Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soft bioelectronics for the management of cardiovascular diseases

Abstract

The motions of the heart are regulated by electrophysiological signals, which can be monitored and altered by bioelectronic devices for the diagnosis and treatment of cardiovascular diseases. In particular, soft bioelectronic devices, composed of deformable and conductive materials, can be implanted or designed as wearable devices to enable conformal contact with heart tissue or the skin for real-time and precise diagnosis and treatment. In this Review, we discuss the design and materials of soft bioelectronic devices, highlighting their advantages, as compared with rigid bioelectronic devices, in cardiovascular disease management. We examine the engineering and applications of soft implantable bioelectronics, including cardiac mapping devices, cardiac stimulation devices and mechanically assisting devices, as well as wearable soft bioelectronics, such as blood oxygen saturation sensors, heart monitoring devices and transdermal drug delivery systems. Finally, we outline technical challenges and future opportunities for the clinical application of soft bioelectronic devices, such as a wireless power supply, optogenetic control of cardiac motion, bioadhesives for device–tissue interfaces and artificial intelligence-assisted data analysis.

Key points

  • The electrophysiological state of the heart can be monitored and manipulated by bioelectronics for the diagnosis and treatment of cardiovascular disease.

  • Deformable, conductive bioelectronics can be designed to interface with heart tissue and manage cardiovascular disease with high diagnostic accuracy and treatment efficacy.

  • Soft electronic materials, such as conductive polymers, hydrogels, liquid metals and stretchable nanocomposites, enable conformal device–tissue interfaces, addressing the mechanical mismatch of rigid bioelectronic devices.

  • Soft bioelectronics can be engineered as multichannel arrays for 3D cardiac mapping, localized therapy, heart modulation and mechanical control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioelectronic devices.
Fig. 2: Soft implantable bioelectronics.
Fig. 3: Soft wearable bioelectronics.
Fig. 4: Opportunities and challenges for soft bioelectronics.

Similar content being viewed by others

References

  1. Tirilomis, T. Heart research and ancient Greek medicine. Heart 89, 2 (2003).

    Article  Google Scholar 

  2. DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res. 106, 434–446 (2010).

    Article  Google Scholar 

  3. Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019).

    Article  Google Scholar 

  4. Tracy, C. M. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. J. Am. Coll. Cardiol. 61, e6–e75 (2013).

    Article  Google Scholar 

  5. Udo, E. O. et al. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm. 9, 728–735 (2012).

    Article  Google Scholar 

  6. Lim, Y.-M. et al. Subclinical cardiac perforation by cardiac implantable electronic device leads detected by cardiac computed tomography. BMC Cardiovasc. Disord. 21, 346 (2021).

    Article  Google Scholar 

  7. Addetia, K., Harb, S. C., Hahn, R. T., Kapadia, S. & Lang, R. M. Cardiac implantable electronic device lead-induced tricuspid regurgitation. JACC Cardiovasc. Imaging 12, 622–636 (2019).

    Article  Google Scholar 

  8. Dean, J. & Sulke, N. Pacemaker battery scandal. Br. Med. J. 352, i228 (2016).

    Article  Google Scholar 

  9. Searle, A. & Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21, 271–283 (2000).

    Article  Google Scholar 

  10. Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article  Google Scholar 

  11. Koo, J. H. et al. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. Adv. Mater. Technol. 5, 2000407 (2020).

    Article  Google Scholar 

  12. Lee, Y. et al. Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv. Mater. Technol. 2, 1700053 (2017).

    Article  Google Scholar 

  13. Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D.-H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).

    Article  Google Scholar 

  14. Sunwoo, S.-H., Ha, K.-H., Lee, S., Lu, N. & Kim, D.-H. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu. Rev. Chem. Biomol. Eng. 12, 359–391 (2021).

    Article  Google Scholar 

  15. Wang, C., Wang, C., Huang, Z. & Xu, S. Materials and structures toward soft electronics. Adv. Mater. 30, 1801368 (2018).

    Article  Google Scholar 

  16. Xue, Z., Song, H., Rogers, J. A., Zhang, Y. & Huang, Y. Mechanically‐guided structural designs in stretchable inorganic electronics. Adv. Mater. 32, 1902254 (2020).

    Article  Google Scholar 

  17. Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    Article  MathSciNet  Google Scholar 

  18. Sunwoo, S. H. et al. Chronic and acute stress monitoring by electrophysiological signals from adrenal gland. Proc. Natl Acad. Sci. USA 116, 1146–1151 (2019).

    Article  Google Scholar 

  19. Ha, T. et al. A chest‐laminated ultrathin and stretchable e‐tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Adv. Sci. 6, 1900290 (2019).

    Article  Google Scholar 

  20. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  Google Scholar 

  21. Kim, D.-H. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–323 (2011).

    Article  Google Scholar 

  22. Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 10, 5742 (2019).

    Article  Google Scholar 

  23. Lim, C. et al. Tissue-like skin–device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021).

    Article  Google Scholar 

  24. Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).

    Article  Google Scholar 

  25. Singh, G. & Chanda, A. Mechanical properties of whole-body soft human tissues: a review. Biomed. Mater. 16, 062004 (2021).

    Article  Google Scholar 

  26. Boyd, E. J. & Uttamchandani, D. Measurement of the anisotropy of Young’s modulus in single-crystal silicon. J. Microelectromech. Sys. 21, 243–249 (2012).

    Article  Google Scholar 

  27. Qu, C., Hu, J., Liu, X., Li, Z. & Ding, Y. Morphology and mechanical properties of polyimide films: the effects of UV irradiation on microscale surface. Materials 10, 1329 (2017).

    Article  Google Scholar 

  28. Martín-Sánchez, C. et al. On the stiffness of gold at the nanoscale. ACS Nano 15, 19128–19137 (2021).

    Article  Google Scholar 

  29. Van Houten, E. E. W., Doyley, M. M., Kennedy, F. E., Weaver, J. B. & Paulsen, K. D. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magnet. Reson. Imaging 17, 72–85 (2003).

    Article  Google Scholar 

  30. Budday, S. et al. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46, 318–330 (2015).

    Article  Google Scholar 

  31. Lim, Y.-J., Deo, D., Singh, T. P., Jones, D. B. & De, S. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg. Endosc. 23, 1298–1307 (2009).

    Article  Google Scholar 

  32. Booth, A. J. et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186, 866–876 (2012).

    Article  Google Scholar 

  33. Holzapfel, G. A., Sommer, G., Gasser, C. T. & Regitnig, P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289, H2048–H2058 (2005).

    Article  Google Scholar 

  34. Uffmann, K. et al. In vivo elasticity measurements of extremity skeletal muscle with MR elastography. NMR Biomed. 17, 181–190 (2004).

    Article  Google Scholar 

  35. Zwirner, J., Ondruschka, B., Scholze, M. & Hammer, N. Passive load-deformation properties of human temporal muscle. J. Biomech. 106, 109829 (2020).

    Article  Google Scholar 

  36. Ottenio, M., Tran, D., Ní Annaidh, A., Gilchrist, M. D. & Bruyère, K. Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J. Mech. Behav. Biomed. Mater. 41, 241–250 (2015).

    Article  Google Scholar 

  37. Tang, L., Shang, J. & Jiang, X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7, abe3778 (2021).

    Article  Google Scholar 

  38. Kim, D. C., Shim, H. J., Lee, W., Koo, J. H. & Kim, D. Material‐based approaches for the fabrication of stretchable electronics. Adv. Mater. 32, 1902743 (2020).

    Article  Google Scholar 

  39. Sunwoo, S.-H. et al. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter 3, 1923–1947 (2020).

    Article  Google Scholar 

  40. Guan, Y.-S. et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 6, eabb3656 (2020).

    Article  Google Scholar 

  41. Basescu, N. et al. High electrical conductivity in doped polyacetylene. Nature 327, 403–405 (1987).

    Article  Google Scholar 

  42. Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).

    Article  Google Scholar 

  43. Modarresi, M. & Zozoulenko, I. Why does solvent treatment increase the conductivity of PEDOT:PSS? Insight from molecular dynamics simulations. Phys. Chem. Chem. Phys. 24, 22073–22082 (2022).

    Article  Google Scholar 

  44. Xia, Y., Zhang, H. & Ouyang, J. Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. J. Mater. Chem. 20, 9740–9747 (2010).

    Article  Google Scholar 

  45. Ali, M. Z. et al. Single-step treatment to improve conductivity of PEDOT:PSS by hydrobromic acid solution for application of transparent electrode. Org. Electron. 110, 106643 (2022).

    Article  Google Scholar 

  46. Rohtlaid, K. et al. Poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/polyethylene oxide electrodes with improved electrical and electrochemical properties for soft microactuators and microsensors. Adv. Electron. Mater. 5, 1800948 (2019).

    Article  Google Scholar 

  47. Aslani, A. in Polypropylene (ed. Dogan, F.) 219–264 (InTech, 2012).

  48. Nguyen, D. T. & Tumolo, A. Z. Narrowing the field. JACC Clin. Electrophysiol. 5, 78–80 (2019).

    Article  Google Scholar 

  49. Puiggalí-Jou, A., del Valle, L. J. & Alemán, C. Drug delivery systems based on intrinsically conducting polymers. J. Control. Release 309, 244–264 (2019).

    Article  Google Scholar 

  50. Peng, Q. et al. Recent advances in designing conductive hydrogels for flexible electronics. InfoMat 2, 843–865 (2020).

    Article  Google Scholar 

  51. Mano, N., Yoo, J. E., Tarver, J., Loo, Y.-L. & Heller, A. An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase. J. Am. Chem. Soc. 129, 7006–7007 (2007).

    Article  Google Scholar 

  52. Shi, Y., Ma, C., Peng, L. & Yu, G. Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv. Funct. Mater. 25, 1219–1225 (2015).

    Article  Google Scholar 

  53. Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article  Google Scholar 

  54. Fan, F. R., Tang, W. & Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28, 4283–4305 (2016).

    Article  Google Scholar 

  55. Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

    Article  Google Scholar 

  56. Morelle, X. P. et al. Highly stretchable and tough hydrogels below water freezing temperature. Adv. Mater. 30, 1801541 (2018).

    Article  Google Scholar 

  57. Si, Y. et al. Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Adv. Mater. 29, 1700339 (2017).

    Article  Google Scholar 

  58. Liu, Y.-J., Cao, W.-T., Ma, M.-G. & Wan, P. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interfaces 9, 25559–25570 (2017).

    Article  Google Scholar 

  59. Liu, T. et al. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12, 2818–2826 (2018).

    Article  Google Scholar 

  60. Lai, J. et al. Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. J. Mater. Chem. C. Mater. 6, 13316–13324 (2018).

    Article  Google Scholar 

  61. Liu, X., Wu, D., Wang, H. & Wang, Q. Self-recovering tough gel electrolyte with adjustable supercapacitor performance. Adv. Mater. 26, 4370–4375 (2014).

    Article  Google Scholar 

  62. Xu, Y. et al. Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25, 5779–5784 (2013).

    Article  Google Scholar 

  63. Liu, Q. et al. High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 9, 12320–12326 (2015).

    Article  Google Scholar 

  64. Han, L. et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater. 28, 1704195 (2018).

    Article  Google Scholar 

  65. Nam, J. et al. Supramolecular peptide hydrogel-based soft neural interface augments brain signals through a three-dimensional electrical network. ACS Nano 14, 664–675 (2020).

    Article  Google Scholar 

  66. Fantino, E. et al. 3D printing of conductive complex structures with in situ generation of silver nanoparticles. Adv. Mater. 28, 3712–3717 (2016).

    Article  Google Scholar 

  67. Pardo-Yissar, V., Gabai, R., Shipway, A. N., Bourenko, T. & Willner, I. Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv. Mater. 13, 1320 (2001).

    Article  Google Scholar 

  68. Lim, C. et al. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater. 7, 031502 (2019).

    Article  Google Scholar 

  69. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  Google Scholar 

  70. Lee, C.-J. et al. Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces 10, 5845–5852 (2018).

    Article  Google Scholar 

  71. Wang, S. et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose–bentonite coordination interactions. Nat. Commun. 13, 3408 (2022).

    Article  Google Scholar 

  72. Shay, T., Velev, O. D. & Dickey, M. D. Soft electrodes combining hydrogel and liquid metal. Soft Matter 14, 3296–3303 (2018).

    Article  Google Scholar 

  73. Khoshmanesh, K. et al. Liquid metal enabled microfluidics. Lab Chip 17, 974–993 (2017).

    Article  Google Scholar 

  74. Lu, T., Finkenauer, L., Wissman, J. & Majidi, C. Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. 24, 3351–3356 (2014).

    Article  Google Scholar 

  75. Pan, C. et al. Visually imperceptible liquid‐metal circuits for transparent, stretchable electronics with direct laser writing. Adv. Mater. 30, 1706937 (2018).

    Article  Google Scholar 

  76. Deng, B. & Cheng, G. J. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust solid–liquid patterns. Adv. Mater. 31, 1807811 (2019).

    Article  Google Scholar 

  77. Park, C. W. et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl. Mater. Interfaces 8, 15459–15465 (2016).

    Article  Google Scholar 

  78. Kim, M., Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).

    Article  Google Scholar 

  79. Li, G., Wu, X. & Lee, D.-W. Selectively plated stretchable liquid metal wires for transparent electronics. Sens. Actu. B Chem. 221, 1114–1119 (2015).

    Article  Google Scholar 

  80. Gannarapu, A. & Gozen, B. A. Freeze-printing of liquid metal alloys for manufacturing of 3D, conductive, and flexible networks. Adv. Mater. Technol. 1, 1600047 (2016).

    Article  Google Scholar 

  81. Tabatabai, A., Fassler, A., Usiak, C. & Majidi, C. Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29, 6194–6200 (2013).

    Article  Google Scholar 

  82. Boley, J. W., White, E. L., Chiu, G. T. C. & Kramer, R. K. Direct writing of gallium–indium alloy for stretchable electronics. Adv. Funct. Mater. 24, 3501–3507 (2014).

    Article  Google Scholar 

  83. Ladd, C., So, J.-H., Muth, J. & Dickey, M. D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081–5085 (2013).

    Article  Google Scholar 

  84. Veerapandian, S. et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 20, 533–540 (2021).

    Article  Google Scholar 

  85. Pan, C. et al. A liquid‐metal–elastomer nanocomposite for stretchable dielectric materials. Adv. Mater. 31, 1900663 (2019).

    Article  Google Scholar 

  86. Cheng, S. et al. Electronic blood vessel. Matter 3, 1664–1684 (2020).

    Article  Google Scholar 

  87. Li, Y. et al. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl. Mater. Interfaces 14, 13713–13721 (2022).

    Article  Google Scholar 

  88. Yan, J. et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14, 684–690 (2019).

    Article  Google Scholar 

  89. Yang, J. et al. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing. Adv. Funct. Mater. 30, 2002611 (2020).

    Article  Google Scholar 

  90. Yun, G. et al. Liquid metal composites with anisotropic and unconventional piezoconductivity. Matter 3, 824–841 (2020).

    Article  Google Scholar 

  91. Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D.-H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48, 1566–1595 (2019).

    Article  Google Scholar 

  92. Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).

    Article  Google Scholar 

  93. Park, C. et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl. Phys. Rev. 9, 21312 (2022).

    Article  Google Scholar 

  94. Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).

    Article  Google Scholar 

  95. Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).

    Article  Google Scholar 

  96. Wang, K. et al. High‐performance graphene‐fiber‐based neural recording microelectrodes. Adv. Mater. 31, 1805867 (2019).

    Article  Google Scholar 

  97. Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C. & Pasquali, M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9, 4465–4474 (2015).

    Article  Google Scholar 

  98. Bullara, L. A., McCreery, D. B., Yuen, T. G. H. & Agnew, W. F. A microelectrode for delivery of defined charge densities. J. Neurosci. Meth. 9, 15–21 (1983).

    Article  Google Scholar 

  99. Weiland, J. D., Anderson, D. J. & Humayun, M. S. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng. 49, 1574–1579 (2002).

    Article  Google Scholar 

  100. Cogan, S. F., Guzelian, A. A., Agnew, W. F., Yuen, T. G. H. & McCreery, D. B. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J. Neurosci. Meth. 137, 141–150 (2004).

    Article  Google Scholar 

  101. Venkatraman, S. et al. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans. Neural Sys. Rehabilitation Eng. 19, 307–316 (2011).

    Article  Google Scholar 

  102. Lu, L. et al. Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 19, 1577–1586 (2019).

    Article  Google Scholar 

  103. Lu, Y., Lyu, H., Richardson, A. G., Lucas, T. H. & Kuzum, D. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep. 6, 33526 (2016).

    Article  Google Scholar 

  104. Park, D.-W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).

    Article  Google Scholar 

  105. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    Article  Google Scholar 

  106. Chen, K. et al. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 28, 4397–4414 (2016).

    Article  Google Scholar 

  107. Murata, H. et al. High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer. Sci. Rep. 9, 4068 (2019).

    Article  Google Scholar 

  108. Yetisgin, A. A., Sakar, H., Bermek, H. & Trabzon, L. Production of elastomer-based highly conductive hybrid nanocomposites and treatment with sulfuric acid. J. Polym. Eng. 41, 467–479 (2021).

    Article  Google Scholar 

  109. Mohanta, D., Patnaik, S., Sood, S. & Das, N. Carbon nanotubes: evaluation of toxicity at biointerfaces. J. Pharma. Anal. 9, 293–300 (2019).

    Article  Google Scholar 

  110. Liu, C.-H. & Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 6, 75 (2011).

    Article  Google Scholar 

  111. Della Gaspera, E. et al. Copper-based conductive composites with tailored thermal expansion. ACS Appl. Mater. Interfaces 5, 10966–10974 (2013).

    Article  Google Scholar 

  112. Blasco, E. et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Adv. Mater. 28, 3592–3595 (2016).

    Article  Google Scholar 

  113. You, I. et al. Stretchable e-skin apexcardiogram sensor. Adv. Mater. 28, 6359–6364 (2016).

    Article  Google Scholar 

  114. Wu, H. P. et al. Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives. Compos. Sci. Technol. 67, 1116–1120 (2007).

    Article  Google Scholar 

  115. Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  Google Scholar 

  116. Koo, J. H. et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron. Adv. 5, 210131 (2022).

    Article  Google Scholar 

  117. Song, J.-K. et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 17, 849–856 (2022).

    Article  Google Scholar 

  118. Ilami, M., Bagheri, H., Ahmed, R., Skowronek, E. O. & Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 33, 2003139 (2021).

    Article  Google Scholar 

  119. Raza, S. et al. Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Sci. Rep. 11, 10500 (2021).

    Article  Google Scholar 

  120. Pramanik, P. K., Khastgir, D. & Saha, T. N. Conductive nitrile rubber composite containing carbon fillers: studies on mechanical properties and electrical conductivity. Composites 23, 183–191 (1992).

    Article  Google Scholar 

  121. Khan, T. et al. Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon 176, 602–631 (2021).

    Article  Google Scholar 

  122. Choi, S. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015).

    Article  Google Scholar 

  123. Jung, D. et al. Adaptive self‐organization of nanomaterials enables strain‐insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34, 2200980 (2022).

    Article  Google Scholar 

  124. Yun, Y. S., Kim, D. H., Kim, B., Park, H. H. & Jin, H.-J. Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility. Synth. Met. 162, 1364–1368 (2012).

    Article  Google Scholar 

  125. Lin, H. et al. Selective fabrication of nanowires with high aspect ratios using a diffusion mixing reaction system for applications in temperature sensing. Anal. Chem. 91, 7346–7352 (2019).

    Article  Google Scholar 

  126. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  Google Scholar 

  127. Sunwoo, S. H. et al. Stretchable low-impedance nanocomposite comprised of Ag–Au core–shell nanowires and Pt black for epicardial recording and stimulation. Adv. Mater. Technol. 5, 1900768 (2020).

    Article  Google Scholar 

  128. Wilms, M., Conrad, J., Vasilev, K., Kreiter, M. & Wegner, G. Manipulation and conductivity measurements of gold nanowires. Appl. Surf. Sci. 238, 490–494 (2004).

    Article  Google Scholar 

  129. Maurer, J. H. M., González-García, L., Reiser, B., Kanelidis, I. & Kraus, T. Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano Lett. 16, 2921–2925 (2016).

    Article  Google Scholar 

  130. Wang, J. et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 4, 1742 (2013).

    Article  Google Scholar 

  131. Lim, C. et al. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano 16, 10431–10442 (2022).

    Article  Google Scholar 

  132. Cho, S. et al. Fully elastic conductive films from viscoelastic composites. ACS Appl. Mater. Interfaces 9, 44096–44105 (2017).

    Article  Google Scholar 

  133. Moon, G. D. et al. Highly stretchable patterned gold electrodes made of Au nanosheets. Adv. Mater. 25, 2707–2712 (2013).

    Article  Google Scholar 

  134. Lim, G.-H., Lee, N.-E. & Lim, B. Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. J. Mater. Chem. C Mater 4, 5642–5647 (2016).

    Article  Google Scholar 

  135. Jeong, S., Heo, S., Kang, M. & Kim, H.-J. Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Mater. Des. 196, 109178 (2020).

    Article  Google Scholar 

  136. Lim, G.-H. et al. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 42, 300–306 (2017).

    Article  Google Scholar 

  137. Ryu, J. et al. Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries. Nat. Commun. 9, 3715 (2018).

    Article  Google Scholar 

  138. Kelly, A. G. et al. Highly conductive networks of silver nanosheets. Small 18, 2105996 (2022).

    Article  Google Scholar 

  139. Shim, H. J., Sunwoo, S., Kim, Y., Koo, J. H. & Kim, D. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv. Healthc. Mater. 10, 2002105 (2021).

    Article  Google Scholar 

  140. Emig, R. et al. Passive myocardial mechanical properties: meaning, measurement, models. Biophys. Rev. 13, 587–610 (2021).

    Article  Google Scholar 

  141. Dutta, D. et al. Non-invasive assessment of elastic modulus of arterial constructs during cell culture using ultrasound elasticity imaging. Ultrasound Med. Biol. 39, 2103–2115 (2013).

    Article  Google Scholar 

  142. Han, M. et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat. Biomed. Eng. 4, 997–1009 (2020).

    Article  Google Scholar 

  143. Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl Med. 2, 24ra22 (2010).

    Article  Google Scholar 

  144. van Heerebeek, L. et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113, 1966–1973 (2006).

    Article  Google Scholar 

  145. Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, aau2426 (2018).

    Article  Google Scholar 

  146. Wang, S. et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2023).

    Article  Google Scholar 

  147. Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article  Google Scholar 

  148. Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).

    Article  Google Scholar 

  149. Anderson, R. D. et al. On the electrophysiology and mapping of intramural arrhythmic focus. Circ. Arrhythm. Electrophysiol. 15, e010384 (2022).

    Article  Google Scholar 

  150. Cha, G. D. et al. Multifunctional injectable hydrogel for in vivo diagnostic and therapeutic applications. ACS Nano 16, 554–567 (2022).

    Article  Google Scholar 

  151. Xu, L. et al. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27, 1731–1737 (2015).

    Article  Google Scholar 

  152. Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl Med. 8, 344ra86 (2016).

    Article  Google Scholar 

  153. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  Google Scholar 

  154. Li, N. et al. Direct powering a real cardiac pacemaker by natural energy of a heartbeat. ACS Nano 13, 2822–2830 (2019).

    Article  Google Scholar 

  155. Ausra, J. et al. Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation. Sci. Adv. 8, eabq7469 (2022).

    Article  Google Scholar 

  156. Oliveira, G. H., Al-Kindi, S. G., G. Bezerra, H. & Costa, M. A. Left ventricular restoration devices. J. Cardiovasc. Transl. Res. 7, 282–291 (2014).

    Article  Google Scholar 

  157. Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl Med. 9, eaaf3925 (2017).

    Article  Google Scholar 

  158. Han, J., Aranda-Michel, E. & Trumble, D. R. Muscle-powered counterpulsation for untethered, non-blood-contacting cardiac support: a path to destination therapy. IEEE Trans. Biomed. Eng. 67, 3035–3047 (2020).

    Article  Google Scholar 

  159. Davis, I. M. “Round, red globules floating in a crystalline fluid” – Antoni van Leeuwenhoek’s observations of red blood cells and hemocytes. Micron 157, 103249 (2022).

    Article  Google Scholar 

  160. Mendelson, Y. & Ochs, B. D. Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography. IEEE Trans. Biomed. Eng. 35, 798–805 (1988).

    Article  Google Scholar 

  161. Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e150185 (2016).

    Article  Google Scholar 

  162. Kim, T.-H. et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 11, 5992–6003 (2017).

    Article  Google Scholar 

  163. Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, abg9180 (2021).

    Article  Google Scholar 

  164. Kim, J. et al. Miniaturized battery‐free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27, 1604373 (2017).

    Article  Google Scholar 

  165. De Bacquer, D., De Backer, G., Kornitzer, M. & Blackburn, H. Prognostic value of ECG findings for total, cardiovascular disease, and coronary heart disease death in men and women. Heart 80, 570–577 (1998).

    Article  Google Scholar 

  166. Giancaterino, S., Lupercio, F., Nishimura, M. & Hsu, J. C. Current and future use of insertable cardiac monitors. JACC Clin. Electrophysiol. 4, 1383–1396 (2018).

    Article  Google Scholar 

  167. Cheng, J. et al. Wet‐adhesive elastomer for liquid metal‐based conformal epidermal electronics. Adv. Funct. Mater. 32, 2200444 (2022).

    Article  Google Scholar 

  168. Koo, J. H. et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11, 10032–10041 (2017).

    Article  Google Scholar 

  169. Kim, J. et al. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2, e1501101 (2016).

    Article  Google Scholar 

  170. Lee, S. P. et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. npj Digital Med. 1, 2 (2018).

    Article  Google Scholar 

  171. Yin, L. et al. Chest-scale self-compensated epidermal electronics for standard 6-precordial-lead ECG. npj Flex. Electron. 6, 29 (2022).

    Article  Google Scholar 

  172. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  Google Scholar 

  173. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article  Google Scholar 

  174. Rudy, Y. Noninvasive mapping of repolarization with electrocardiographic imaging. J. Am. Heart. Assoc. 10, e021396 (2021).

    Article  Google Scholar 

  175. Rudy, Y. Noninvasive ECG imaging (ECGI): mapping the arrhythmic substrate of the human heart. Int. J. Cardiol. 237, 13–14 (2017).

    Article  Google Scholar 

  176. Pereira, H., Niederer, S. & Rinaldi, C. A. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. Europace 22, 1447–1462 (2020).

    Article  Google Scholar 

  177. Graham, A. J. et al. Evaluation of ECG imaging to map hemodynamically stable and unstable ventricular Arrhythmias. Circ. Arrhythm. Electrophysiol. 13, e007377 (2020).

    Article  Google Scholar 

  178. Graham, A. J. et al. Simultaneous comparison of electrocardiographic imaging and epicardial contact mapping in structural heart disease. Circ. Arrhythm. Electrophysiol. 12, e007120 (2019).

    Article  Google Scholar 

  179. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article  Google Scholar 

  180. Aliyar, H. & Schalau, G. Recent developments in silicones for topical and transdermal drug delivery. Ther. Deliv. 6, 827–839 (2015).

    Article  Google Scholar 

  181. Kim, J., Ghaffari, R. & Kim, D.-H. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 1, 0049 (2017).

    Article  Google Scholar 

  182. Yoo, S. et al. Wireless power transfer and telemetry for implantable bioelectronics. Adv. Healthc. Mater. 10, 2100614 (2021).

    Article  Google Scholar 

  183. Kim, H. et al. Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry. Sci. Adv. 8, eabo4610 (2023).

    Article  Google Scholar 

  184. Ryu, H. et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12, 4374 (2021).

    Article  Google Scholar 

  185. Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    Article  Google Scholar 

  186. Waldmann, V., Narayanan, K. & Marijon, E. Electrical injury-triggered ventricular arrhythmia in a patient with a pacemaker: highlighting the importance of cardiac monitoring. Europace 23, 721–721 (2021).

    Article  Google Scholar 

  187. Parsonnet, V., Villanueva, A., Driller, J. & Berstein, A. D. Corrosion of pacemaker electrodes. Pacing Clin. Electrophysiol. 4, 289–295 (1981).

    Article  Google Scholar 

  188. Kong, H. et al. Corrosive behaviour of Amplatzer® devices in experimental and biological environments. Cardiol. Young 12, 260–265 (2002).

    Article  Google Scholar 

  189. Hauser, R. G. et al. High shocking and pacing impedances due to defibrillation lead calcification. J. Interv. Card. Electrophysiol. 58, 253–259 (2020).

    Article  Google Scholar 

  190. Monkhouse, C., Cambridge, A., Chow, A. W. C. & Behar, J. M. High-voltage impedance rise; mechanism and management in patients with transvenous implantable cardioverter-defibrillators: a case series. Eur. Heart J. Case Rep. 3, 1–8 (2019).

    Article  Google Scholar 

  191. Kołodzińska, A. & Kutarski, A. Lead insulation failure, a serious complication: risk factors and management. Kardiol. Pol. 73, 585–591 (2015).

    Article  Google Scholar 

  192. Entcheva, E. & Kay, M. W. Cardiac optogenetics: a decade of enlightenment. Nat. Rev. Cardiol. 18, 349–367 (2021).

    Article  Google Scholar 

  193. Arrenberg, A. B., Stainier, D. Y. R., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    Article  Google Scholar 

  194. Jia, Z. et al. Stimulating cardiac muscle by light. Circ. Arrhythm. Electrophysiol. 4, 753–760 (2011).

    Article  Google Scholar 

  195. Zaglia, T. et al. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proc. Natl Acad. Sci. USA 112, E4495–E4504 (2015).

    Article  Google Scholar 

  196. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    Article  Google Scholar 

  197. Vogt, C. C. et al. Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc. Res. 106, 338–343 (2015).

    Article  Google Scholar 

  198. Bingen, B. O. et al. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc. Res. 104, 194–205 (2014).

    Article  Google Scholar 

  199. Nyns, E. C. A. et al. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. Eur. Heart J. 38, ehw574 (2016).

    Article  Google Scholar 

  200. Bruegmann, T., Beiert, T., Vogt, C. C., Schrickel, J. W. & Sasse, P. Optogenetic termination of atrial fibrillation in mice. Cardiovasc. Res. 114, 713–723 (2018).

    Article  Google Scholar 

  201. Nyns, E. C. A. et al. An automated hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Sci. Transl Med. 11, aau6447 (2019).

    Article  Google Scholar 

  202. Govorunova, E. G., Cunha, S. R., Sineshchekov, O. A. & Spudich, J. L. Anion channelrhodopsins for inhibitory cardiac optogenetics. Sci. Rep. 6, 33530 (2016).

    Article  Google Scholar 

  203. Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  Google Scholar 

  204. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  Google Scholar 

  205. Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).

    Article  Google Scholar 

  206. Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

    Article  Google Scholar 

  207. Siontis, K. C., Noseworthy, P. A., Attia, Z. I. & Friedman, P. A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18, 465–478 (2021).

    Article  Google Scholar 

  208. Ribeiro, A. H. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 11, 1760 (2020).

    Article  Google Scholar 

  209. Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 25, 70–74 (2019).

    Article  Google Scholar 

  210. Attia, Z. I. et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394, 861–867 (2019).

    Article  Google Scholar 

  211. Attia, Z. I. et al. Novel bloodless potassium determination using a signal‐processed single‐lead ECG. J. Am. Heart. Assoc. 5, e002746 (2016).

    Article  Google Scholar 

  212. Ko, W.-Y. et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram. J. Am. Coll. Cardiol. 75, 722–733 (2020).

    Article  Google Scholar 

  213. Tison, G. H. et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 3, 409 (2018).

    Article  Google Scholar 

  214. Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv. Sci. 9, 2202980 (2022).

    Article  Google Scholar 

  215. Sunwoo, S.-H. et al. Stretchable low-impedance conductor with Ag–Au–Pt core–shell–shell nanowires and in situ formed pt nanoparticles for wearable and implantable device. ACS Nano 17, 7550–7561 (2023).

    Article  Google Scholar 

  216. Valentová, H. & Stejskal, J. Mechanical properties of polyaniline. Synth. Met. 160, 832–834 (2010).

    Article  Google Scholar 

  217. Huang, Z., Ji, Z., Feng, Y., Wang, P. & Huang, Y. Flexible and stretchable polyaniline supercapacitor with a high rate capability. Polym. Int. 70, 437–442 (2021).

    Article  Google Scholar 

  218. Zhang, Y. & Rutledge, G. C. Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and mats. Macromolecules 45, 4238–4246 (2012).

    Article  Google Scholar 

  219. Shoa, T., Mirfakhrai, T. & Madden, J. D. W. Electro-stiffening in polypyrrole films: dependence of Young’s modulus on oxidation state, load and frequency. Synth. Met. 160, 1280–1286 (2010).

    Article  Google Scholar 

  220. Pang, A. L., Arsad, A. & Ahmadipour, M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polym. Adv. Technol. 32, 1428–1454 (2021).

    Article  Google Scholar 

  221. Huang, Y. et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015).

    Article  Google Scholar 

  222. Qu, J., Ouyang, L., Kuo, C. & Martin, D. C. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomater. 31, 114–121 (2016).

    Article  Google Scholar 

  223. He, H. et al. Enhancement in the mechanical stretchability of PEDOT:PSS films by compounds of multiple hydroxyl groups for their application as transparent stretchable conductors. Macromolecules 54, 1234–1242 (2021).

    Article  Google Scholar 

  224. Lee, J. H. et al. Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Appl. Mater. Interfaces 10, 28027–28035 (2018).

    Article  Google Scholar 

  225. Chen, R. et al. Highly stretchable and fatigue resistant hydrogels with low Young’s modulus as transparent and flexible strain sensors. J. Mater. Chem. C. Mater. 6, 11193–11201 (2018).

    Article  Google Scholar 

  226. Shin, S. R. et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6, 362–372 (2012).

    Article  Google Scholar 

  227. Hsiao, L.-Y. et al. Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin. Carbon 161, 784–793 (2020).

    Article  Google Scholar 

  228. Chen, S., Wang, H.-Z., Zhao, R.-Q., Rao, W. & Liu, J. Liquid metal composites. Matter 2, 1446–1480 (2020).

    Article  Google Scholar 

  229. Cao, J. et al. Ultra‐robust stretchable electrode for e‐skin: in situ assembly using a nanofiber scaffold and liquid metal to mimic water‐to‐net interaction. InfoMat 4, e12302 (2022).

    Article  Google Scholar 

  230. Xiao, P., Kim, J.-H. & Seo, S. Flexible and stretchable liquid metal electrodes working at sub-zero temperature and their applications. Materials 14, 4313 (2021).

    Article  Google Scholar 

  231. Tas, M. O. et al. Highly stretchable, directionally oriented carbon nanotube/PDMS conductive films with enhanced sensitivity as wearable strain sensors. ACS Appl. Mater. Interfaces 11, 39560–39573 (2019).

    Article  Google Scholar 

  232. Zhang, D. et al. Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes. Compos. B Eng. 182, 107646 (2020).

    Article  Google Scholar 

  233. Herren, B., Saha, M. C., Altan, M. C. & Liu, Y. Development of ultrastretchable and skin attachable nanocomposites for human motion monitoring via embedded 3D printing. Compos. B Eng. 200, 108224 (2020).

    Article  Google Scholar 

  234. Yang, L. et al. Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. RSC Adv. 3, 6377 (2013).

    Article  Google Scholar 

  235. Wang, X. et al. PDMS-based conductive elastomeric composite with 3D reduced graphene oxide conductive network for flexible strain sensor. Compos. Part. A Appl. Sci. Manuf. 161, 107113 (2022).

    Article  Google Scholar 

  236. Zhang, X. M., Yang, X. L. & Wang, K. Y. Conductive graphene/polydimethylsiloxane nanocomposites for flexible strain sensors. J. Mater. Sci. Mater. Electron. 30, 19319–19324 (2019).

    Article  Google Scholar 

  237. Zeranska, K. et al. Graphene-based thermoplastic composites as extremely broadband and frequency-dependent EMI absorbers for multifunctional applications. ACS Appl. Electron. Mater. 4, 4463–4470 (2022).

    Article  Google Scholar 

  238. Li, X. et al. Graphene/thermoplastic polyurethane nanocomposites: surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. Compos. Part. A Appl. Sci. Manuf. 68, 264–275 (2015).

    Article  Google Scholar 

  239. Zhong, Z., Luo, S., Yang, K., Wu, X. & Ren, T. High-performance anionic waterborne polyurethane/Ag nanocomposites with excellent antibacterial property via in situ synthesis of Ag nanoparticles. RSC Adv. 7, 42296–42304 (2017).

    Article  Google Scholar 

  240. Hyun, D. C. et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv. Mater. 23, 2946–2950 (2011).

    Article  Google Scholar 

  241. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).

    Article  Google Scholar 

  242. Lu, Y. et al. High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning. ACS Appl. Mater. Interfaces 10, 2093–2104 (2018).

    Article  MathSciNet  Google Scholar 

  243. Cheng, Y., Wang, R., Sun, J. & Gao, L. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. ACS Nano 9, 3887–3895 (2015).

    Article  Google Scholar 

  244. Kim, I. et al. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale 10, 7890–7897 (2018).

    Article  Google Scholar 

  245. Shin, M. et al. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 26, 3706–3711 (2014).

    Article  Google Scholar 

  246. Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z.-T. & Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88, 213101 (2006).

    Article  Google Scholar 

  247. Oh, H. et al. High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat. Commun. 13, 4963 (2022).

    Article  Google Scholar 

  248. Li et al. An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter 9, 8476–8482 (2013).

    Article  Google Scholar 

  249. Matsubara, K. & Ota, H. Stretchable liquid metal wiring with three-dimentional helical structure. In IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS) 296–298 (IEEE, 2019).

  250. Guan, Y.-S., Zhang, Z., Tang, Y., Yin, J. & Ren, S. (2018). Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater. 30, 1706390 (2018).

    Article  Google Scholar 

  251. Klodell, C.T. Jr et al. Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. J. Thorac. Cardiovasc. Surg. 135, 188–195 (2008).

    Article  Google Scholar 

  252. An, Y.-H. et al. Facilitated transdermal drug delivery using nanocarriers-embedded electroconductive hydrogel coupled with reverse electrodialysis-driven iontophoresis. ACS Nano 14, 4523–4535 (2020).

    Article  Google Scholar 

  253. Ouyang, H. et al. Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019).

    Article  Google Scholar 

  254. Kim, B. et al. Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nat. Commun. 12, 3710 (2021).

    Article  Google Scholar 

  255. Sunwoo, S.-H. et al. Ventricular tachyarrhythmia treatment and prevention by subthreshold stimulation with stretchable epicardial multichannel electrode array. Sci. Adv. 9, eadf6856 (2023).

    Article  Google Scholar 

  256. Cha, G. D., Kang, D., Lee, J. & Kim, D. Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications. Adv. Healthc. Mater. 8, 1801660 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS-R006-D1 and IBS-R006-A1) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

S.-H.S., S.I.H. and C.S.P. contributed equally to the work. All authors contributed to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Seung-Pyo Lee, Dae-Hyeong Kim or Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Tal Dvir, Igor Efimov and Jia Liu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunwoo, SH., Han, S.I., Park, C.S. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat Rev Bioeng 2, 8–24 (2024). https://doi.org/10.1038/s44222-023-00102-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00102-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing