Google Scholar 

  134. Bao, L., Park, J., Qin, B. & Kim, B. Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay. Sci. Rep. 12, 10693 (2022).

    Article  Google Scholar 

  135. Sharma, S. et al. A pilot study in humans of microneedle sensor arrays for continuous glucose monitoring. Anal. Methods 10, 2088–2095 (2018).

    Article  Google Scholar 

  136. Takeuchi, K. & Kim, B. Functionalized microneedles for continuous glucose monitoring. Nano Converg. 5, 28 (2018).

    Article  Google Scholar 

  137. Keum, D. H. et al. Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Adv. Healthc. Mater. 4, 1153–1158 (2015).

    Article  Google Scholar 

  138. Roberts, J. A. et al. Therapeutic drug monitoring of β-lactams in critically ill patients: proof of concept. Int. J. Antimicrob. Agents 36, 332–339 (2010).

    Article  Google Scholar 

  139. Parrilla, M. et al. Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal. Chem. 91, 1578–1586 (2019).

    Article  Google Scholar 

  140. Teymourian, H. et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5, 2679–2700 (2020).

    Article  Google Scholar 

  141. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  Google Scholar 

  142. Tsai, A. C. et al. Stigma as a fundamental hindrance to the United States opioid overdose crisis response. PLoS Med. 16, e1002969 (2019).

    Article  Google Scholar 

  143. Mishra, R. K. et al. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J. Am. Chem. Soc. 142, 5991–5995 (2020).

    Article  Google Scholar 

  144. Kiang, T., Ranamukhaarachchi, S. & Ensom, M. Revolutionizing therapeutic drug monitoring with the use of interstitial fluid and microneedles technology. Pharmaceutics 9, 43 (2017).

    Article  Google Scholar 

  145. Liu, G. S. et al. Microneedles for transdermal diagnostics: recent advances and new horizons. Biomaterials 232, 119740 (2020).

    Article  Google Scholar 

  146. Bal, S. M., Caussin, J., Pavel, S. & Bouwstra, J. A. In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm. Sci. 35, 193–202 (2008).

    Article  Google Scholar 

  147. Li, W. et al. Long-acting reversible contraception by effervescent microneedle patch. Sci. Adv. 5, 2–5 (2019).

    Article  Google Scholar 

  148. Brogden, N. K. et al. Diclofenac delays micropore closure following microneedle treatment in human subjects. J. Control. Rel. 163, 220–229 (2012).

    Article  Google Scholar 

  149. Leone, M. et al. Universal applicator for digitally-controlled pressing force and impact velocity insertion of microneedles into skin. Pharmaceutics 10, 211 (2018).

    Article  Google Scholar 

  150. Battisti, M. et al. Non-invasive production of multi-compartmental biodegradable polymer microneedles for controlled intradermal drug release of labile molecules. Front. Bioeng. Biotechnol. 7, 296 (2019).

    Article  Google Scholar 

  151. Ribet, F., Stemme, G. & Roxhed, N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomed. Microdevices 20, 101 (2018).

    Article  Google Scholar 

  152. Donnelly, R. F. et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm. Res. 26, 2513–2522 (2009).

    Article  Google Scholar 

  153. Zaric, M. et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly- D, l -Lactide- Co -Glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7, 2042–2055 (2013).

    Article  Google Scholar 

  154. McCrudden, M. T. C. et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv. Transl. Res. 5, 3–14 (2015).

    Article  Google Scholar 

  155. Lutton, R. E. M. et al. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv. Transl. Res. 5, 313–331 (2015).

    Article  Google Scholar 

  156. FDA. Regulatory Considerations for Microneedling Products https://www.regulations.gov/docket/FDA-2017-D-4792 (2020).

  157. Matriano, J. A. et al. Macroflux® microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm. Res. 19, 63–70 (2002).

    Article  Google Scholar 

  158. Micron Biomedical. Micron Biomedical Announces Positive Measles and Rubella Vaccination Results from First Clinical Trial of Microarray Injection-Free Vaccine Delivery in Children – Micron Biomedical https://micronbiomedical.com/micron-biomedical-announces-positive-measles-and-rubella-vaccination-results-from-first-clinical-trial-of-microarray-injection-free-vaccine-delivery-in-children/ (2023).

  159. Taylor, N. P. Zosano goes Bankrupt after FDA Rejects Migraine Drug Delivery Patch https://www.fiercepharma.com/pharma/zosano-goes-bankrupt-after-fda-rejects-migraine-drug-delivery-patch (2022).

  160. LTS Lohmann. Microarray Patches https://www.ltslohmann.com/en/our-technologies/map/ (2022).

  161. PERSiSTENCE. Wearable Biosensors Market https://www.persistencemarketresearch.com/market-research/wearable-biosensors-market.asp (2022).

  162. Birchall, J. C., Clemo, R., Anstey, A. & John, D. N. Microneedles in clinical practice-an exploratory study into the opinions of healthcare professionals and the public. Pharm. Res. 28, 95–106 (2011).

    Article  Google Scholar 

  163. Puttaswamy, S. V. et al. Nanophotonic-carbohydrate lab-on-a-microneedle for rapid detection of human cystatin C in finger-prick blood. ACS Nano 14, 11939–11949 (2020).

    Article  Google Scholar 

  164. Chen, W. et al. Reducing false negatives in COVID-19 testing by using microneedle-based oropharyngeal swabs. Matter 3, 1589–1600 (2020).

    Article  Google Scholar 

  165. Yang, B., Fang, X. & Kong, J. In situ sampling and monitoring cell-free DNA of the Epstein–Barr Virus from dermal interstitial fluid using wearable microneedle patches. ACS Appl. Mater. Interfaces 11, 38448–38458 (2019).

    Article  Google Scholar 

  166. Sun, X. et al. A theranostic microneedle array patch for integrated glycemia sensing and self-regulated release of insulin. Biomater. Sci. 10, 1209–1216 (2022).

    Article  Google Scholar 

  167. Yi, K. et al. Aptamer-decorated porous microneedles arrays for extraction and detection of skin interstitial fluid biomarkers. Biosens. Bioelectron. 190, 113404 (2021).

    Article  Google Scholar 

  168. Teymourian, H. et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Anal. Chem. 92, 2291–2300 (2020).

    Article  Google Scholar 

  169. Gerstel, M. S. & Place, V. A. Drug Delivery Device. US3964482A (1976).

  170. Clark, J. L. C. Electrochemical Device for Chemical Analysis. US2913386A (1959).

  171. Clark, L. C. Jr. & Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962).

    Article  Google Scholar 

  172. Guilbault, G. G. & M, J. G. Jr. Urea-specific enzyme electrode. J. Am. Chem. Soc. 8, 2164–2165 (1969).

    Article  Google Scholar 

  173. Suzuki, S., Takahashi, F., Satoh, I. & Sonobe, N. Ethanol and lactic acid sensors using electrodes coated with dehydrogenase—Collagen membranes. Bull. Chem. Soc. Jpn 48, 3246–3249 (1975).

    Article  Google Scholar 

  174. Harder, H. Experiences with a miniaturized needle electrode in electrocochleography. Scand. Audiol. 11, 187–189 (1982).

    Article  Google Scholar 

  175. Liedberg, B., Nylander, C. & Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983).

    Article  Google Scholar 

  176. Hahn, K. M., Waggoner, A. S. & Taylor, D. L. A calcium-sensitive fluorescent analog of calmodulin based on a novel calmodulin-binding fluorophore. J. Biol. Chem. 265, 20335–20345 (1990).

    Article  Google Scholar 

  177. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  Google Scholar 

  178. Yu, L. M., Tay, F. E. H., Guo, D. G., Xu, L. & Yap, K. L. A microfabricated electrode with hollow microneedles for ECG measurement. Sens. Actuators Phys. 151, 17–22 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) grant numbers EP/H021647/1 and EP/V047221/1.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the content, and contributed to writing and revising of the manuscript.

Corresponding author

Correspondence to Ryan F. Donnelly.

Ethics declarations

Competing interests

Ryan Donnelly is an inventor of patents that have been licensed to companies developing microneedle-based products and is a paid advisor to companies developing microneedle-based products. The resulting potential conflict of interest has been disclosed and is managed by Queen’s University Belfast. The companies had no role in the design of the manuscript, in the collection, analysis or interpretation of the various studies reviewed, in the writing of the manuscript, or in the decision to publish.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Can Dincer, Thanh Nguyen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vora, L.K., Sabri, A.H., McKenna, P.E. et al. Microneedle-based biosensing. Nat Rev Bioeng 2, 64–81 (2024). https://doi.org/10.1038/s44222-023-00108-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00108-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing