Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurotechnologies to restore hand functions

Abstract

Reaching and manipulating objects are crucial tasks that allow proactive interaction with our surroundings. However, these functions are lost after neurological disorders or traumatic events that cause hand paralysis. Neuroprosthetic technologies are medical devices that can substitute or restore a damaged motor or sensory modality. In this Review, we discuss how advanced technological modules can be used to restore hand functions in subjects with paralysis. First, we illustrate how the subject’s intended hand functions can be extracted by deciphering their cortical activity or residual body movements. Next, we describe how invasive and non-invasive electrical stimulation of neural or muscular structures can activate different hand muscles to restore functional movements. We then provide examples of ‘brain-to-body’ interfaces that can decode the hand motor intent from brain signals and activate muscles accordingly, allowing voluntary control of movements while bypassing the neurological issue. Finally, we discuss the future steps required for the clinical translation of these technologies.

Key points

  • Neuroprostheses based on decoding and stimulation of the nervous system can be used to restore hand functions.

  • Voluntary hand control can be restored by bypassing the lesion using ‘brain-to-body’ interfaces (BBIs).

  • Various invasive and non-invasive solutions exist to develop the BBI components needed to restore hand function.

  • BBIs could potentially provide long-term restoration of hand function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of neuroprostheses for voluntary hand control.
Fig. 2: Normal hand movements and their anatomical pathway.
Fig. 3: Interfaces and strategies to decode hand movements from brain activity.
Fig. 4: Neurotechnologies to restore hand functions.

Similar content being viewed by others

References

  1. Lebedev, M. A. & Nicolelis, M. A. L. Brain–machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837 (2017).

    Article  Google Scholar 

  2. Simeral, J. D. et al. Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Trans. Biomed. Eng. 68, 2313–2325 (2021).

    Article  Google Scholar 

  3. Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    Article  Google Scholar 

  4. Handelman, D. A. et al. Shared control of bimanual robotic limbs with a brain–machine interface for self-feeding. Front. Neurorobot. 16, 918001 (2022).

    Article  Google Scholar 

  5. Collinger, J. L. et al. Functional priorities, assistive technology, and brain–computer interfaces after spinal cord injury. J. Rehabil. Res. Dev. 50, 145–160 (2013).

    Article  Google Scholar 

  6. Peckham, P. H. et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch. Phys. Med. Rehabil. 82, 1380–1388 (2001).

    Article  Google Scholar 

  7. IJzerman, M. et al. The NESS Handmaster orthosis: restoration of hand function in C5 and stroke patients by means of electrical stimulation. J. Rehabil. Sci. 9, 86–89 (1996).

    Google Scholar 

  8. Prochazka, A., Gauthier, M., Wieler, M. & Kenwell, Z. The Bionic Glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch. Phys. Med. Rehabil. 78, 608–614 (1997).

    Article  Google Scholar 

  9. Biasiucci, A. et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9, 2421 (2018).

    Article  Google Scholar 

  10. Soekadar, S. R., Birbaumer, N., Slutzky, M. W. & Cohen, L. G. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015).

    Article  Google Scholar 

  11. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    Article  Google Scholar 

  12. Ajiboye, A. B. et al. Restoration of reaching and grasping in a person with tetraplegia through brain-controlled muscle stimulation: a proof-of-concept demonstration. Lancet 389, 1821–1830 (2017). This article reports the intracortical control of implanted muscle stimulation, which restores grasping in a person with tetraplegia.

    Article  Google Scholar 

  13. ElKoura, G. & Singh, K. Handrix: animating the human hand. Proc. 2003 ACM SIGGRAPH/Eurographics Symp. on Computer Animation 110–119 (ACM, 2003).

  14. Martin, J. R., Zatsiorsky, V. M. & Latash, M. L. Multi-finger interaction during involuntary and voluntary single finger force changes. Exp. Brain Res. 208, 423–435 (2011).

    Article  Google Scholar 

  15. Nanayakkara, V. K. et al. The role of morphology of the thumb in anthropomorphic grasping: a review. Front. Mech. Eng. https://doi.org/10.3389/fmech.2017.00005 (2022).

    Article  Google Scholar 

  16. Napier, J. R. The prehensile movements of the human hand. J. Bone Jt Surgery Br. 38, 902–913 (1956).

    Article  Google Scholar 

  17. Kilbreath, S. L. & Heard, R. C. Frequency of hand use in healthy older persons. Aust. J. Physiother. 51, 119–122 (2005).

    Article  Google Scholar 

  18. Gracia-Ibáñez, V., Sancho-Bru, J. L. & Vergara, M. Relevance of grasp types to assess functionality for personal autonomy. J. Hand Ther. 31, 102–110 (2018).

    Article  Google Scholar 

  19. Feix, T., Romero, J., Schmiedmayer, H., Dollar, A. M. & Kragic, D. The GRASP taxonomy of human grasp types. IEEE Trans. Human Machine Syst. 46, 66–77 (2016).

    Article  Google Scholar 

  20. Bullock, I. M., Zheng, J. Z., De La Rosa, S., Guertler, C. & Dollar, A. M. Grasp frequency and usage in daily household and machine shop tasks. IEEE Trans. Haptics 6, 296–308 (2013).

    Article  Google Scholar 

  21. Vergara, M., Sancho-Bru, J. L., Gracia-Ibáñez, V. & Pérez-González, A. An introductory study of common grasps used by adults during performance of activities of daily living. J. Hand Ther. 27, 225–234 (2014).

    Article  Google Scholar 

  22. Schirmer, C. M. et al. Heuristic map of myotomal innervation in humans using direct intraoperative nerve root stimulation: clinical article. J. Neurosurg. Spine 15, 64–70 (2011).

    Article  Google Scholar 

  23. Bollini, C. A. & Wikinski, J. A. Anatomical review of the brachial plexus. Tech. Reg. Anesth. Pain Manag. 10, 69–78 (2006).

    Article  Google Scholar 

  24. Jabaley, M. E., Wallace, W. H. & Heckler, F. R. Internal topography of major nerves of the forearm and hand: a current view. J. Hand Surg. Am. 5, 1–18 (1980).

    Article  Google Scholar 

  25. Boles, C. A., Kannam, S. & Cardwell, A. B. The forearm: anatomy of muscle compartments and nerves. AJR Am. J. Roentgenol. 174, 151–159 (2000).

    Article  Google Scholar 

  26. Delgado-Martínez, I., Badia, J., Pascual-Font, A., Rodríguez-Baeza, A. & Navarro, X. Fascicular topography of the human median nerve for neuroprosthetic surgery. Front. Neurosci. 10, 286 (2016).

    Article  Google Scholar 

  27. Porter, R. & Lemon, R. Corticospinal Function and Voluntary Movement (Oxford Univ. Press, 1995).

  28. Lemon, R. N. An enduring map of the motor cortex. Exp. Physiol. 93, 798–802 (2008).

    Article  Google Scholar 

  29. Strick, P. L., Dum, R. P. & Rathelot, J.-A. The cortical motor areas and the emergence of motor skills: a neuroanatomical perspective. Annu. Rev. Neurosci. 44, 425–447 (2021).

    Article  Google Scholar 

  30. Witham, C. L., Fisher, K. M., Edgley, S. A. & Baker, S. N. Corticospinal inputs to primate motoneurons innervating the forelimb from two divisions of primary motor cortex and area 3a. J. Neurosci. 36, 2605–2616 (2016).

    Article  Google Scholar 

  31. Rathelot, J.-A. & Strick, P. L. Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl Acad. Sci. USA 103, 8257–8262 (2006).

    Article  Google Scholar 

  32. Roux, F.-E., Niare, M., Charni, S., Giussani, C. & Durand, J.-B. Functional architecture of the motor homunculus detected by electrostimulation. J. Physiol. 598, 5487–5504 (2020).

    Article  Google Scholar 

  33. Sanes, J. N., Donoghue, J. P., Thangaraj, V., Edelman, R. R. & Warach, S. Shared neural substrates controlling hand movements in human motor cortex. Science 268, 1775–1777 (1995).

    Article  Google Scholar 

  34. Beisteiner, R. et al. Finger somatotopy in human motor cortex. Neuroimage 13, 1016–1026 (2001).

    Article  Google Scholar 

  35. Dechent, P. & Frahm, J. Functional somatotopy of finger representations in human primary motor cortex. Hum. Brain Mapp. 18, 272–283 (2003).

    Article  Google Scholar 

  36. Bernshteĭn, N. A. The Co-ordination and Regulation of Movements (Pergamon Press, 1967).

  37. Bizzi, E. & Cheung, V. C. The neural origin of muscle synergies. Front. Comput. Neurosci. 7, 51 (2013).

    Article  Google Scholar 

  38. Santello, M. & Soechting, J. F. Force synergies for multifingered grasping. Exp. Brain Res. 133, 457–467 (2000).

    Article  Google Scholar 

  39. Mason, C. R., Gomez, J. E. & Ebner, T. J. Hand synergies during reach-to-grasp. J. Neurophysiol. 86, 2896–2910 (2001).

    Article  Google Scholar 

  40. Thakur, P., Bastian, A. & Hsiao, S. Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J. Neurosci. 28, 1271–1281 (2008).

    Article  Google Scholar 

  41. Weiss, E. J. & Flanders, M. Muscular and postural synergies of the human hand. J. Neurophysiol. 92, 523–535 (2004).

    Article  Google Scholar 

  42. Bicchi, A., Gabiccini, M. & Santello, M. Modelling natural and artificial hands with synergies. Phil. Trans. R. Soc. Lond. B 366, 3153–3161 (2011).

    Article  Google Scholar 

  43. Tresch, M. C. & Jarc, A. The case for and against muscle synergies. Curr. Opin. Neurobiol. 19, 601–607 (2009).

    Article  Google Scholar 

  44. Tresch, M. C., Saltiel, P. & Bizzi, E. The construction of movement by the spinal cord. Nat. Neurosci. 2, 162–167 (1999).

    Article  Google Scholar 

  45. Tresch, M. C. & Bizzi, E. Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp. Brain Res. 129, 401–416 (1999).

    Article  Google Scholar 

  46. Lemay, M. A. & Grill, W. M. Modularity of motor output evoked by intraspinal microstimulation in cats. J. Neurophysiol. 91, 502–514 (2004).

    Article  Google Scholar 

  47. Overduin, S. A., d’Avella, A., Carmena, J. M. & Bizzi, E. Microstimulation activates a handful of muscle synergies. Neuron 76, 1071–1077 (2012).

    Article  Google Scholar 

  48. Marshall, N. J. et al. Flexible neural control of motor units. Nat. Neurosci. 25, 1492–1504 (2022).

    Article  Google Scholar 

  49. Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. Computations underlying the execution of movement: a biological perspective. Science 253, 287–291 (1991).

    Article  Google Scholar 

  50. Kalaska, J. F. From intention to action: motor cortex and the control of reaching movements. Adv. Exp. Med. Biol. 629, 139–178 (2009).

    Article  Google Scholar 

  51. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–1537 (1982).

    Article  Google Scholar 

  52. Moran, D. W. & Schwartz, A. B. Motor cortical representation of speed and direction during reaching. J. Neurophysiol. 82, 2676–2692 (1999).

    Article  Google Scholar 

  53. Townsend, B. R., Paninski, L. & Lemon, R. N. Linear encoding of muscle activity in primary motor cortex and cerebellum. J. Neurophysiol. 96, 2578–2592 (2006).

    Article  Google Scholar 

  54. Churchland, M. M. & Shenoy, K. V. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. J. Neurophysiol. 97, 4235–4257 (2007).

    Article  Google Scholar 

  55. Graziano, M. The organization of behavioral repertoire in motor cortex. Annu. Rev. Neurosci. 29, 105–134 (2006).

    Article  Google Scholar 

  56. Scott, S. H., Gribble, P. L., Graham, K. M. & Cabel, D. W. Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature 413, 161–165 (2001).

    Article  Google Scholar 

  57. Scott, S. H. Inconvenient truths about neural processing in primary motor cortex. J. Physiol. 586, 1217–1224 (2008).

    Article  Google Scholar 

  58. Nicolelis, M. A. L. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl Acad. Sci. USA 100, 11041–11046 (2003).

    Article  Google Scholar 

  59. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012). This study describes the neural population activity in motor cortex with a strong oscillatory component.

    Article  Google Scholar 

  60. Kalaska, J. F. Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates. F1000Res https://doi.org/10.12688/f1000research.17161.1 (2019).

    Article  Google Scholar 

  61. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  Google Scholar 

  62. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    Article  Google Scholar 

  63. Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).

    Article  Google Scholar 

  64. Golub, M. D. et al. Learning by neural reassociation. Nat. Neurosci. 21, 607–616 (2018).

    Article  Google Scholar 

  65. Oby, E. R. et al. New neural activity patterns emerge with long-term learning. Proc. Natl Acad. Sci. USA 116, 15210–15215 (2019).

    Article  Google Scholar 

  66. Russo, A. A. et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron 97, 953–966.e8 (2018).

    Article  Google Scholar 

  67. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  Google Scholar 

  68. Suresh, A. K. et al. Neural population dynamics in motor cortex are different for reach and grasp. eLife 9, e58848 (2020).

    Article  Google Scholar 

  69. Snoek, G. J., IJzerman, M. J., in’t Groen, F. A., Stoffers, T. S. & Zilvold, G. Use of the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord 38, 244–249 (2000).

    Article  Google Scholar 

  70. Kilgore, K. L. et al. An implanted upper-extremity neuroprosthesis using myoelectric control. J. Hand Surg. 33, 539–550 (2008). This article reports the clinical validation of the second-generation Freehand system, a neuroprosthesis to restore grasping based on implanted muscle stimulation and myoelectric control.

    Article  Google Scholar 

  71. Hart, R. L., Kilgore, K. L. & Peckham, P. H. A comparison between control methods for implanted FES hand-grasp systems. IEEE Trans. Rehabil. Eng. 6, 208–218 (1998).

    Article  Google Scholar 

  72. Liu, J. & Zhou, P. A novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 96–103 (2013).

    Article  Google Scholar 

  73. Lu, Z., Stampas, A., Francisco, G. E. & Zhou, P. Offline and online myoelectric pattern recognition analysis and real-time control of a robotic hand after spinal cord injury. J. Neural Eng. 16, 036018 (2019).

    Article  Google Scholar 

  74. Sherwood, A. M., Dimitrijevic, M. R. & McKay, W. B. Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. J. Neurol. Sci. 110, 90–98 (1992).

    Article  Google Scholar 

  75. Heald, E., Hart, R., Kilgore, K. & Peckham, P. H. Characterization of volitional electromyographic signals in the lower extremity after motor complete spinal cord injury. Neurorehabil. Neural Repair 31, 583–591 (2017).

    Article  Google Scholar 

  76. Ting, J. E. et al. Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array. J. Neurophysiol. 126, 2104–2118 (2021).

    Article  Google Scholar 

  77. Osuagwu, B. A. C., Whicher, E. & Shirley, R. Active proportional electromyogram controlled functional electrical stimulation system. Sci. Rep. 10, 21242 (2020).

    Article  Google Scholar 

  78. McFarland, D. J. The advantages of the surface Laplacian in brain–computer interface research. Int. J. Psychophysiol. 97, 271–276 (2015).

    Article  Google Scholar 

  79. Randazzo, L., Iturrate, I., Chavarriaga, R., Leeb, R. & Del Millan, J. R. Detecting intention to grasp during reaching movements from EEG. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 1115–1118 (2015).

    Google Scholar 

  80. Jochumsen, M., Niazi, I. K., Dremstrup, K. & Kamavuako, E. N. Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation. Med. Biol. Eng. Comput. 54, 1491–1501 (2016).

    Article  Google Scholar 

  81. Schwarz, A., Ofner, P., Pereira, J., Sburlea, A. I. & Müller-Putz, G. R. Decoding natural reach-and-grasp actions from human EEG. J. Neural Eng. 15, 016005 (2018). This article describes the decoding of reach-and-grasp movements from EEG.

    Article  Google Scholar 

  82. Iturrate, I. et al. Human EEG reveals distinct neural correlates of power and precision grasping types. NeuroImage 181, 635–644 (2018).

    Article  Google Scholar 

  83. Müller-Putz, G. R. et al. Applying intuitive EEG-controlled grasp neuroprostheses in individuals with spinal cord injury: preliminary results from the MoreGrasp clinical feasibility study. In 2019 41st Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC) 5949–5955 (IEEE, 2019).

  84. Ofner, P. et al. Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injury. Sci. Rep. 9, 7134 (2019).

    Article  Google Scholar 

  85. Sburlea, A. I., Wilding, M. & Müller-Putz, G. R. Disentangling human grasping type from the object’s intrinsic properties using low-frequency EEG signals. Neuroimage Rep. 1, 100012 (2021).

    Article  Google Scholar 

  86. Gant, K. et al. EEG-controlled functional electrical stimulation for hand opening and closing in chronic complete cervical spinal cord injury. Biomed. Phys. Eng. Express 4, 065005 (2018).

    Article  Google Scholar 

  87. AL-Quraishi, M. S., Elamvazuthi, I., Daud, S. A., Parasuraman, S. & Borboni, A. EEG-based control for upper and lower limb exoskeletons and prostheses: a systematic review. Sensors 18, 3342 (2018).

    Article  Google Scholar 

  88. Ramos-Murguialday, A. et al. Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013).

    Article  Google Scholar 

  89. Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S. & Steglind, S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975).

    Article  Google Scholar 

  90. Ethier, C., Gallego, J. & Miller, L. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Curr. Opin. Neurobiol. 33, 95–102 (2015).

    Article  Google Scholar 

  91. Mrachacz-Kersting, N., Kristensen, S. R., Niazi, I. K. & Farina, D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 590, 1669–1682 (2012).

    Article  Google Scholar 

  92. McFarland, D. J. & Wolpaw, J. R. EEG-based brain–computer interfaces. Curr. Opin. Biomed. Eng. 4, 194–200 (2017).

    Article  Google Scholar 

  93. Buzsáki, G. & Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  Google Scholar 

  94. Miller, K. J., Zanos, S., Fetz, E. E., den Nijs, M. & Ojemann, J. G. Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J. Neurosci. 29, 3132–3137 (2009).

    Article  Google Scholar 

  95. Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C. & Ball, T. Decoding natural grasp types from human ECoG. Neuroimage 59, 248–260 (2012).

    Article  Google Scholar 

  96. Chestek, C. A. et al. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas. J. Neural Eng. 10, 026002 (2013). This article describes the decoding of multiple hand postures from ECoG.

    Article  Google Scholar 

  97. Pistohl, T. et al. Grasp detection from human ECoG during natural reach-to-grasp movements. PLoS ONE 8, e54658 (2013).

    Article  Google Scholar 

  98. Hotson, G. et al. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J. Neural Eng. 13, 026017–026017 (2016).

    Article  Google Scholar 

  99. Yanagisawa, T. et al. Real-time control of a prosthetic hand using human electrocorticography signals. J. Neurosurg. 114, 1715–1722 (2011).

    Article  Google Scholar 

  100. Flint, R. D., Rosenow, J. M., Tate, M. C. & Slutzky, M. W. Continuous decoding of human grasp kinematics using epidural and subdural signals. J. Neural Eng. 14, 016005 (2017).

    Article  Google Scholar 

  101. Flint, R. D. et al. The representation of finger movement and force in human motor and premotor cortices. eNeuro https://doi.org/10.1523/ENEURO.0063-20.2020 (2020).

    Article  Google Scholar 

  102. Xie, Z., Schwartz, O. & Prasad, A. Decoding of finger trajectory from ECoG using deep learning. J. Neural Eng. 15, 036009 (2018).

    Article  Google Scholar 

  103. Schalk, G. & Leuthardt, E. C. Brain–computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4, 140–154 (2011).

    Article  Google Scholar 

  104. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    Article  Google Scholar 

  105. Jorge, A., Royston, D. A., Tyler-Kabara, E. C., Boninger, M. L. & Collinger, J. L. Classification of individual finger movements using intracortical recordings in human motor cortex. Neurosurgery 87, 630–638 (2020).

    Article  Google Scholar 

  106. Carpaneto, J. et al. Continuous decoding of grasping tasks for a prospective implantable cortical neuroprosthesis. J. Neuroeng. Rehabil. 9, 84 (2012).

    Article  Google Scholar 

  107. Colachis, S. C. I. et al. Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia. Front. Neurosci. 12, 208 (2018).

    Article  Google Scholar 

  108. Schieber, M. H. & Hibbard, L. S. How somatotopic is the motor cortex hand area? Science 261, 489–492 (1993).

    Article  Google Scholar 

  109. Hamed, S. B., Schieber, M. H. & Pouget, A. Decoding M1 neurons during multiple finger movements. J. Neurophysiol. 98, 327–333 (2007).

    Article  Google Scholar 

  110. Aggarwal, V. et al. Asynchronous decoding of dexterous finger movements using M1 neurons. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 3–14 (2008).

    Article  Google Scholar 

  111. Skomrock, N. D. et al. A characterization of brain–computer interface performance trade-offs using support vector machines and deep neural networks to decode movement intent. Front. Neurosci. 12, 763 (2018).

    Article  Google Scholar 

  112. Carmena, J. M. et al. Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003).

    Article  Google Scholar 

  113. Wodlinger, B. et al. Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12, 016011 (2014).

    Article  Google Scholar 

  114. Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. E. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 7398 (2012).

    Article  Google Scholar 

  115. Irwin, Z. T. et al. Neural control of finger movement via intracortical brain–machine interface. J. Neural Eng. 14, 066004 (2017).

    Article  MathSciNet  Google Scholar 

  116. Vaskov, A. K. et al. Cortical decoding of individual finger group motions using ReFIT Kalman Filter. Front. Neurosci. 12, 751 (2018).

    Article  Google Scholar 

  117. Nason, S. R. et al. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain–machine interface. Neuron 109, 3164–3177.e8 (2021). This article presents the decoding kinematics of multiple finger groups from intracortical signals.

    Article  Google Scholar 

  118. Wu, W., Shaikhouni, A., Donoghue, J. R. & Black, M. J. Closed-loop neural control of cursor motion using a Kalman filter. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2, 4126–4129 (2004).

    Article  Google Scholar 

  119. Kim, S.-P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P. & Black, M. J. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J. Neural Eng. 5, 455–476 (2008).

    Article  Google Scholar 

  120. Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

    Article  Google Scholar 

  121. Orsborn, A. L. et al. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82, 1380–1393 (2014).

    Article  Google Scholar 

  122. Sanchez, J. C., Principe, J. C., Carmena, J. M., Lebedev, M. A. & Nicolelis, M. A. L. Simultaneus prediction of four kinematic variables for a brain–machine interface using a single recurrent neural network. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2, 5321–5324 (2004).

    Article  Google Scholar 

  123. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    Article  Google Scholar 

  124. Allahgholizadeh Haghi, B. et al. Deep multi-state dynamic recurrent neural networks operating on wavelet based neural features for robust brain machine interfaces. Proc. NeurIPS 2019 https://proceedings.neurips.cc/paper_files/paper/2019/file/1e0feeaff84a19bf3936e693311fa66d-Paper.pdf (2019).

  125. Glaser, J. I. et al. Machine learning for neural decoding. eNeuro https://doi.org/10.1523/ENEURO.0506-19.2020 (2020).

    Article  Google Scholar 

  126. Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018).

    Article  Google Scholar 

  127. Willsey, M. S. et al. Real-time brain–machine interface achieves high-velocity prosthetic finger movements using a biologically-inspired neural network decoder. Nat. Commun. 13, 6899 (2022).

    Article  Google Scholar 

  128. Mehrotra, P., Dasgupta, S., Robertson, S. & Nuyujukian, P. An open-source realtime computational platform (short WIP paper). ACM SIGPLAN Not. 53, 109–112 (2018).

    Article  Google Scholar 

  129. Santurkar, S., Tsipras, D., Ilyas, A. & Madry, A. How does batch normalization help optimization? In Proc. NeurIPS 2018 (2018).

  130. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    MathSciNet  MATH  Google Scholar 

  131. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift (MLR Press, 2015).

  132. Li, Y., Wei, C. & Ma, T. Towards explaining the regularization effect of initial large learning rate in training neural networks. Proc. NeurIPS 2019 https://proceedings.neurips.cc/paper/2019/file/bce9abf229ffd7e570818476ee5d7dde-Paper.pdf (2020).

  133. Even-Chen, N. et al. Power-saving design opportunities for wireless intracortical brain–computer interfaces. Nat. Biomed. Eng. 4, 984–996 (2020).

    Article  Google Scholar 

  134. Bishop, W. et al. Self-recalibrating classifiers for intracortical brain–computer interfaces. J. Neural Eng. 11, 026001 (2014).

    Article  Google Scholar 

  135. Jarosiewicz, B. et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain–computer interface. Sci. Transl. Med. 7, 313ra179 (2015).

    Article  Google Scholar 

  136. Bickel, C. S., Gregory, C. M. & Dean, J. C. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur. J. Appl. Physiol. 111, 2399–2407 (2011).

    Article  Google Scholar 

  137. Malešević, N. M. et al. A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J. Neuroeng. Rehabil. 9, 66 (2012).

    Article  Google Scholar 

  138. Koutsou, A. D., Moreno, J. C., Del Ama, A. J., Rocon, E. & Pons, J. L. Advances in selective activation of muscles for non-invasive motor neuroprostheses. J. Neuroeng. Rehabil. 13, 56 (2016). This article reports the use of multi-pad electrodes improve selectivity and resistance to fatigue of transcutaneous FES.

    Article  Google Scholar 

  139. Marquez-Chin, C. & Popovic, M. R. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed. Eng. Online 19, 34 (2020).

    Article  Google Scholar 

  140. Popović-Maneski, L. et al. Multi-pad electrode for effective grasping: design. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 648–654 (2013).

    Article  Google Scholar 

  141. Vromans, M. & Faghri, P. D. Functional electrical stimulation-induced muscular fatigue: effect of fiber composition and stimulation frequency on rate of fatigue development. J. Electromyogr. Kinesiol. 38, 67–72 (2018).

    Article  Google Scholar 

  142. Crema, A. et al. A wearable multi-site system for NMES-based hand function restoration. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 428–440 (2018).

    Article  Google Scholar 

  143. Kilgore, K. L. et al. Evolution of neuroprosthetic approaches to restoration of upper extremity function in spinal cord injury. Top. Spinal Cord. Inj. Rehabil. 24, 252–264 (2018).

    Article  Google Scholar 

  144. Merrill, D. R., Davis, R., Turk, R. & Burridge, J. H. A personalized sensor-controlled microstimulator system for arm rehabilitation poststroke. Part 1: System architecture. Neuromodulation 14, 72–79 (2011).

    Article  Google Scholar 

  145. Spensley, J. STIMuGRIP® a new hand control implant. In 2007 29th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society 513 (IEEE, 2007).

  146. Singh, K., Richmond, F. J. R. & Loeb, G. E. Recruitment properties of intramuscular and nerve-trunk stimulating electrodes. IEEE Trans. Rehabil. Eng. 8, 276–285 (2000).

    Google Scholar 

  147. Becerra-Fajardo, L. et al. Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics. J. NeuroEng. Rehabil. 19, 57 (2022).

    Article  Google Scholar 

  148. Makowski, N. S. et al. Design and testing of stimulation and myoelectric recording modules in an implanted distributed neuroprosthetic system. IEEE Trans. Biomed. Circuits Syst. 15, 281–293 (2021).

    Article  Google Scholar 

  149. Yoshida, K., Bertram, M. J., Hunter Cox, T. G. & Riso, R. R. Peripheral nerve recording electrodes and techniques. In Neuroprosthetics Vol. 8 (eds Horch, K. W. & Dhillon, G. S.) 377–466 (World Scientific, 2016).

  150. Ledbetter, N. M. et al. Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses. J. Neurophysiol. 109, 580–590 (2013).

    Article  Google Scholar 

  151. Brill, N. A. et al. Evaluation of high-density, multi-contact nerve cuffs for activation of grasp muscles in monkeys. J. Neural Eng. 15, 036003 (2018).

    Article  Google Scholar 

  152. Badi, M. et al. Intrafascicular peripheral nerve stimulation produces fine functional hand movements in primates. Sci. Transl. Med. 13, eabg6463 (2021). This article reports intrafascicular stimulation of peripheral nerves, which evokes multiple fine hand movements in NHPs.

    Article  Google Scholar 

  153. Tigra, W. et al. Selective neural electrical stimulation restores hand and forearm movements in individuals with complete tetraplegia. J. Neuroeng. Rehabil. 17, 66 (2020).

    Article  Google Scholar 

  154. Azevedo-Coste, C. et al. Activating effective functional hand movements in individuals with complete tetraplegia through neural stimulation. Sci. Rep. 12, 16189 (2022).

    Article  Google Scholar 

  155. Dali, M. et al. Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation. J. Neural Eng. 15, 046018 (2018).

    Article  Google Scholar 

  156. Veltink, P. H., van Alsté, J. A. & Boom, H. B. Multielectrode intrafascicular and extraneural stimulation. Med. Biol. Eng. Comput. 27, 19–24 (1989).

    Article  Google Scholar 

  157. Gaunt, R. A., Prochazka, A., Mushahwar, V. K., Guevremont, L. & Ellaway, P. H. Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses. J. Neurophysiol. 96, 2995–3005 (2006).

    Article  Google Scholar 

  158. Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33, 19326–19340 (2013).

    Article  Google Scholar 

  159. Hofstoetter, U. S., Freundl, B., Binder, H. & Minassian, K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: elicitation of posterior root-muscle reflexes. PLoS One 13, e0192013 (2018).

    Article  Google Scholar 

  160. de Freitas, R. M., Capogrosso, M., Nomura, T. & Milosevic, M. Preferential activation of proprioceptive and cutaneous sensory fibers compared to motor fibers during cervical transcutaneous spinal cord stimulation: a computational study. J. Neural Eng. https://doi.org/10.1088/1741-2552/ac6a7c (2022).

    Article  Google Scholar 

  161. Zimmermann, J. B., Seki, K. & Jackson, A. Reanimating the arm and hand with intraspinal microstimulation. J. Neural Eng. 8, 054001 (2011).

    Article  Google Scholar 

  162. Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).

    Article  Google Scholar 

  163. Barra, B. et al. Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nat. Neurosci. 25, 924–934 (2022). This article shows that epidural electrical stimulation of the cervical spinal cord restores reaching and grasping in NHPs.

    Article  Google Scholar 

  164. Lu, D. C. et al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients. Neurorehabil. Neural Repair. 30, 951–962 (2016).

    Article  Google Scholar 

  165. Powell, M. P. et al. Epidural stimulation of the of the cervical spinal cord for post-stroke upper-limb paresis. Nat. Med. 29, 689–699 (2023).

    Article  Google Scholar 

  166. Gad, P. et al. Non-Invasive activation of cervical spinal networks after severe paralysis. J. Neurotrauma 35, 2145–2158 (2018).

    Article  Google Scholar 

  167. Zhang, F. et al. Cervical spinal cord transcutaneous stimulation improves upper extremity and hand function in people with complete tetraplegia: a case study. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 3167–3174 (2020).

    Article  Google Scholar 

  168. Inanici, F., Brighton, L. N., Samejima, S., Hofstetter, C. P. & Moritz, C. T. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 310–319 (2021).

    Article  Google Scholar 

  169. Chandrasekaran, S. et al. Targeted transcutaneous cervical spinal cord stimulation promotes upper limb recovery in spinal cord and peripheral nerve injury [Abstract]. Brain Stimul. 16, P373 (2023).

    Article  Google Scholar 

  170. Huang, R. et al. Minimal handgrip force is needed for transcutaneous electrical stimulation to improve hand functions of patients with severe spinal cord injury. Sci. Rep. 12, 7733 (2022).

    Article  Google Scholar 

  171. de Freitas, R. M. et al. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J. Appl. Physiol. 131, 746–759 (2021).

    Article  Google Scholar 

  172. Zheng, Y. & Hu, X. Elicited upper limb motions through transcutaneous cervical spinal cord stimulation. J. Neural Eng. 17, 036001 (2020).

    Article  Google Scholar 

  173. Gerasimenko, Y. et al. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 58, 225–231 (2015).

    Article  Google Scholar 

  174. Pollard, E. M. et al. The effect of spinal cord stimulation on pain medication reduction in intractable spine and limb pain: a systematic review of randomized controlled trials and meta-analysis. J. Pain. Res. 12, 1311–1324 (2019).

    Article  Google Scholar 

  175. Manchikanti, L. et al. Spinal cord stimulation trends of utilization and expenditures in fee-for-service (FFS) Medicare population from 2009 to 2018. Pain Physician 24, 293–308 (2021).

    Article  Google Scholar 

  176. Thakor, N. V. Translating the brain–machine interface. Sci. Transl. Med. 5, 210ps17 (2013).

    Article  Google Scholar 

  177. Borton, D., Micera, S., Millan, J. D. R. & Courtine, G. Personalized neuroprosthetics. Sci. Transl. Med. 5, 210rv2 (2013).

    Article  Google Scholar 

  178. Shokur, S., Mazzoni, A., Schiavone, G., Weber, D. J. & Micera, S. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. Med 2, 912–937 (2021).

    Article  Google Scholar 

  179. Moritz, C. T., Perlmutter, S. I. & Fetz, E. E. Direct control of paralysed muscles by cortical neurons. Nature 456, 639–642 (2008).

    Article  Google Scholar 

  180. Pohlmeyer, E. A. et al. Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles. PLOS One 4, e5924 (2009).

    Article  Google Scholar 

  181. Ethier, C. & Miller, L. E. Brain-controlled muscle stimulation for the restoration of motor function. Neurobiol. Dis. 83, 180–190 (2015).

    Article  Google Scholar 

  182. Losanno, E. et al. Validation of manifold-based direct control for a brain-to-body neural bypass. Preprint at bioRxiv https://doi.org/10.1101/2022.07.25.501351 (2022).

    Article  Google Scholar 

  183. Friedenberg, D. A. et al. Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human. Sci. Rep. 7, 8386 (2017).

    Article  Google Scholar 

  184. Kao, J. C., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V. A high-performance neural prosthesis incorporating discrete state selection with hidden Markov models. IEEE Trans. Biomed. Eng. 64, 935–945 (2017).

    Article  Google Scholar 

  185. Vu, P. et al. Long-term upper-extremity prosthetic control using regenerative peripheral nerve interfaces. Preprint at Res. Square https://doi.org/10.21203/rs.3.rs-1578680/v1 (2022).

    Article  Google Scholar 

  186. Schaffelhofer, S. & Scherberger, H. Object vision to hand action in macaque parietal, premotor, and motor cortices. eLife 5, e15278 (2016).

    Article  Google Scholar 

  187. Capogrosso, M. et al. Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat. Protoc. 13, 2031–2061 (2018).

    Article  Google Scholar 

  188. Lynch, C. L. & Popovic M. R. Closed-loop control for FES: past work and future directions. Proc. 10th Annu. Conf. Int. FES Soc. 2–4 (2005).

  189. Freschi, C. et al. Force control during grasp using FES techniques: preliminary results. Proc. 5th Annu. Conf. FES Soc. 17–24 (2000).

  190. Ciancibello, J. et al. Closed-loop neuromuscular electrical stimulation using feedforward-feedback control and textile electrodes to regulate grasp force in quadriplegia. Bioelectron. Med. 5, 19 (2019).

    Article  Google Scholar 

  191. Wenger, N. et al. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci. Transl. Med. 6, 255ra133 (2014).

    Article  Google Scholar 

  192. Lebedev, M. A. et al. Future developments in brain-machine interface research. Clinics 66, 25–32 (2011).

    Article  Google Scholar 

  193. Chen, H., Dejace, L. & Lacour, S. P. Electronic skins for healthcare monitoring and smart prostheses. Annu. Rev. Control Robotics Autonomous Syst. 4, 629–650 (2021).

    Article  Google Scholar 

  194. Haugland, M. & Sinkjaer, T. Interfacing the body’s own sensing receptors into neural prosthesis devices. Technol. Health Care 7, 393–399 (1999).

    Article  Google Scholar 

  195. Haugland, M., Lickel, A., Haase, J. & Sinkjaer, T. Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man. IEEE Trans. Rehabil. Eng. 7, 215–227 (1999).

    Article  Google Scholar 

  196. Ganzer, P. D. et al. Restoring the sense of touch using a sensorimotor demultiplexing neural interface. Cell 181, 763–773.e12 (2020). This article reports the integration of sensory feedback in a brain-controlled neuroprosthesis for grasping in a person with tetraplegia.

    Article  Google Scholar 

  197. Bensmaia, S. J., Tyler, D. J. & Micera, S. Restoration of sensory information via bionic hands. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-00630-8 (2020).

    Article  Google Scholar 

  198. Flesher, S. N. et al. A brain–computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831–836 (2021).

    Article  Google Scholar 

  199. Yadav, A. P., Li, D. & Nicolelis, M. A. L. A brain to spine interface for transferring artificial sensory information. Sci. Rep. 10, 900 (2020).

    Article  Google Scholar 

  200. Loutit, A. J. & Potas, J. R. Restoring somatosensation: advantages and current limitations of targeting the brainstem dorsal column nuclei complex. Front. Neurosci. 14, 156 (2020).

    Article  Google Scholar 

  201. Heming, E., Sanden, A. & Kiss, Z. H. T. Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation. J. Neural Eng. 7, 064001 (2010).

    Article  Google Scholar 

  202. Flesher, S. N. et al. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8, 361ra141 (2016).

    Article  Google Scholar 

  203. Rowald, A. et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 28, 260–271 (2022).

    Article  Google Scholar 

  204. Weiss, J. M., Gaunt, R. A., Franklin, R., Boninger, M. L. & Collinger, J. L. Demonstration of a portable intracortical brain–computer interface. Brain Comput. Interf. 6, 106–117 (2019).

    Article  Google Scholar 

  205. ABILITY. Wyss Center https://wysscenter.ch/advances/ability (2022).

  206. Benabid, A. L. et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 18, 1112–1122 (2019).

    Article  Google Scholar 

  207. Larzabal, C. et al. Long-term stability of the chronic epidural wireless recorder WIMAGINE in tetraplegic patients. J. Neural Eng. 18, 056026 (2021).

    Article  Google Scholar 

  208. Hansson, S. O. The ethics of explantation. BMC Med. Ethics 22, 121 (2021).

    Article  Google Scholar 

  209. Paralyzed again. MIT Technology Review https://www.technologyreview.com/2015/04/09/168424/paralyzed-again/ (2022).

  210. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  Google Scholar 

  211. Sierra-Mercado, D. et al. Device removal following brain implant research. Neuron 103, 759–761 (2019).

    Article  Google Scholar 

  212. Abandoned: the human cost of neurotechnology failure. Nature.com https://www.nature.com/immersive/d41586-022-03810-5/index.html (2023).

  213. North, R. B., Konrad, P. E., Judy, J. W., Ries, A. J. & Stevenson, R. Examining the need to standardize implanted stimulator connectors: NANS survey results. Neuromodulation 24, 1299–1306 (2021).

    Article  Google Scholar 

  214. Keith, M. W. et al. Implantable functional neuromuscular stimulation in the tetraplegic hand. J. Hand Surg. 14, 524–530 (1989).

    Article  Google Scholar 

  215. Musk, E. & Neuralink An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article  Google Scholar 

  216. Nordhausen, C. T., Maynard, E. M. & Normann, R. A. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726, 129–140 (1996).

    Article  Google Scholar 

  217. Normann, R. A. & Fernandez, E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J. Neural Eng. 13, 061003 (2016).

    Article  Google Scholar 

  218. Bullard, A. J., Hutchison, B. C., Lee, J., Chestek, C. A. & Patil, P. G. Estimating risk for future intracranial, fully implanted, modular neuroprosthetic systems: a systematic review of hardware complications in clinical deep brain stimulation and experimental human intracortical arrays. Neuromodul. Technol. Neural Interf. 23, 411–426 (2020).

    Article  Google Scholar 

  219. Welle, C. G. et al. Longitudinal neural and vascular structural dynamics produced by chronic microelectrode implantation. Biomaterials 238, 119831 (2020).

    Article  Google Scholar 

  220. Szymanski, L. J. et al. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J. Neural Eng. 18, 0460b9 (2021).

    Article  Google Scholar 

  221. Sponheim, C. et al. Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays. J. Neural Eng. 18, 066044 (2021).

    Article  Google Scholar 

  222. Nason, S. R. et al. A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain–machine interfaces. Nat. Biomed. Eng. 4, 973–983 (2020).

    Article  Google Scholar 

  223. McNaughton, B. L., O’Keefe, J. & Barnes, C. A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397 (1983).

    Article  Google Scholar 

  224. Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article  Google Scholar 

  225. Guitchounts, G., Markowitz, J. E., Liberti, W. A. & Gardner, T. J. A carbon-fiber electrode array for long-term neural recording. J. Neural Eng. 10, 046016 (2013).

    Article  Google Scholar 

  226. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article  Google Scholar 

  227. Wang, X. et al. A parylene neural probe array for multi-region deep brain recordings. J. Microelectromech. Syst. 29, 499–513 (2020).

    Article  Google Scholar 

  228. McCallum, G. et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Sci. Rep. 7, 11723 (2017).

    Article  Google Scholar 

  229. Hanson, T. L., Diaz-Botia, C. A., Kharazia, V., Maharbiz, M. M. & Sabes, P. N. The ‘sewing machine’ for minimally invasive neural recording. Preprint at bioRxiv https://doi.org/10.1101/578542 (2019).

    Article  Google Scholar 

  230. Chung, J. E. et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101, 21–31.e5 (2019).

    Article  Google Scholar 

  231. Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article  Google Scholar 

  232. Obaid, A. et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci. Adv. 6, eaay2789 (2020).

    Article  Google Scholar 

  233. Ali, M. A. et al. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes,”. Adv. Mater. 33, e2006647 (2021).

    Article  Google Scholar 

  234. Frewin, C. L. et al. (Invited) silicon carbide as a robust neural interface. ECS Trans. 75, 39 (2016).

    Article  Google Scholar 

  235. Patel, P. R. et al. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 12, 046009 (2015).

    Article  Google Scholar 

  236. Welle, E. J. et al. Sharpened and mechanically durable carbon fiber electrode arrays for neural recording. IEEE Trans. Neural Syst. RehabilitatiEng. 29, 993–1003 (2021).

    Article  Google Scholar 

  237. Jun, J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  Google Scholar 

  238. Golabchi, A., Woeppel, K. M., Li, X., Lagenaur, C. F. & Cui, X. T. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens. Bioelectron. 155, 112096 (2020).

    Article  Google Scholar 

  239. Shah, K. et al. High-density, bio-compatible, and hermetic electrical feedthroughs using extruded metal vias. Proc. Conf. 2012 Solid-State, Actuators, and Microsystems Workshop (2012).

  240. Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    Article  Google Scholar 

  241. Lee, J. et al. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4, 604–614 (2021).

    Article  Google Scholar 

  242. Lee, S. et al. A 250 μm × 57 μm microscale opto-electronically transduced electrodes (MOTEs) for neural recording. IEEE Trans. Biomed. Circuits Syst. 12, 1256–1266 (2018).

    Article  Google Scholar 

  243. Lim, J. et al. 26.9 A 0.19 × 0.17mm2 wireless neural recording IC for motor prediction with near-infrared-based power and data telemetry. In 2020 IEEE Int. Solid-State Circuits Conf. (ISSCC) 416–418 (IEEE, 2020).

  244. Zeng, F.-G. Celebrating the one millionth cochlear implant. JASA Express Lett. 2, 077201 (2022).

    Article  Google Scholar 

  245. Vedam-Mai, V. et al. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: advances in optogenetics, ethical issues affecting DBS research, neuromodulatory approaches for depression, adaptive neurostimulation, and emerging DBS technologies. Front. Hum. Neurosci. 15, 644593 (2022).

    Article  Google Scholar 

  246. Schwemmer, M. A. et al. Meeting brain–computer interface user performance expectations using a deep neural network decoding framework. Nat. Med. 24, 1669–1676 (2018).

    Article  Google Scholar 

  247. Laferriere, S., Bonizzato, M., Cote, S. L., Dancause, N. & Lajoie, G. Hierarchical Bayesian optimization of spatiotemporal neurostimulations for targeted motor outputs. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1452–1460 (2020).

    Article  Google Scholar 

  248. Losanno, E. et al. Bayesian optimization of peripheral intraneural stimulation protocols to evoke distal limb movements. J. Neural Eng. 18, 066046 (2021).

    Article  Google Scholar 

  249. Müller, P., Del Ama, A. J., Moreno, J. C. & Schauer, T. Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment. J. Neuroeng. Rehabil. 17, 36 (2020).

    Article  Google Scholar 

  250. Heiwolt, K. et al. Automatic detection of myocontrol failures based upon situational context information. In 2019 IEEE 16th Int. Conf. Rehabilitation Robotics (ICORR) 398–404 (IEEE, 2019).

  251. Chavarriaga, R., Carey, C., Luis Contreras-Vidal, J., McKinney, Z. & Bianchi, L. Standardization of neurotechnology for brain-machine interfacing: state of the art and recommendations. IEEE Open. J. Eng. Med. Biol. 2, 71–73 (2021).

    Article  Google Scholar 

  252. Paek, A. Y. et al. A roadmap towards standards for neurally controlled end effectors. IEEE Open. J. Eng. Med. Biol. 2, 84–90 (2021).

    Article  Google Scholar 

  253. Loeb, G. E. & Richmond, F. J. Turning neural prosthetics into viable products. Front. Robot. AI 8, 754114 (2021).

    Article  Google Scholar 

  254. Petrini, F. M. et al. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85, 137–154 (2019).

    Article  Google Scholar 

  255. Cracchiolo, M. et al. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals. J. Neural Eng. 18, 055001 (2021).

    Article  Google Scholar 

  256. Zyl, C., Badenhorst, M., Hanekom, S. & Heine, M. Unravelling ‘low-resource settings’: a systematic scoping review with qualitative content analysis. Br. Med. J. Glob. Health 6, e5190 (2021).

    Google Scholar 

  257. Zhang, C. et al. An international survey of deep brain stimulation utilization in Asia and Oceania: the DBS Think Tank East. Front. Hum. Neurosci. 14, 2020 (2022).

    Google Scholar 

  258. Simon, C., Bolton, D. A. E., Kennedy, N. C., Soekadar, S. R. & Ruddy, K. L. Challenges and opportunities for the future of brain–computer interface in neurorehabilitation. Front. Neurosci. 15, 2021 (2022).

    Google Scholar 

  259. Sauter-Starace, F. et al. Long-term sheep implantation of WIMAGINE®, a wireless 64-channel electrocorticogram recorder. Front. Neurosci. 13, 2019 (2022).

    Google Scholar 

  260. Oxley, T. J. et al. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J. NeuroInterv. Surg. 13, 102–108 (2021).

    Article  Google Scholar 

  261. Post, M. W. et al. Employment among people with spinal cord injury in 22 countries across the world: results from the International Spinal Cord Injury Community Survey. Arch. Phys. Med. Rehabil. 101, 2157–2166 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This Review was partly funded by the Swiss National Science Foundation through the National Centre of Competence in Research (NCCR) Robotics, the CHRONOS project, the Wyss Center for Bio and Neuroengineering and the Bertarelli Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and M.M. wrote the sections on natural motor control and hand decoding. E.L., S.S. and S.M. wrote the sections on motor function restoration and brain-to-body interfaces. E.L., S.S. and S.M. also harmonized all the different sections, writing introductions and conclusions. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Silvestro Micera.

Ethics declarations

Competing interests

S.M. holds shares in the companies IUVO, GTX and Sensars Neurotechnologies, which are all developing neurotechnologies to restore the sensorimotor functions of people with disabilities. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Hyunglae Lee and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losanno, E., Mender, M., Chestek, C. et al. Neurotechnologies to restore hand functions. Nat Rev Bioeng 1, 390–407 (2023). https://doi.org/10.1038/s44222-023-00054-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00054-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing