Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Preclinical performance testing of medical devices with antimicrobial effects

Abstract

Infections associated with medical device use can have serious consequences for patients. Such healthcare-associated infections are often challenging to treat because of the persistence of microbial biofilms and the presence of antimicrobial-resistant microorganisms. The risks of device-associated infections can be reduced by using medical devices with antimicrobial effects. In this Review, we discuss preclinical performance testing of medical devices with antimicrobial effects, including in vitro strategies, animal models and computational modelling. We examine the clinical performance of antimicrobial bone cements, urinary catheters, venous catheters and wound dressings. Rational preclinical test strategies are needed to obtain information to estimate how well a device will benefit the patient in clinical use. We outline the potential of ex vivo models, microphysiological systems, organoids and medical devices-on-chips as complementary testing strategies. To move preclinical tests from the bench to the bedside, we propose a systems approach to address the many interrelated aspects of medical device interactions using a question-based rubric.

Key points

  • Infections associated with medical devices are a major public health challenge that could be mitigated in part by devices with antimicrobial effects.

  • Microbial biofilm plays an important part in the pathogenesis of device-associated infections and is a key target of devices with antimicrobial effects.

  • Preclinical performance testing is essential for the understanding of antimicrobial performance and safety of medical devices.

  • In vitro antimicrobial performance testing of medical devices can be improved through a systems approach to develop a testing strategy, and the development of improved formats, such as ex vivo tissue models, microphysiological systems, organoids and medical devices-on-chips.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological reactions to a medical device implant.
Fig. 2: In vitro technologies to test antimicrobial medical devices.

Similar content being viewed by others

References

  1. Magill, S. S. et al. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 370, 1198–1208 (2014).

    Article  Google Scholar 

  2. Phillips, K. S., Wang, Y., Jayan, G. & Patwardhan, D. Antimicrobial and anti-biofilm medical devices: public health and regulatory science challenges in Antimicrobial Coatings And Modifications On Medical Devices (eds Zhang, Z. & Wagner, V. E.) 37–65 (Springer Publishing, 2017).

  3. Grainger, D. W. et al. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials 34, 9237–9243 (2013).

    Article  Google Scholar 

  4. Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).

    Article  Google Scholar 

  5. Vroman, L., Adams, A. L., Fischer, G. C. & Munoz, P. C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55, 156–159 (1980).

    Article  Google Scholar 

  6. Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: a multi-functional master cell. Front. Immunol. 6, 620 (2015).

    Google Scholar 

  7. Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2, 1 (2014).

    Article  Google Scholar 

  8. Prame Kumar, K., Nicholls, A. J. & Wong, C. H. Y. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 371, 551–565 (2018).

    Article  Google Scholar 

  9. Martin, C. J., Peters, K. N. & Behar, S. M. Macrophages clean up: efferocytosis and microbial control. Curr. Opin. Microbiol. 17, 17–23 (2014).

    Article  Google Scholar 

  10. Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491 (2014).

    Article  Google Scholar 

  11. Ni Choileain, N. & Redmond, H. P. Cell response to surgery. Arch. Surg. 141, 1132–1140 (2006).

    Article  Google Scholar 

  12. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001).

    Article  Google Scholar 

  13. Wood, T. K., Knabel, S. J. & Kwan, B. W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121 (2013).

    Article  Google Scholar 

  14. Nodzo, S. R. et al. Conventional diagnostic challenges in periprosthetic joint infection. J. Am. Acad. Orthop. Surg. 23, S18–S25 (2015).

    Article  Google Scholar 

  15. Osmon, D. R. Microbiology and antimicrobial challenges of prosthetic joint infection. J. Am. Acad. Orthop. Surg. 25, S17–S19 (2017).

    Article  Google Scholar 

  16. Parvizi, J. Orthopedic infections: no one is denying anymore that we have a problem! Knee Surg. Relat. Res. 31, 17 (2019).

    Article  Google Scholar 

  17. Dapunt, U., Prior, B., Kretzer, J. P., Giese, T. & Zhao, Y. Bacterial biofilm components induce an enhanced inflammatory response against metal wear particles. Ther. Clin. Risk Manag. 16, 1203–1212 (2020).

    Article  Google Scholar 

  18. Stickler, D. J. Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J. Intern. Med. 276, 120–129 (2014).

    Article  Google Scholar 

  19. Rieger, U. M. et al. Bacterial biofilms and capsular contracture in patients with breast implants. Br. J. Surg. 100, 768–774 (2013).

    Article  Google Scholar 

  20. Junaid, T., Wu, X., Thanukrishnan, H. & Venkataramanan, R. in Clinical Pharmacy Education, Practice And Research (ed. Thomas, D.) 425–436 (Elsevier, 2019).

  21. Phillips, K. S., Patwardhan, D. & Jayan, G. Biofilms, medical devices, and antibiofilm technology: key messages from a recent public workshop. Am. J. Infect. Control. 43, 2–3 (2015).

    Article  Google Scholar 

  22. Leigh, B. L. et al. Antifouling photograftable zwitterionic coatings on PDMS substrates. Langmuir 35, 1100–1110 (2019).

    Article  Google Scholar 

  23. Souza, J. G. S. et al. Targeting pathogenic biofilms: newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface. ACS Appl. Mater. Interf. 12, 10118–10129 (2020).

    Article  Google Scholar 

  24. Lee, S. W. et al. Biofilm removal by reversible shape recovery of the substrate. ACS Appl. Mater. Interf. 13, 17174–17182 (2021).

    Article  Google Scholar 

  25. Lee, S. W., Phillips, K. S., Gu, H., Kazemzadeh-Narbat, M. & Ren, D. How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 268, 120595 (2021).

    Article  Google Scholar 

  26. Cyphert, E. L. & von Recum, H. A. Emerging technologies for long-term antimicrobial device coatings: advantages and limitations. Exp. Biol. Med. 242, 788–798 (2017).

    Article  Google Scholar 

  27. Gimeno, M. et al. A controlled antibiotic release system to prevent orthopedic-implant associated infections: an in vitro study. Eur. J. Pharm. Biopharm. 96, 264–271 (2015).

    Article  Google Scholar 

  28. Williams, D. & Ashton, N. Therapeutic delivery device. US Patent US10744313B2 (2020).

  29. Abdul-Aziz, M. H., Lipman, J., Mouton, J. W., Hope, W. W. & Roberts, J. A. Applying pharmacokinetic/pharmacodynamic principles in critically ill patients: optimizing efficacy and reducing resistance development. Semin. Respir. Crit. Care Med. 36, 136–153 (2015).

    Article  Google Scholar 

  30. Gandhi, A., Matta, M., Garimella, N., Zere, T. & Weaver, J. Development and validation of a LC-MS/MS method for quantitation of fosfomycin — application to in vitro antimicrobial resistance study using hollow-fiber infection model. Biomed. Chromatogr. 32, e4214 (2018).

    Article  Google Scholar 

  31. Wang, Y., Guan, A., Wickramasekara, S. & Phillips, K. S. Analytical chemistry in the regulatory science of medical devices. Annu. Rev. Anal. Chem. 11, 307–327 (2018).

    Article  Google Scholar 

  32. US Food and Drug Administration. Appropriate use of voluntary consensus standards in premarket submissions for medical devices. FDA.gov https://www.fda.gov/media/71983/download (2018).

  33. Wang, H., Garg, A., Kazemzadeh-Narbat, M., Urish, K. L. & Phillips, K. S. Moving toward meaningful standards for preclinical performance testing of medical devices and combination products with antimicrobial effects. In Antimicrobial Combination Devices 17–25 (ASTM International, 2020).

  34. Wang, H. et al. An ex vivo model of medical device-mediated bacterial skin translocation. Sci. Rep. 11, 5746 (2021).

    Article  Google Scholar 

  35. Bechert, T., Steinrucke, P. & Guggenbichler, J. P. A new method for screening anti-infective biomaterials. Nat. Med. 6, 1053–1056 (2000).

    Article  Google Scholar 

  36. Ceri, H. et al. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776 (1999).

    Article  Google Scholar 

  37. Stepanovic, S., Vukovic, D., Dakic, I., Savic, B. & Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 40, 175–179 (2000).

    Article  Google Scholar 

  38. Djordjevic, D., Wiedmann, M. & McLandsborough, L. A. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Env. Microbiol. 68, 2950–2958 (2002).

    Article  Google Scholar 

  39. Bjarnsholt, T. et al. The impact of mental models on the treatment and research of chronic infections due to biofilms. APMIS 129, 598–606 (2021).

    Article  Google Scholar 

  40. US Food and Drug Administration. General considerations for animal studies for medical devices. FDA.gov https://www.fda.gov/media/93963/download (2015).

  41. Andes, D. R. & Lepak, A. J. In vivo infection models in the pre-clinical pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Curr. Opin. Pharmacol. 36, 94–99 (2017).

    Article  Google Scholar 

  42. Petty, W., Spanier, S. & Shuster, J. J. Prevention of infection after total joint replacement. Experiments with a canine model. J. Bone Joint Surg. Am. 70, 536–539 (1988).

    Article  Google Scholar 

  43. Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2, 288–356 (2013).

    Article  Google Scholar 

  44. Moriarty, T. F. et al. Recommendations for design and conduct of preclinical in vivo studies of orthopedic device-related infection. J. Orthop. Res. 37, 271–287 (2019).

    Article  Google Scholar 

  45. Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    Article  Google Scholar 

  46. Lovati, A. B., Bottagisio, M., de Vecchi, E., Gallazzi, E. & Drago, L. Animal models of implant-related low-grade infections. A twenty-year review. Adv. Exp. Med. Biol. 971, 29–50 (2017).

    Article  Google Scholar 

  47. Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect. Immun. 78, 4166–4175 (2010).

    Article  Google Scholar 

  48. Witsø, E., Hoang, L., Løseth, K. & Bergh, K. Establishment of an in vivo rat model for chronic musculoskeletal implant infection. J. Orthop. Surg. Res. 15, 23 (2020).

    Article  Google Scholar 

  49. Raju, D. R., Jindrak, K., Weiner, M. & Enquist, I. F. A study of the critical bacterial inoculum to cause a stimulus to wound healing. Surg. Gynecol. Obstet. 144, 347–350 (1977).

    Google Scholar 

  50. Netuschil, L., Auschill, T. M., Sculean, A. & Arweiler, N. B. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms–which stain is suitable? BMC Oral. Health 14, 2 (2014).

    Article  Google Scholar 

  51. England, M. R., Stock, F., Gebo, J. E. T., Frank, K. M. & Lau, A. F. Comprehensive evaluation of compendial USP <71>, BacT/Alert Dual-T, and Bactec FX for detection of product sterility testing contaminants. J. Clin. Microbiol. https://doi.org/10.1128/JCM.01548-18 (2019).

    Article  Google Scholar 

  52. International Organization for Standardization. Sterilization of health care products — Microbiological methods — Part 2: Tests of sterility performed in the definition, validation and maintenance of a sterilization process. ISO.org https://www.iso.org/standard/70801.html (2019).

  53. Pham, L. H. P. et al. Dissolvable alginate hydrogel-based biofilm microreactors for antibiotic susceptibility assays. Biofilm 5, 100103 (2023).

    Article  Google Scholar 

  54. Shanks, N., Greek, R. & Greek, J. Are animal models predictive for humans? Phil. Ethics Human. Med. 4, 2 (2009).

    Article  Google Scholar 

  55. van der Worp, H. B. et al. Can animal models of disease reliably inform human studies? PLoS Med. 7, e1000245 (2010).

    Article  Google Scholar 

  56. von Herrath, M. G. & Nepom, G. T. Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. J. Exp. Med. 202, 1159–1162 (2005).

    Article  Google Scholar 

  57. Reizner, W. et al. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur. Cell Mater. 27, 196–212 (2014).

    Article  Google Scholar 

  58. King, J. D., Hamilton, D. H., Jacobs, C. A. & Duncan, S. T. The hidden cost of commercial antibiotic-loaded bone cement: a systematic review of clinical results and cost implications following total knee arthroplasty. J. Arthroplasty 33, 3789–3792 (2018).

    Article  Google Scholar 

  59. Kleppel, D., Stirton, J., Liu, J. & Ebraheim, N. A. Antibiotic bone cement’s effect on infection rates in primary and revision total knee arthroplasties. World J. Orthop. 8, 946–955 (2017).

    Article  Google Scholar 

  60. Farhan-Alanie, M. M., Burnand, H. G. & Whitehouse, M. R. The effect of antibiotic-loaded bone cement on risk of revision following hip and knee arthroplasty. Bone Joint J. 103-B, 7–15 (2021).

    Article  Google Scholar 

  61. Zheng, H. et al. Control strategies to prevent total hip replacement-related infections: a systematic review and mixed treatment comparison. BMJ Open 4, e003978 (2014).

    Article  Google Scholar 

  62. Balato, G. et al. Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg. Sports Traumatol. Arthrosc. 27, 1943–1952 (2019).

    Article  Google Scholar 

  63. Tunney, M. M. et al. Biofilm formation by bacteria isolated from retrieved failed prosthetic hip implants in an in vitro model of hip arthroplasty antibiotic prophylaxis. J. Orthop. Res. 25, 2–10 (2007).

    Article  Google Scholar 

  64. Pestrak, M. J. et al. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation. PLoS One 15, e0231791 (2020).

    Article  Google Scholar 

  65. Knott, S. et al. Floating biofilm formation and phenotype in synovial fluid depends on albumin, fibrinogen, and hyaluronic acid. Front. Microbiol. 12, 655873 (2021).

    Article  Google Scholar 

  66. Foster, A. L. et al. Single-stage revision of MRSA orthopedic device-related infection in sheep with an antibiotic-loaded hydrogel. J. Orthop. Res. 39, 438–448 (2021).

    Article  Google Scholar 

  67. Johnson, J. R., Kuskowski, M. A. & Wilt, T. J. Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann. Intern. Med. 144, 116–126 (2006).

    Article  Google Scholar 

  68. Lam, T. B., Omar, M. I., Fisher, E., Gillies, K. & MacLennan, S. Types of indwelling urethral catheters for short-term catheterisation in hospitalised adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004013.pub4 (2014).

    Article  Google Scholar 

  69. Mandakhalikar, K. D. et al. Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: a proof of concept study. BMC Infect. Dis. 18, 370 (2018).

    Article  Google Scholar 

  70. Centers for Disease Control and Prevention. Guideline for prevention of catheter-associated urinary tract infections (2009). CDC.gov https://www.cdc.gov/infectioncontrol/guidelines/cauti/background.html (2015).

  71. Wang, H. et al. Effectiveness of antimicrobial-coated central venous catheters for preventing catheter-related blood-stream infections with the implementation of bundles: a systematic review and network meta-analysis. Ann. Intensive Care 8, 71 (2018).

    Article  Google Scholar 

  72. Chong, H. Y., Lai, N. M., Apisarnthanarak, A. & Chaiyakunapruk, N. Comparative efficacy of antimicrobial central venous catheters in reducing catheter-related bloodstream infections in adults: abridged Cochrane systematic review and network meta-analysis. Clin. Infect. Dis. 64, S131–S140 (2017).

    Article  Google Scholar 

  73. Allan, N. D., Giare-Patel, K. & Olson, M. E. An in vivo rabbit model for the evaluation of antimicrobial peripherally inserted central catheter to reduce microbial migration and colonization as compared to an uncoated PICC. J. Biomed. Biotechnol. 2012, 921617 (2012).

    Article  Google Scholar 

  74. US Food and Drug Administration. Classification of wound dressings combined with drugs. FDA.gov https://www.fda.gov/media/100005/download (2016).

  75. Alves, D. R. et al. Development of a high-throughput ex-vivo burn wound model using porcine skin, and its application to evaluate new approaches to control wound infection. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2018.00196 (2018).

    Article  Google Scholar 

  76. Yang, Q. et al. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair. Regen. 21, 704–714 (2013).

    Article  Google Scholar 

  77. Zilberman, M. et al. Hybrid wound dressings with controlled release of antibiotics: structure-release profile effects and in vivo study in a guinea pig burn model. Acta Biomater. 22, 155–163 (2015).

    Article  Google Scholar 

  78. Mana, T. S. C. et al. Preliminary analysis of the antimicrobial activity of a postoperative wound dressing containing chlorhexidine gluconate against methicillin-resistant Staphylococcus aureus in an in vivo porcine incisional wound model. Am. J. Infect. Control. 47, 1048–1052 (2019).

    Article  Google Scholar 

  79. Kazemzadeh-Narbat, M. et al. Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit. Rev. Biotechnol. 41, 94–120 (2021).

    Article  Google Scholar 

  80. Sanz-Ruiz, P., Matas-Diez, J. A., Sanchez-Somolinos, M., Villanueva-Martinez, M. & Vaquero-Martin, J. Is the commercial antibiotic-loaded bone cement useful in prophylaxis and cost saving after knee and hip joint arthroplasty? The transatlantic paradox. J. Arthroplasty 32, 1095–1099 (2017).

    Article  Google Scholar 

  81. Schwarz, E. M. et al. 2018 International Consensus meeting on musculoskeletal infection: research priorities from the general assembly questions. J. Orthop. Res. 37, 997–1006 (2019).

    Article  Google Scholar 

  82. Bargon, R. et al. General Assembly, research caveats: proceedings of international consensus on orthopedic infections. J. Arthroplasty 34, S245–S253.e241 (2019).

    Article  Google Scholar 

  83. Jackson, S., Hitchins, D. & Eisner, H. What is the systems approach? INSIGHT 13, 41–43 (2010).

    Article  Google Scholar 

  84. US Food and Drug Administration. Leveraging real world evidence in regulatory submissions of medical devices. FDA.gov https://www.fda.gov/news-events/fda-voices/leveraging-real-world-evidence-regulatory-submissions-medical-devices (2021).

  85. Mummery, C., van de Stolpe, A., Roelen, B. & Clevers, H. in Stem Cells: Scientific Facts And Fiction 2nd edn, 343–361 (Academic Press, 2014).

  86. Guan, A. et al. Medical devices on chips. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-017-0045 (2017).

    Article  Google Scholar 

  87. Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183 (2015).

    Article  Google Scholar 

  88. Sauer, M. M. et al. Catch-bond mechanism of the bacterial adhesin FimH. Nat. Commun. 7, 10738 (2016).

    Article  Google Scholar 

  89. Emody, L., Kerenyi, M. & Nagy, G. Virulence factors of uropathogenic Escherichia coli. Int. J. Antimicrob. Agents 22, 29–33 (2003).

    Article  Google Scholar 

  90. Shaked, H. et al. Unusual “flesh-eating” strains of Escherichia coli. J. Clin. Microbiol. 50, 4008–4011 (2012).

    Article  Google Scholar 

  91. van Burik, J. A. & Magee, P. T. Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 55, 743–772 (2001).

    Article  Google Scholar 

  92. Broekhuizen, C. A. et al. Staphylococcus epidermidis is cleared from biomaterial implants but persists in peri-implant tissue in mice despite rifampicin/vancomycin treatment. J. Biomed. Mater. Res. A 85, 498–505 (2008).

    Article  Google Scholar 

  93. Niederholtmeyer, H., Chaggan, C. & Devaraj, N. K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat. Commun. 9, 5027 (2018).

    Article  Google Scholar 

  94. Anderson, M. J. et al. Efficacy of skin and nasal povidone-iodine preparation against mupirocin-resistant methicillin-resistant Staphylococcus aureus and S. aureus within the anterior nares. Antimicrob. Agents Chemother. 59, 2765–2773 (2015).

    Article  Google Scholar 

  95. Wang, Y., Tan, X., Xi, C. & Phillips, K. S. Removal of Staphylococcus aureus from skin using a combination antibiofilm approach. npj Biofilms Microbiomes 4, 16 (2018).

    Article  Google Scholar 

  96. Wang, Y., Leng, V., Patel, V. & Phillips, K. S. Injections through skin colonized with Staphylococcus aureus biofilm introduce contamination despite standard antimicrobial preparation procedures. Sci. Rep. 7, 45070 (2017).

    Article  Google Scholar 

  97. Moreau-Marquis, S., Redelman, C. V., Stanton, B. A. & Anderson, G. G. Co-culture models of Pseudomonas aeruginosa biofilms grown on live human airway cells. J. Vis. Exp. https://doi.org/10.3791/2186 (2010).

    Article  Google Scholar 

  98. Pedersen, R. M. et al. A method for quantification of epithelium colonization capacity by pathogenic bacteria. Front. Cell Infect. Microbiol. 8, 16 (2018).

    Article  Google Scholar 

  99. Bucior, I., Tran, C. & Engel, J. Assessing Pseudomonas virulence using host cells. Methods Mol. Biol. 1149, 741–755 (2014).

    Article  Google Scholar 

  100. Wang, Y. et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell Mol. Gastroenterol. Hepatol. 5, 113–130 (2018).

    Article  Google Scholar 

  101. Engevik, K. A., Matthis, A. L., Montrose, M. H. & Aihara, E. Organoids as a model to study infectious disease. Methods Mol. Biol. 1734, 71–81 (2018).

    Article  Google Scholar 

  102. Kim, J., Hegde, M. & Jayaraman, A. Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions. Lab Chip 10, 43–50 (2010).

    Article  Google Scholar 

  103. van Oosten, M. et al. Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat. Commun. 4, 2584 (2013).

    Article  Google Scholar 

  104. Konjufca, V. & Miller, M. J. Two-photon microscopy of host-pathogen interactions: acquiring a dynamic picture of infection in vivo. Cell Microbiol. 11, 551–559 (2009).

    Article  Google Scholar 

  105. Felix, L. P., Perez, J. E., Contreras, M. F., Ravasi, T. & Kosel, J. Cytotoxic effects of nickel nanowires in human fibroblasts. Toxicol. Rep. 3, 373–380 (2016).

    Article  Google Scholar 

  106. Cheng, G. et al. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: potentials, pitfalls, and the future. J. Biol. Chem. 293, 10363–10380 (2018).

    Article  Google Scholar 

  107. Li, W., Wang, J., Ren, J. & Qu, X. Endogenous signalling control of cell adhesion by using aptamer functionalized biocompatible hydrogel. Chem. Sci. 6, 6762–6768 (2015).

    Article  Google Scholar 

  108. Ho, E., Karimi Galougahi, K., Liu, C. C., Bhindi, R. & Figtree, G. A. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 1, 483–491 (2013).

    Article  Google Scholar 

  109. Morgenstern, M. et al. The value of quantitative histology in the diagnosis of fracture-related infection. Bone Joint J. 100-B, 966–972 (2018).

    Article  Google Scholar 

  110. Sanders, W. E. Jr. & Sanders, C. C. Toxicity of antibacterial agents: mechanism of action on mammalian cells. Annu. Rev. Pharmacol. Toxicol. 19, 53–83 (1979).

    Article  Google Scholar 

  111. US Food and Drug Administration. Use of international standard ISO 10993-1, “Biological evaluation of medical devices — part 1: Evaluation and testing within a risk management process”. FDA.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and (2016).

  112. Guan, A., Wang, Y., Phillips, K. S. & Li, Z. A contact-lens-on-a-chip companion diagnostic tool for personalized medicine. Lab Chip 16, 1152–1156 (2016).

    Article  Google Scholar 

  113. Occhetta, P. et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat. Biomed. Eng. 3, 545–557 (2019).

    Article  Google Scholar 

  114. Polini, A. et al. Towards the development of human immune-system-on-a-chip platforms. Drug Discov. Today 24, 517–525 (2019).

    Article  Google Scholar 

  115. Ramadan, Q. & Gijs, M. A. In vitro micro-physiological models for translational immunology. Lab Chip 15, 614–636 (2015).

    Article  Google Scholar 

  116. Zaatreh, S. et al. Co-culture of S. epidermidis and human osteoblasts on implant surfaces: an advanced in vitro model for implant-associated infections. PLoS One 11, e0151534 (2016).

    Article  Google Scholar 

  117. Jauregui, R. G. et al. IL-1β promotes Staphylococcus aureus biofilms on implants in vivo. Front. Immunol. 10, 1082 (2019).

    Article  Google Scholar 

  118. Purwada, A. et al. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials 63, 24–34 (2015).

    Article  Google Scholar 

  119. Henriksen, K. et al. P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage-ciprofloxacin combination. Pathog. Dis. https://doi.org/10.1093/femspd/ftz011 (2019).

    Article  Google Scholar 

  120. Sandbakken, E. T. et al. Highly variable effect of sonication to dislodge biofilm-embedded Staphylococcus epidermidis directly quantified by epifluorescence microscopy: an in vitro model study. J. Orthop. Surg. Res. 15, 522 (2020).

    Article  Google Scholar 

  121. Alhede, M. et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6, e27943 (2011).

    Article  Google Scholar 

  122. Haaber, J., Cohn, M. T., Frees, D., Andersen, T. J. & Ingmer, H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 7, e41075 (2012).

    Article  Google Scholar 

  123. Macias-Valcayo, A. et al. in Advances In Microbiology, Infectious Diseases And Public Health Vol. 15 (ed. Donelli, G.) 81–90 (Springer International Publishing, 2021).

  124. Gupta, T. T. et al. Staphylococcus aureus aggregates on orthopedic materials under varying levels of shear stress. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01234-20 (2020).

    Article  Google Scholar 

  125. Gupta, T. T., Gupta, N. K., Burback, P. & Stoodley, P. Free-floating aggregate and single-cell-initiated biofilms of Staphylococcus aureus. Antibiotics 10, 889 (2021).

    Article  Google Scholar 

  126. Alfa, M. J. & Howie, R. Modeling microbial survival in buildup biofilm for complex medical devices. BMC Infect. Dis. 9, 56 (2009).

    Article  Google Scholar 

  127. Allan, J. M., Jacombs, A. S. W., Hu, H., Merten, S. L. & Deva, A. K. Detection of bacterial biofilm in double capsule surrounding mammary implants: findings in human and porcine breast augmentation. Plast. Reconstr. Surg. 129, 578e–580e (2012).

    Article  Google Scholar 

  128. Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).

    Article  Google Scholar 

  129. Niu, W. A., Rivera, S. L., Siegrist, M. S. & Santore, M. M. Depletion forces drive reversible capture of live bacteria on non-adhesive surfaces. Soft Matter https://doi.org/10.1039/D1SM00631B (2021).

    Article  Google Scholar 

  130. Moriarty, T. F., Grainger, D. W. & Richards, R. G. Challenges in linking preclinical anti-microbial research strategies with clinical outcomes for device-associated infections. Eur. Cell Mater. 28, 112–128 (2014).

    Article  Google Scholar 

  131. Hossainy, S. & Prabhu, S. A mathematical model for predicting drug release from a biodurable drug-eluting stent coating. J. Biomed. Mater. Res. A 87, 487–493 (2008).

    Article  Google Scholar 

  132. Tzafriri, A. R., Groothuis, A., Price, G. S. & Edelman, E. R. Stent elution rate determines drug deposition and receptor-mediated effects. J. Control. Rel. 161, 918–926 (2012).

    Article  Google Scholar 

  133. Xu, Y., Kim, C.-S., Saylor, D. M. & Koo, D. Polymer degradation and drug delivery in PLGA-based drug–polymer applications: a review of experiments and theories. J. Biomed. Mater. Res. B 105, 1692–1716 (2017).

    Article  Google Scholar 

  134. Saylor, D. M., Forrey, C., Kim, C. S. & Warren, J. A. Diffuse interface methods for modeling drug-eluting stent coatings. Ann. Biomed. Eng. 44, 548–559 (2016).

    Article  Google Scholar 

  135. McGinty, S. & Pontrelli, G. A general model of coupled drug release and tissue absorption for drug delivery devices. J. Control. Rel. 217, 327–336 (2015).

    Article  Google Scholar 

  136. McDermott, M. K. et al. Microstructure and elution of tetracycline from block copolymer coatings. J. Pharm. Sci. 99, 2777–2785 (2010).

    Article  Google Scholar 

  137. Saylor, D. M., Kim, C. S., Patwardhan, D. V. & Warren, J. A. Modeling microstructure development and release kinetics in controlled drug release coatings. J. Pharm. Sci. 98, 169–186 (2009).

    Article  Google Scholar 

  138. Saylor, D. M., Soneson, J. E., Kleinedler, J. J., Horner, M. & Warren, J. A. A structure-sensitive continuum model of arterial drug deposition. Int. J. Heat Mass Transf. 82, 468–478 (2015).

    Article  Google Scholar 

  139. Levin, A. D., Vukmirovic, N., Hwang, C.-W. & Edelman, E. R. Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Proc. Natl Acad. Sci USA 101, 9463–9467 (2010).

    Article  Google Scholar 

  140. Creel, C. J., Lovich, M. A. & Edelman, E. R. Arterial paclitaxel distribution and deposition. Circ. Res. 86, 879–884 (2000).

    Article  Google Scholar 

  141. Saylor, D. M. et al. Strategies for rapid risk assessment of color additives used in medical devices. Toxicol. Sci. https://doi.org/10.1093/toxsci/kfz179 (2019).

    Article  Google Scholar 

  142. Saylor, D. M., Chandrasekar, V., Elder, R. M. & Hood, A. M. Advances in predicting patient exposure to medical device leachables. Med. Devices Sensors 3, e10063 (2020).

    Article  Google Scholar 

  143. Saylor, D. M., Adidharma, L., Fisher, J. W. & Brown, R. P. A biokinetic model for nickel released from cardiovascular devices. Regul. Toxicol. Pharmacol. 80, 1–8 (2016).

    Article  Google Scholar 

  144. Saylor, D. M. et al. Predicting patient exposure to nickel released from cardiovascular devices using multi-scale modeling. Acta Biomater. 70, 304–314 (2018).

    Article  Google Scholar 

  145. Sjollema, J. et al. In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomater. 70, 12–24 (2018).

    Article  Google Scholar 

  146. Griffiths, R., Lewis, A. & Jeffrey, P. in Models For Assessing Drug Absorption And Metabolism (eds Borchardt, R. T., Smith, P. L. & Wilson, G.) 67–84 (Springer Publishing, 1996).

  147. Schierholz, J. M. & Beuth, J. Implant infections: a haven for opportunistic bacteria. J. Hospital Infect. 49, 87–93 (2001).

    Article  Google Scholar 

  148. Tan, L. et al. Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci. Adv. https://doi.org/10.1126/sciadv.aba5723 (2020).

    Article  Google Scholar 

  149. Vertes, A., Hitchins, V. & Phillips, K. S. Analytical challenges of microbial biofilms on medical devices. Anal. Chem. 84, 3858–3866 (2012).

    Article  Google Scholar 

  150. US Food and Drug Administration. Public workshop — orthopedic device-related infections. FDA.gov https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-orthopedic-device-related-infections-11132020-11132020 (2020).

  151. International Organization for Standardization. ISO/TC 150 implants for surgery. ISO.org https://www.iso.org/committee/53058.html.

  152. Centers for Disease Control and Prevention. Biggest threats and data. CDC.gov https://www.cdc.gov/drugresistance/biggest-threats.html (2021).

  153. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113, 5S–13S (2002).

    Article  Google Scholar 

  154. Gandelman, G. et al. Intravascular device infections: epidemiology, diagnosis, and management. Cardiol. Rev. 15, 13–23 (2007).

    Article  Google Scholar 

  155. Maki, D. G., Kluger, D. M. & Crnich, C. J. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin. Proc. 81, 1159–1171 (2006).

    Article  Google Scholar 

  156. Koenig, S. M. & Truwit, J. D. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin. Microbiol. Rev. 19, 637–657 (2006).

    Article  Google Scholar 

  157. Kurtz, S. M., Lau, E., Watson, H., Schmier, J. K. & Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplasty 27, 61–65.e61 (2012).

    Article  Google Scholar 

  158. Nguyen, A. K. et al. Effects of subcytotoxic exposure of silver nanoparticles on osteogenic differentiation of human bone marrow stem cells. Appl. Vitro Toxicol. 5, 10 (2019).

    Article  Google Scholar 

  159. Zisi, A. P., Exindari, M. K., Siska, E. K. & Koliakos, G. G. Iodine-lithium-alpha-dextrin (ILαD) against Staphylococcus aureus skin infections: a comparative study of in-vitro bactericidal activity and cytotoxicity between ILαD and povidone-iodine. J. Hosp. Infect. 98, 134–140 (2018).

    Article  Google Scholar 

  160. The Antimicrobial Index KnowledgeBase: gentamicin. Antibiotics.Toku-E.com https://antibiotics.toku-e.com/antimicrobial_664_9.html (2015).

  161. Kovacik, A. et al. In vitro assessment of gentamicin cytotoxicity on the selected mammalian cell line (Vero cells). Adv. Res. Life Sci. https://doi.org/10.1515/arls-2017-0018 (2017).

    Article  Google Scholar 

  162. Odore, R., Colombatti Valle, V. & Re, G. Efficacy of chlorhexidine against some strains of cultured and clinically isolated microorganisms. Vet. Res. Commun. 24, 229–238 (2000).

    Article  Google Scholar 

  163. Lessa, F. C. et al. Toxicity of chlorhexidine on odontoblast-like cells. J. Appl. Oral. Sci. 18, 50–58 (2010).

    Article  Google Scholar 

  164. The Antimicrobial Index KnowledgeBase: vancomycin. Antibiotics.Toku-E.com https://antibiotics.toku-e.com/antimicrobial_1182_32.html (2015).

  165. Sofian, Z. M. et al. Cytotoxicity evaluation of vancomycin and its complex with beta-cyclodextrin on human glial cell line. Pak. J. Pharm. Sci. 25, 831–837 (2012).

    Google Scholar 

  166. Zhou, C. et al. In vitro synergistic activity of antimicrobial combinations against blaKPC and blaNDM-producing enterobacterales with blaIMP or mcr genes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.533209 (2020).

    Article  Google Scholar 

  167. Yorganci, K., Krepel, C., Weigelt, J. A. & Edmiston, C. E. In vitro evaluation of the antibacterial activity of three different central venous catheters against Gram-positive bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 21, 379–384 (2002).

    Article  Google Scholar 

  168. Desai, D. G., Liao, K. S., Cevallos, M. E. & Trautner, B. W. Silver or nitrofurazone impregnation of urinary catheters has a minimal effect on uropathogen adherence. J. Urol. 184, 2565–2571 (2010).

    Article  Google Scholar 

  169. Sams-Dodd, J. & Sams-Dodd, F. Time to abandon antimicrobial approaches in wound healing: a paradigm shift. Wounds 30, 345–352 (2018).

    Google Scholar 

  170. Fitzgerald, D. J. et al. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo. Wound Repair. Regen. 25, 13–24 (2017).

    Article  Google Scholar 

  171. Neacsu, I. et al. Novel hydrogels based on collagen and ZnO nanoparticles with antibacterial activity for improved wound dressings. Romanian Biotechnol. Lett. 24, 317–323 (2019).

    Article  Google Scholar 

  172. Halstead, F. D. et al. In vitro activity of an engineered honey, medical-grade honeys, and antimicrobial wound dressings against biofilm-producing clinical bacterial isolates. J. Wound Care 25, 93–94 (2016).

    Article  Google Scholar 

  173. Kostenko, V., Lyczak, J., Turner, K. & Martinuzzi, R. J. Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob. Agents Chemother. 54, 5120–5131 (2010).

    Article  Google Scholar 

  174. Cataldi, V. et al. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases. Int. J. Immunopathol. Pharmacol. 28, 595–602 (2015).

    Article  Google Scholar 

  175. Rezvanian, M., Ahmad, N., Mohd Amin, M. C. & Ng, S. F. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 97, 131–140 (2017).

    Article  Google Scholar 

  176. Mohseni, M. et al. A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: in vitro and in vivo evaluation. Int. J. Pharm. 564, 350–358 (2019).

    Article  Google Scholar 

  177. Zhou, D., Yang, T. & Luo, G. Preparation of chitin-lysozyme anti-infective eco-friendly dressing and its effect on wound healing. AIP Conf. Proc. 2058, 020012 (2019).

    Article  Google Scholar 

  178. Laverdiere, M., Boisvert, C., Auclair, C. & Elie, R. in vitro activity of framycetin sulfate (sofratulle) and chlorhexidine acetate (bactigras) tulle dressings against microorganism commonly found in wound infections. Curr. Ther. Res. 33, 6 (1983).

    Google Scholar 

  179. Bakhsheshi-Rad, H. R. et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym. Test. 82, 106298 (2020).

    Article  Google Scholar 

  180. Boot, W. et al. An antibiotic-loaded hydrogel demonstrates efficacy as prophylaxis and treatment in a large animal model of orthopaedic device-related infection. Front. Cell Infect. Microbiol. 12, 826392 (2022).

    Article  Google Scholar 

  181. Roche, E. D. et al. Cadexomer iodine effectively reduces bacterial biofilm in porcine wounds ex vivo and in vivo. Int. Wound J. 16, 674–683 (2019).

    Article  Google Scholar 

  182. US Food and Drug Administration. Mission possible: how FDA can move at the speed of science. FDA.gov https://www.fda.gov/media/93524/download (2015).

  183. US Food and Drug Administration. Factors to consider when making benefit-risk determinations in medical device premarket approval and de novo classifications. FDA.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/factors-consider-when-making-benefit-risk-determinations-medical-device-premarket-approval-and-de (2019).

  184. US Food and Drug Administration. Combination products. FDA.gov https://www.fda.gov/combination-products (2018).

  185. US Food and Drug Administration. Frequently asked questions about combination products. FDA.gov https://www.fda.gov/combination-products/about-combination-products/frequently-asked-questions-about-combination-products#OCP (2020).

  186. Kramer, D. B., Tan, Y. T., Sato, C. & Kesselheim, A. S. Ensuring medical device effectiveness and safety: a cross–national comparison of approaches to regulation. Food Drug Law J. 69, 1–23 (2014).

    Google Scholar 

  187. Maak, T. G. & Wylie, J. D. Medical device regulation: a comparison of the United States and the European Union. J. Am. Acad. Orthop. Surg. 24, 537–543 (2016).

    Article  Google Scholar 

  188. Van Norman, G. A. Drugs devices: comparison of European and U.S. approval processes. JACC Basic. Transl. Sci. 1, 399–412 (2016).

    Google Scholar 

  189. Rocco, P., Musazzi, U. M. & Minghetti, P. Medicinal products meet medical devices: classification and nomenclature issues arising from their combined use. Drug Discov. Today 27, 103324 (2022).

    Article  Google Scholar 

  190. US Food and Drug Administration. Tripartite biocompatibility guidance. FDA.gov http://www.clinicaldevice.com/VintageGuidances/1987-04%20G87-1_Tripartite_Bio_Guidance_from_FDA_REQUEST.pdf (1987).

  191. US Food and Drug Administration. Recognized consensus standards. FDA.gov https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/search.cfm (2022).

Download references

Acknowledgements

The authors thank reviewers from the Center for Devices and Radiological Health — CDRH/OSEL/DBCMS, CDRH/OPEQ/OHT6 and CDRH/OPEQ/OHT4 — for critical feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.S.P., H.W. and J.A.C. developed the overall manuscript content. All authors researched and wrote at least one section in the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to K. Scott Phillips.

Ethics declarations

Competing interests

The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services. The findings and conclusions in this paper have not been formally disseminated by the US Food and Drug Administration and should not be construed to represent any agency determination or policy. The authors have no other competing interests to disclose.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Andrés García, Paul Stoodley, Amelia Staats and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Nanotechnology: https://www.fda.gov/media/88423/download

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chediak, J.A., Belmont, P.J. et al. Preclinical performance testing of medical devices with antimicrobial effects. Nat Rev Bioeng 1, 589–605 (2023). https://doi.org/10.1038/s44222-023-00060-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00060-6

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology