Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Replacing renal function using bioengineered tissues

Abstract

Kidney transplantation is at present the only definitive treatment for patients with end-stage kidney disease that can improve the quality of life compared with dialysis. However, donor organs are of limited availability. The question is whether kidney tissues can be engineered to provide renal replacement therapy. In this Review, we outline key challenges in renal replacement and examine the clinical potential, current limitations and ethical considerations of bioengineering approaches aimed at replacing renal function, including kidney decellularization and recellularization, ex vivo kidney engineering, xenotransplantation, blastocyst complementation and kidneys derived from pluripotent stem cells. Finally, we highlight key hurdles that remain to be addressed to translate bioengineered kidney approaches to the clinic, including product scalability, ex vivo tissue preservation and good manufacturing practice.

Key points

  • Treatment options for end-stage kidney disease rely on dialysis and organ transplantation, with limited organ availability.

  • Kidney tissue can be bioengineered for renal replacement therapy, including engineering non-human hosts for xenotransplantation or blastocyst complementation, rebuilding functional kidney tissue from stem cells, kidney decellularization and recellularization, and ex vivo kidney engineering.

  • Each approach presents different ethical, technical, immunological and manufacturing challenges.

  • Translation of engineered kidney replacement strategies will require scale-up, ex vivo tissue preservation strategies and a regulatory framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Xenotransplantation from hypoimmunogenic pigs.
Fig. 2: Engineering the host pig and human donor for blastocyst complementation to create human organs for transplantation.
Fig. 3: Human pluripotent-stem-cell-derived kidney tissue for renal replacement.
Fig. 4: Engineering kidney from pluripotent stem cells.

Similar content being viewed by others

References

  1. Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl. 12, 7–11 (2022).

    Article  Google Scholar 

  2. Humes, H. D. et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int. 66, 1578–1588 (2004).

    Article  Google Scholar 

  3. Westover, A. J. et al. A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock. J. Tissue Eng. Regen. Med. 11, 649–657 (2017).

    Article  Google Scholar 

  4. Fissell, W. H. & Roy, S. The implantable artificial kidney. Semin. Dial. 22, 665–670 (2009).

    Article  Google Scholar 

  5. Brunswig-Spickenheier, B. et al. Limited immune-modulating activity of porcine mesenchymal stromal cells abolishes their protective efficacy in acute kidney injury. Stem Cell Dev. 19, 719–729 (2010).

    Article  Google Scholar 

  6. Tögel, F. et al. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cell Dev. 18, 475–485 (2009).

    Article  Google Scholar 

  7. Westenfelder, C. & Togel, F. E. Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney Int. Suppl. 1, 103–106 (2011).

    Article  Google Scholar 

  8. Dreyer, G. J. et al. Human leukocyte antigen selected allogeneic mesenchymal stromal cell therapy in renal transplantation: the Neptune study, a phase I single-center study. Am. J. Transpl. 20, 2905–2915 (2020).

    Article  Google Scholar 

  9. Reinders, M. E., Rabelink, T. J. & de Fijter, J. W. The role of mesenchymal stromal cells in chronic transplant rejection after solid organ transplantation. Curr. Opin. Organ. Transpl. 18, 44–50 (2013).

    Article  Google Scholar 

  10. Reinders, M. E. J. et al. Autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal: the randomized prospective, single-center, open-label TRITON study. Am. J. Transpl. 21, 3055–3065 (2021).

    Article  Google Scholar 

  11. Bellini, M. I. & D’Andrea, V. Organ preservation: which temperature for which organ? J. Int. Med. Res. 47, 2323–2325 (2019).

    Article  Google Scholar 

  12. Osband, A. J., James, N. T. & Segev, D. L. Extraction time of kidneys from deceased donors and impact on outcomes. Am. J. Transpl. 16, 700–703 (2016).

    Article  Google Scholar 

  13. Cooper, D. K. C. et al. Clinical pig kidney xenotransplantation: how close are we? J. Am. Soc. Nephrol. 31, 12–21 (2020).

    Article  Google Scholar 

  14. Naik, R. H. & Shawar, S. H. Renal Transplantation Rejection. In: StatPearls. StatPearls Publishing (2023).

  15. Cheung, C. Y. & Tang, S. C. W. An update on cancer after kidney transplantation. Nephrol. Dial. Transpl. 34, 914–920 (2019).

    Article  Google Scholar 

  16. Balzer, M. S., Rohacs, T. & Susztak, K. How many cell types are in the kidney and what do they do?Annu. Rev. Physiol. 84, 507–531 (2022).

    Article  Google Scholar 

  17. Hansen, J. et al. A reference tissue atlas for the human kidney. Sci. Adv. 8, eabn4965 (2022).

    Article  Google Scholar 

  18. Steffes, M. W., Schmidt, D., McCrery, R. & Basgen, J. M. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 59, 2104–2113 (2001).

    Article  Google Scholar 

  19. Destefani, A. C., Sirtoli, G. M. & Nogueira, B. V. Advances in the knowledge about kidney decellularization and repopulation. Front. Bioeng. Biotechnol. 5, 34 (2017).

    Article  Google Scholar 

  20. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    Article  Google Scholar 

  21. Paulo Zambon, J., Atala, A. & Yoo, J. J. Methods to generate tissue-derived constructs for regenerative medicine applications. Methods 171, 3–10 (2020).

    Article  Google Scholar 

  22. Taylor, D. A. et al. Characterization of perfusion decellularized whole animal body, isolated organs, and multi-organ systems for tissue engineering applications. Physiol. Rep. 9, e14817 (2021).

    Article  Google Scholar 

  23. de Haan, M. J. A., Witjas, F. M. R., Engelse, M. A. & Rabelink, T. J. Have we hit a wall with whole kidney decellularization and recellularization: a review. Curr. Opin. Biomed. Eng. 20, 100335 (2021).

    Article  Google Scholar 

  24. Caralt, M. et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am. J. Transpl. 15, 64–75 (2015).

    Article  Google Scholar 

  25. Aamodt, J. M. & Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86, 68–82 (2016).

    Article  Google Scholar 

  26. Sambi, M. et al. Acellular mouse kidney ECM can be used as a three-dimensional substrate to test the differentiation potential of embryonic stem cell derived renal progenitors. Stem Cell Rev. Rep. 13, 513–531 (2017).

    Article  Google Scholar 

  27. He, M., Callanan, A., Lagaras, K., Steele, J. A. M. & Stevens, M. M. Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys. J. Biomed. Mater. Res. B 105, 1352–1360 (2017).

    Article  Google Scholar 

  28. Peloso, A. et al. Renal extracellular matrix scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience and retains critical growth factors. Transplantation 99, 1807–1816 (2015).

    Article  Google Scholar 

  29. Ullah, I. et al. VEGF — supplemented extracellular matrix is sufficient to induce endothelial differentiation of human iPSC. Biomaterials 216, 119283 (2019).

    Article  Google Scholar 

  30. Ullah, I. et al. Adult tissue extracellular matrix determines tissue specification of human iPSC-derived embryonic stage mesodermal precursor cells. Adv. Sci. 7, 1901198 (2020).

    Article  Google Scholar 

  31. Zambon, J. P. et al. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater. 75, 226–234 (2018).

    Article  Google Scholar 

  32. Song, J. J. et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19, 646–651 (2013).

    Article  Google Scholar 

  33. Ciampi, O. et al. Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Sci. Rep. 9, 8001 (2019).

    Article  Google Scholar 

  34. Leuning, D. G. et al. Vascular bioengineering of scaffolds derived from human discarded transplant kidneys using human pluripotent stem cell-derived endothelium. Am. J. Transpl. 19, 1328–1343 (2019).

    Article  Google Scholar 

  35. Remuzzi, A. et al. Experimental evaluation of kidney regeneration by organ scaffold recellularization. Sci. Rep. 7, 43502 (2017).

    Article  Google Scholar 

  36. Bonandrini, B. et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng. Part. A 20, 1486–1498 (2014).

    Article  Google Scholar 

  37. Ross, E. A. et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J. Am. Soc. Nephrol. 20, 2338–2347 (2009).

    Article  Google Scholar 

  38. Bombelli, S. et al. Nephrosphere-derived cells are induced to multilineage differentiation when cultured on human decellularized kidney scaffolds. Am. J. Pathol. 188, 184–195 (2018).

    Article  Google Scholar 

  39. Ko, I. K. et al. Enhanced re-endothelialization of acellular kidney scaffolds for whole organ engineering via antibody conjugation of vasculatures. Technology 2, 243–253 (2014).

    Article  Google Scholar 

  40. Kim, I. H., Ko, I. K., Atala, A. & Yoo, J. J. Whole kidney engineering for clinical translation. Curr. Opin. Organ. Transpl. 20, 165–170 (2015).

    Article  Google Scholar 

  41. Ross, E. A. et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8, 49–55 (2012).

    Article  Google Scholar 

  42. Xue, A. et al. Recellularization of well-preserved decellularized kidney scaffold using adipose tissue-derived stem cells. J. Biomed. Mater. Res. A 106, 805–814 (2018).

    Article  Google Scholar 

  43. Padalhin, A. R., Park, C. M. & Lee, B. T. Streamlined system for conducting in vitro studies using decellularized kidney scaffolds. Tissue Eng. Part C Methods 24, 42–55 (2018).

    Article  Google Scholar 

  44. Uzarski, J. S. et al. Dual-purpose bioreactors to monitor noninvasive physical and biochemical markers of kidney and liver scaffold recellularization. Tissue Eng. Part C Methods 21, 1032–1043 (2015).

    Article  Google Scholar 

  45. Uzarski, J. S. et al. Epithelial cell repopulation and preparation of rodent extracellular matrix scaffolds for renal tissue development. J. Vis. Exp. https://doi.org/10.3791/53271 (2015).

    Article  Google Scholar 

  46. Batchelder, C. A., Martinez, M. L. & Tarantal, A. F. Natural scaffolds for renal differentiation of human embryonic stem cells for kidney tissue engineering. PLoS ONE 10, e0143849 (2015).

    Article  Google Scholar 

  47. Poornejad, N. et al. Re-epithelialization of whole porcine kidneys with renal epithelial cells. J. Tissue Eng. 8, 2041731417718809 (2017).

    Article  Google Scholar 

  48. Abolbashari, M. et al. Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater. 29, 52–61 (2016).

    Article  Google Scholar 

  49. Abrahimi, P., Liu, R. & Pober, J. S. Blood vessels in allotransplantation. Am. J. Transpl. 15, 1748–1754 (2015).

    Article  Google Scholar 

  50. Kummer, L. et al. Vascular signaling in allogenic solid organ transplantation — the role of endothelial cells. Front. Physiol. 11, 443 (2020).

    Article  Google Scholar 

  51. Elliott, T. R., Nicholson, M. L. & Hosgood, S. A. Normothermic kidney perfusion: an overview of protocols and strategies. Am. J. Transpl. 21, 1382–1390 (2021).

    Article  Google Scholar 

  52. Weissenbacher, A., Vrakas, G., Nasralla, D. & Ceresa, C. D. L. The future of organ perfusion and re-conditioning. Transpl. Int. 32, 586–597 (2019).

    Article  Google Scholar 

  53. Cohen, S. et al. Generation of vascular chimerism within donor organs. Sci. Rep. 11, 13437 (2021).

    Article  Google Scholar 

  54. Kataria, A., Magoon, S., Makkar, B. & Gundroo, A. Machine perfusion in kidney transplantation. Curr. Opin. Organ. Transpl. 24, 378–384 (2019).

    Article  Google Scholar 

  55. Weissenbacher, A. et al. Twenty-four-hour normothermic perfusion of discarded human kidneys with urine recirculation. Am. J. Transpl. 19, 178–192 (2019).

    Article  Google Scholar 

  56. Feng, B. et al. Small interfering RNA targeting RelB protects against renal ischemia-reperfusion injury. Transplantation 87, 1283–1289 (2009).

    Article  Google Scholar 

  57. Vos, I. H. et al. NFkappaB decoy oligodeoxynucleotides reduce monocyte infiltration in renal allografts. FASEB J. 14, 815–822 (2000).

    Article  Google Scholar 

  58. Yang, C. et al. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol. Ther. 22, 1817–1828 (2014).

    Article  Google Scholar 

  59. Yuzefovych, Y. et al. Genetic engineering of the kidney to permanently silence MHC transcripts during ex vivo organ perfusion. Front. Immunol. 11, 265 (2020).

    Article  Google Scholar 

  60. Figueiredo, C. et al. Immunoengineering of the vascular endothelium to silence MHC expression during normothermic ex vivo lung perfusion. Hum. Gene Ther. 30, 485–496 (2019).

    Article  Google Scholar 

  61. Rahfeld, P. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat. Microbiol. 4, 1475–1485 (2019).

    Article  Google Scholar 

  62. Wang, A. et al. Ex vivo enzymatic treatment converts blood type A donor lungs into universal blood type lungs. Sci. Transl. Med. 14, eabm7190 (2022).

    Article  Google Scholar 

  63. Sykes, M. & Sachs, D. H. Progress in xenotransplantation: overcoming immune barriers. Nat. Rev. Nephrol. https://doi.org/10.1038/s41581-022-00624-6 (2022).

    Article  Google Scholar 

  64. Cooper, D. K. et al. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 23, 83–105 (2016).

    Article  Google Scholar 

  65. Cowan, P. J., Cooper, D. K. & d’Apice, A. J. Kidney xenotransplantation. Kidney Int. 85, 265–275 (2014).

    Article  Google Scholar 

  66. Fischer, K. et al. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Xenotransplantation 27, e12560 (2020).

    Article  Google Scholar 

  67. Lai, L. et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092 (2002).

    Article  Google Scholar 

  68. Längin, M. et al. Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation. Xenotransplantation 28, e12636 (2021).

    Article  Google Scholar 

  69. Ma, D. et al. Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques. Am. J. Transpl. 22, 46–57 (2022).

    Article  Google Scholar 

  70. Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307 (2017).

    Article  Google Scholar 

  71. Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs).Science 350, 1101–1104 (2015).

    Article  Google Scholar 

  72. Zhu, A. & Hurst, R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 9, 376–381 (2002).

    Article  Google Scholar 

  73. Yue, Y. et al. Extensive germline genome engineering in pigs. Nat. Biomed. Eng. 5, 134–143 (2021).

    Article  Google Scholar 

  74. Adams, A. B. et al. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann. Surg. 268, 564–573 (2018).

    Article  Google Scholar 

  75. Porrett, P. M. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transpl. 22, 1037–1053 (2022).

    Article  Google Scholar 

  76. Montgomery, R. A. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022).

    Article  Google Scholar 

  77. Barth, R. N. et al. Xenogeneic thymokidney and thymic tissue transplantation in a pig-to-baboon model: I. Evidence for pig-specific T-cell unresponsiveness. Transplantation 75, 1615–1624 (2003).

    Article  Google Scholar 

  78. Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).

    Article  Google Scholar 

  79. Denner, J. et al. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Sci. Rep. 10, 17531 (2020).

    Article  Google Scholar 

  80. Gardner, R. L. & Johnson, M. H. Investigation of early mammalian development using interspecific chimaeras between rat and mouse. Nat. N. Biol. 246, 86–89 (1973).

    Article  Google Scholar 

  81. Rossant, J. & Frels, W. I. Interspecific chimeras in mammals: successful production of live chimeras between Mus musculus and Mus caroli. Science 208, 419–421 (1980).

    Article  Google Scholar 

  82. Kobayashi, T. et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142, 787–799 (2010).

    Article  Google Scholar 

  83. Goto, T. et al. Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat. Commun. 10, 451 (2019).

    Article  Google Scholar 

  84. Matsunari, H. et al. Compensation of disabled organogeneses in genetically modified pig fetuses by blastocyst complementation. Stem Cell Rep. 14, 21–33 (2020).

    Article  Google Scholar 

  85. Yamaguchi, T. et al. Interspecies organogenesis generates autologous functional islets. Nature 542, 191–196 (2017).

    Article  Google Scholar 

  86. Kobayashi, T., Kato-Itoh, M. & Nakauchi, H. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation. Stem Cell Dev. 24, 182–189 (2015).

    Article  Google Scholar 

  87. Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486.e415 (2017).

    Article  Google Scholar 

  88. Tan, T. et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 184, 2020–2032.e2014 (2021).

    Article  Google Scholar 

  89. Nishimura, T. et al. Generation of functional organs using a cell-competitive niche in intra- and inter-species rodent chimeras. Cell Stem Cell 28, 141–149.e143 (2021).

    Article  Google Scholar 

  90. Roodgar, M. et al. Chimpanzee and pig-tailed macaque iPSCs: improved culture and generation of primate cross-species embryos. Cell Rep. 40, 111264 (2022).

    Article  Google Scholar 

  91. Kobayashi, T. et al. Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nat. Commun. 12, 1328 (2021).

    Article  Google Scholar 

  92. Mori, M. et al. Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nat. Med. 25, 1691–1698 (2019).

    Article  Google Scholar 

  93. Yamazaki, K. et al. In vitro and in vivo functions of T cells produced in complemented thymi of chimeric mice generated by blastocyst complementation. Sci. Rep. 12, 3242 (2022).

    Article  Google Scholar 

  94. Hyun, I. et al. ISSCR guidelines for the transfer of human pluripotent stem cells and their direct derivatives into animal hosts. Stem Cell Rep. 16, 1409–1415 (2021).

    Article  Google Scholar 

  95. Yamanaka, S. et al. Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nat. Commun. 8, 1719 (2017).

    Article  Google Scholar 

  96. Fujimoto, T. et al. Generation of human renal vesicles in mouse organ niche using nephron progenitor cell replacement system. Cell Rep. 32, 108130 (2020).

    Article  Google Scholar 

  97. Saito, Y. et al. Generation of functional chimeric kidney containing exogenous progenitor-derived stroma and nephron via a conditional empty niche. Cell Rep. 39, 110933 (2022).

    Article  Google Scholar 

  98. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    Article  Google Scholar 

  99. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  Google Scholar 

  100. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  Google Scholar 

  101. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    Article  Google Scholar 

  102. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  Google Scholar 

  103. Little, M. H. & Combes, A. N. Kidney organoids: accurate models or fortunate accidents. Genes Dev. 33, 1319–1345 (2019).

    Article  Google Scholar 

  104. Combes, A. N., Zappia, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med. 11, 3 (2019).

    Article  Google Scholar 

  105. Phipson, B. et al. Evaluation of variability in human kidney organoids. Nat. Methods 16, 79–87 (2019).

    Article  Google Scholar 

  106. Ryan, A. R. et al. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Dev. Biol. 477, 98–116 (2021).

    Article  Google Scholar 

  107. Subramanian, A. et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat. Commun. 10, 5462 (2019).

    Article  Google Scholar 

  108. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e868 (2018).

    Article  Google Scholar 

  109. Bantounas, I. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Rep. 10, 766–779 (2018).

    Article  Google Scholar 

  110. Francipane, M. G. et al. Kidney-in-a-lymph node: a novel organogenesis assay to model human renal development and test nephron progenitor cell fates. J. Tissue Eng. Regen. Med. 13, 1724–1731 (2019).

    Article  Google Scholar 

  111. Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    Article  Google Scholar 

  112. van den Berg, C. W., Koudijs, A., Ritsma, L. & Rabelink, T. J. In vivo assessment of size-selective glomerular sieving in transplanted human induced pluripotent stem cell-derived kidney organoids. J. Am. Soc. Nephrol. 31, 921–929 (2020).

    Article  Google Scholar 

  113. van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).

    Article  Google Scholar 

  114. Singh, A. et al. Evaluation of transplantation sites for human intestinal organoids. PLoS ONE 15, e0237885 (2020).

    Article  Google Scholar 

  115. Westerling-Bui, A. D. et al. Transplanted organoids empower human preclinical assessment of drug candidate for the clinic. Sci. Adv. 8, eabj5633 (2022).

    Article  Google Scholar 

  116. Nam, S. A. et al. Graft immaturity and safety concerns in transplanted human kidney organoids. Exp. Mol. Med. 51, 1–13 (2019).

    Article  Google Scholar 

  117. Wilson, S. B. et al. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med. 14, 19 (2022).

    Article  Google Scholar 

  118. al-Awqati, Q. & Goldberg, M. R. Architectural patterns in branching morphogenesis in the kidney. Kidney Int. 54, 1832–1842 (1998).

    Article  Google Scholar 

  119. Taguchi, A. & Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21, 730–746.e6 (2017).

    Article  Google Scholar 

  120. Howden, S. E. et al. Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk. Cell Stem Cell 28, 671–684.e676 (2021).

    Article  Google Scholar 

  121. Mae, S. I. et al. Expansion of human iPSC-derived ureteric bud organoids with repeated branching potential. Cell Rep. 32, 107963 (2020).

    Article  Google Scholar 

  122. Mae, S. I. et al. Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochem. Biophys. Res. Commun. 495, 954–961 (2018).

    Article  Google Scholar 

  123. Shi, M. et al. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01429-5 (2022).

    Article  Google Scholar 

  124. Zeng, Z. et al. Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nat. Commun. 12, 3641 (2021).

    Article  Google Scholar 

  125. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 3, 650–662 (2014).

    Article  Google Scholar 

  126. Bohnenpoll, T. et al. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev. Biol. 380, 25–36 (2013).

    Article  Google Scholar 

  127. England, A. R. et al. Identification and characterization of cellular heterogeneity within the developing renal interstitium. Development https://doi.org/10.1242/dev.190108 (2020).

    Article  Google Scholar 

  128. Tanigawa, S. et al. Generation of the organotypic kidney structure by integrating pluripotent stem cell-derived renal stroma. Nat. Commun. 13, 611 (2022).

    Article  Google Scholar 

  129. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article  Google Scholar 

  130. Aceves, J. O. et al. 3D proximal tubule-on-chip model derived from kidney organoids with improved drug uptake. Sci. Rep. 12, 14997 (2022).

    Article  Google Scholar 

  131. Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    Article  Google Scholar 

  132. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-017-0069 (2017).

    Article  Google Scholar 

  133. Kumar, S. V. et al. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development https://doi.org/10.1242/dev.172361 (2019).

    Article  Google Scholar 

  134. Przepiorski, A. et al. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Rep. 11, 470–484 (2018).

    Article  Google Scholar 

  135. Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20, 260–271 (2021).

    Article  Google Scholar 

  136. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article  Google Scholar 

  137. Viola, J. M. et al. Guiding cell network assembly using shape-morphing hydrogels. Adv. Mater. 32, e2002195 (2020).

    Article  Google Scholar 

  138. Diep, C. Q. et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95–100 (2011).

    Article  Google Scholar 

  139. Elger, M. et al. Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J. Am. Soc. Nephrol. 14, 1506–1518 (2003).

    Article  Google Scholar 

  140. Reimschuessel, R. & Williams, D. Development of new nephrons in adult kidneys following gentamicin-induced nephrotoxicity. Ren. Fail. 17, 101–106 (1995).

    Article  Google Scholar 

  141. Gallegos, T. F., Kamei, C. N., Rohly, M. & Drummond, I. A. Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Dev. Biol. 454, 44–51 (2019).

    Article  Google Scholar 

  142. Kamei, C. N., Gallegos, T. F., Liu, Y., Hukriede, N. & Drummond, I. A. Wnt signaling mediates new nephron formation during zebrafish kidney regeneration. Development https://doi.org/10.1242/dev.168294 (2019).

    Article  Google Scholar 

  143. Munro, D. A. D. et al. Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. Elife https://doi.org/10.7554/eLife.43271 (2019).

    Article  Google Scholar 

  144. Rae, F. et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev. Biol. 308, 232–246 (2007).

    Article  Google Scholar 

  145. Hammerman, M. R. in Regenerative Nephrology (ed. Goligorsky, M. S.) 19–35 (Academic, 2011).

  146. Dilworth, M. R. et al. Development and functional capacity of transplanted rat metanephroi. Nephrol. Dial. Transpl. 23, 871–879 (2008).

    Article  Google Scholar 

  147. Marshall, D., Dilworth, M. R., Clancy, M., Bravery, C. A. & Ashton, N. Increasing renal mass improves survival in anephric rats following metanephros transplantation. Exp. Physiol. 92, 263–271 (2007).

    Article  Google Scholar 

  148. Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).

    Article  Google Scholar 

  149. Hogquist, K. A. & Jameson, S. C. The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat. Immunol. 15, 815–823 (2014).

    Article  Google Scholar 

  150. Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 38, 189–198 (2020).

    Article  Google Scholar 

  151. Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018).

    Article  Google Scholar 

  152. Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).

    Article  Google Scholar 

  153. Niu, D. et al. Porcine genome engineering for xenotransplantation. Adv. Drug Deliv. Rev. 168, 229–245 (2021).

    Article  Google Scholar 

  154. Nagashima, H. & Matsunari, H. Growing human organs in pigs — a dream or reality? Theriogenology 86, 422–426 (2016).

    Article  Google Scholar 

  155. Cui, D. et al. Generating hESCs with reduced immunogenicity by disrupting TAP1 or TAPBP. Biosci. Biotechnol. Biochem. 80, 1484–1491 (2016).

    Article  Google Scholar 

  156. Solomon, S., Pitossi, F. & Rao, M. S. Banking on iPSC — is it doable and is it worthwhile. Stem Cell Rev. Rep. 11, 1–10 (2015).

    Article  Google Scholar 

  157. Xu, H. et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e567 (2019).

    Article  Google Scholar 

  158. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  Google Scholar 

  159. Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

    Article  Google Scholar 

  160. Wang, D., Quan, Y., Yan, Q., Morales, J. E. & Wetsel, R. A. Targeted disruption of the β2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cell Transl. Med. 4, 1234–1245 (2015).

    Article  Google Scholar 

  161. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  Google Scholar 

  162. Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    Article  Google Scholar 

  163. Harboe, M. & Mollnes, T. E. The alternative complement pathway revisited. J. Cell Mol. Med. 12, 1074–1084 (2008).

    Article  Google Scholar 

  164. Gaykema, L. H. et al. Inhibition of complement activation by CD55 overexpression in human induced pluripotent stem cell derived kidney organoids. Front. Immunol. 13, 1058763 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

M.H.L. and T.J.R. are funded by the Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) supported by a grant from the Novo Nordisk Foundation (NNF21CC0073729).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the content of this Review.

Corresponding author

Correspondence to Melissa H. Little.

Ethics declarations

Competing interests

M.H.L. is an inventor on intellectual property in the field of stem-cell-derived kidney tissue. M.H.L. and T.J.R. have received unrestricted research funding from Novo Nordisk A/S.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Harald Ott, Ryuichi Nishinakamura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Guidelines from the International Society for Stem Cell Research: https://www.isscr.org/guidelines

In 2021, 97,376 patients awaited kidney transplantation in the United States: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/#

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Little, M.H., Rabelink, T.J. Replacing renal function using bioengineered tissues. Nat Rev Bioeng 1, 576–588 (2023). https://doi.org/10.1038/s44222-023-00066-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00066-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing