Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimizing the manufacturing and antitumour response of CAR T therapy

Abstract

Adoptive transfer of naturally occurring or genetically engineered T cells is an effective treatment for certain haematological malignancies, such as non-Hodgkin lymphoma and acute lymphoblastic leukaemia, but still faces challenges in treating solid tumours. The phenotype of the final T cell product substantially affects in vivo antitumour efficacy, and various strategies have been developed to manipulate T cell phenotype during chimeric antigen receptor (CAR)-expressing T cell manufacturing to improve in vivo responses after T cell infusion. In this Review, we provide an overview of specific T cell attributes that influence the performance of adoptive T cell transfers, including memory T cell population, CD4:CD8 composition and CD4 subsets. Moreover, we discuss how different T cell subsets interact with and are affected by the immunosuppressive tumour microenvironment, including the role of preconditioning in CAR T therapies. We then review strategies to control T cell phenotype and antitumour performance after infusion through manipulation of the three signals for T cell activation and downstream signalling pathways during manufacturing. We finish by discussing developments in rapid manufacturing of CAR T cell products.

Key points

  • Phenotypes of chimeric antigen receptor T (CAR T) cell products, including CD4:CD8 ratio, memory composition and specific CD4+ T cell subsets, affect clinical efficacy after adoptive transfer.

  • The tumour microenvironment hinders the efficacy of CAR T cells, but preconditioning can benefit CAR T therapy by remodelling the tumour microenvironment.

  • CAR T cell products can be finely tuned and improved through manipulation of the three signals for T cell activation and their downstream signalling pathways.

  • CAR T cell products can be modified to directly communicate with the host immune system, thereby prolonging their in vivo persistence and preventing exhaustion.

  • Rapid manufacturing and in vivo expansion can reduce the time and resources needed for CAR T cell manufacturing, thereby making CAR T therapy more accessible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T cell memory phenotypes affect antitumour capability.
Fig. 2: CD4+ T cell subset composition and the tumour microenvironment affect the outcome of ACT treatment.
Fig. 3: Controlling CAR T cell phenotype by modulating the three signals for T cell activation.
Fig. 4: Additional strategies to modulate the CAR T phenotype.

Similar content being viewed by others

References

  1. Donohue, J. H. et al. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J. Immunol. 132, 2123–2128 (1984).

    Article  Google Scholar 

  2. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    Article  Google Scholar 

  3. Rosenberg, S. A. et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: a preliminary report. N. Engl. J. Med. 319, 1676–1680 (1988).

    Article  Google Scholar 

  4. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  Google Scholar 

  5. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  Google Scholar 

  6. Atrash, S., Bano, K., Harrison, B. & Abdallah, A. O. CAR-T treatment for hematological malignancies. J. Investig. Med. 68, 956–964 (2020).

    Article  Google Scholar 

  7. Gill, S., Maus, M. V. & Porter, D. L. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev. 30, 157–167 (2016).

    Article  Google Scholar 

  8. National Cancer Institute. FDA approves BCMA-targeted CAR T-cell therapy for multiple myeloma. NCI https://www.cancer.gov/news-events/cancer-currents-blog/2021/fda-ide-cel-car-t-multiple-myeloma (2021).

  9. Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370 (2016).

    Article  Google Scholar 

  10. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  Google Scholar 

  11. Gowrishankar, K., Birtwistle, L. & Micklethwaite, K. Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm. Genome 29, 739–756 (2018).

    Article  Google Scholar 

  12. Schaft, N. The landscape of CAR-T cell clinical trials against solid tumors — a comprehensive overview. Cancers 12, 2567 (2020).

    Article  Google Scholar 

  13. Hou, B., Tang, Y., Li, W., Zeng, Q. & Chang, D. Efficiency of CAR-T therapy for treatment of solid tumor in clinical trials: a meta-analysis. Dis. Markers 2019, 3425291 (2019).

    Article  Google Scholar 

  14. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    Article  Google Scholar 

  15. Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15, 366–381 (2018).

    Article  Google Scholar 

  16. Singh, N., Perazzelli, J., Grupp, S. A. & Barrett, D. M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl Med. 8, 320ra3 (2016).

    Article  Google Scholar 

  17. Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).

    Article  Google Scholar 

  18. Xie, Y. et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207, 651–667 (2010).

    Article  Google Scholar 

  19. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2019).

    Article  Google Scholar 

  20. Kim, C. & Williams, M. A. Nature and nurture: T-cell receptor-dependent and T-cell receptor-independent differentiation cues in the selection of the memory T-cell pool. Immunology 131, 310–317 (2010).

    Article  Google Scholar 

  21. Omilusik, K. D. & Goldrath, A. W. The origins of memory T cells. Nature 552, 337–339 (2017).

    Article  Google Scholar 

  22. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  Google Scholar 

  23. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  Google Scholar 

  24. Hinrichs, C. S. et al. Adoptively transferred effector cells derived from naïve rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl Acad. Sci. USA 106, 17469–17474 (2009).

    Article  Google Scholar 

  25. Klebanoff, C. A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA 102, 9571–9576 (2005).

    Article  Google Scholar 

  26. Hinrichs, C. S. et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117, 808–814 (2011).

    Article  Google Scholar 

  27. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  Google Scholar 

  28. Leblay, N. et al. Cite-Seq profiling of T cells in multiple myeloma patients undergoing BCMA targeting CAR-T or BiTEs immunotherapy. Blood 136, 11–12 (2020).

    Article  Google Scholar 

  29. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2015).

    Article  Google Scholar 

  30. Das, R. K., Vernau, L., Grupp, S. A. & Barrett, D. M. Naïve T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov. 9, 492–499 (2019).

    Article  Google Scholar 

  31. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014). This article demonstrates that CAR T cells’ in vivo expansion and antitumour efficacy is positively correlated with the number of TSCM cells.

    Article  Google Scholar 

  32. Klaver, Y., van Steenbergen, S. C. L., Sleijfer, S., Debets, R. & Lamers, C. H. J. T cell maturation stage prior to and during GMP processing informs on CAR T cell expansion in patients. Front. Immunol. 7, 648 (2016).

    Article  Google Scholar 

  33. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  Google Scholar 

  34. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    Article  Google Scholar 

  35. Klebanoff, C. A. et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17, 5343–5352 (2011).

    Article  Google Scholar 

  36. Oliveira, G. et al. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Sci. Transl Med. 7, 317ra198 (2015).

    Article  Google Scholar 

  37. Restifo, N. P. & Gattinoni, L. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 25, 556–563 (2013).

    Article  Google Scholar 

  38. Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    Article  Google Scholar 

  39. Schluns, K. S. & Lefrançois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    Article  Google Scholar 

  40. Alizadeh, D. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019).

    Article  MathSciNet  Google Scholar 

  41. Tian, Y. & Zajac, A. J. IL-21 and T cell differentiation: consider the context. Trends Immunol. 37, 557–568 (2016).

    Article  Google Scholar 

  42. Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, e95103 (2017).

    Article  Google Scholar 

  43. Funk, C. R. et al. PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity. Blood 139, 523–537 (2022). This article demonstrates that inhibiting PI3K signalling enhances CAR T cell therapy by normalizing CD4:CD8 ratios and maximizing the number of early memory T cells.

    Article  Google Scholar 

  44. Raje, N. S. et al. Updated clinical and correlative results from the phase I CRB-402 study of the BCMA-targeted CAR T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma. Blood 138, 548–548 (2021).

    Article  Google Scholar 

  45. LaHucik, K. Bristol Myers, 2seventy cull multiple myeloma CAR-T as Abecma sales pick up. Fierce Biotech https://www.fiercebiotech.com/biotech/gsks-retrospective-trial-diversity-study-shows-theres-more-work-do (2022).

  46. Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118–128 (2022). This article describes a protocol to manufacture CAR T cells within 24 hours by enabling viral transduction of non-activated T cells.

    Article  Google Scholar 

  47. Garfall, A. L. et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 3, 2812–2815 (2019).

    Article  Google Scholar 

  48. Cohen, A. D. et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  Google Scholar 

  49. Abecassis, A. et al. CAR-T cells derived from multiple myeloma patients at diagnosis have improved cytotoxic functions compared to those produced at relapse or following daratumumab treatment. EJHaem 3, 970–974 (2022).

    Article  Google Scholar 

  50. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  Google Scholar 

  51. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    Article  Google Scholar 

  52. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    Article  Google Scholar 

  53. Aleksandrova, K. et al. Functionality and cell senescence of CD4/CD8-selected CD20 CAR T cells manufactured using the automated CliniMACS prodigy platform. Transfus. Med. Hemother. 46, 47–54 (2019).

    Article  Google Scholar 

  54. Moeller, M. et al. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood 106, 2995–3003 (2005).

    Article  Google Scholar 

  55. Moeller, M. et al. Sustained antigen-specific antitumor recall response mediated by gene-modified CD4+ T helper-1 and CD8+ T cells. Cancer Res. 67, 11428–11437 (2007).

    Article  Google Scholar 

  56. Teoh, J. et al. Lisocabtagene maraleucel (liso-cel) manufacturing process control and robustness across CD19+ hematological malignancies. Blood 134, 593–593 (2019).

    Article  Google Scholar 

  57. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2015).

    Article  Google Scholar 

  58. Gardner, R. et al. CD19CAR T cell products of defined CD4:CD8 composition and transgene expression show prolonged persistence and durable MRD-negative remission in pediatric and young adult B-cell ALL. Blood 128, 219 (2016).

    Article  Google Scholar 

  59. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article  Google Scholar 

  60. Turtle, C. J. et al. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  Google Scholar 

  61. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  Google Scholar 

  62. Nishimura, T. et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J. Exp. Med. 190, 617–628 (1999).

    Article  Google Scholar 

  63. Knutson, K. L. & Disis, M. L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother. 54, 721–728 (2005).

    Article  Google Scholar 

  64. Lorvik, K. B. et al. Adoptive transfer of tumor-specific Th2 cells eradicates tumors by triggering an in situ inflammatory immune response. Cancer Res. 76, 6864–6876 (2016).

    Article  Google Scholar 

  65. Tsukamoto, H. et al. Soluble IL6R expressed by myeloid cells reduces tumor-specific Th1 differentiation and drives tumor progression. Cancer Res. 77, 2279–2291 (2017).

    Article  Google Scholar 

  66. Shiao, S. L. et al. Th2-polarized CD4+ T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol. Res. 3, 518–525 (2015).

    Article  Google Scholar 

  67. DeNardo, D. G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  Google Scholar 

  68. Tokumaru, Y. et al. Association of Th2 high tumors with aggressive features of breast cancer. J. Clin. Oncol. 38, e12584 (2020).

    Article  Google Scholar 

  69. Miyahara, Y. et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc. Natl Acad. Sci. USA 105, 15505–15510 (2008).

    Article  Google Scholar 

  70. Zhang, B. et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem. Biophys. Res. Commun. 374, 533–537 (2008).

    Article  Google Scholar 

  71. Qian, X. et al. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine 89, 34–44 (2017).

    Article  Google Scholar 

  72. Muranski, P. et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112, 362–373 (2008).

    Article  Google Scholar 

  73. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

    Article  Google Scholar 

  74. Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    Article  Google Scholar 

  75. Overacre-Delgoffe, A. E. et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer. Immunity 54, 2812–2824.e4 (2021).

    Article  Google Scholar 

  76. Chaurio, R. A. et al. TGF-β-mediated silencing of genomic organizer SATB1 promotes Tfh cell differentiation and formation of intra-tumoral tertiary lymphoid structures. Immunity 55, 115–128.e9 (2022).

    Article  Google Scholar 

  77. Nurieva, R. I. et al. Function of T follicular helper cells in anti-tumor immunity. J. Immunol. 202 (Suppl. 1), 138.18 (2019).

    Article  Google Scholar 

  78. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2003).

    Article  Google Scholar 

  79. Burdelya, L. et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J. Immunol. 174, 3925–3931 (2005).

    Article  Google Scholar 

  80. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  Google Scholar 

  81. Enblad, G., Karlsson, H. & Loskog, A. S. I. CAR T-cell therapy: the role of physical barriers and immunosuppression in lymphoma. Hum. Gene Ther. 26, 498–505 (2015).

    Article  Google Scholar 

  82. Fang, M., Yuan, J., Peng, C. & Li, Y. Collagen as a double-edged sword in tumor progression. Tumor Biol. 35, 2871–2882 (2014).

    Article  Google Scholar 

  83. Zboralski, D., Hoehlig, K., Eulberg, D., Frömming, A. & Vater, A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol. Res. 5, 950–956 (2017).

    Article  Google Scholar 

  84. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  Google Scholar 

  85. Draghiciu, O., Lubbers, J., Nijman, H. W. & Daemen, T. Myeloid derived suppressor cells — an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4, 954829 (2015).

    Article  Google Scholar 

  86. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  Google Scholar 

  87. Richman, S. A. et al. High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol. Res. 6, 36–46 (2018).

    Article  Google Scholar 

  88. Spear, P., Barber, A. & Sentman, C. L. Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Oncoimmunology 2, e23564 (2013).

    Article  Google Scholar 

  89. Boulch, M. et al. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci. Immunol. 6, eabd4344 (2021).

    Article  Google Scholar 

  90. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  Google Scholar 

  91. Xu, Y. et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J. Clin. Invest. 126, 2678–2688 (2016).

    Article  Google Scholar 

  92. Harel, M. et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 179, 236–250.e18 (2019).

    Article  Google Scholar 

  93. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    Google Scholar 

  94. Kallinowski, F. et al. Glucose uptake, lactate release, ketone body turnover, metabolic micromilieu, and pH distributions in human breast cancer xenografts in nude rats. Cancer Res. 48, 7264–7272 (1988).

    Google Scholar 

  95. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  Google Scholar 

  96. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  Google Scholar 

  97. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  Google Scholar 

  98. Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e9 (2017).

    Article  Google Scholar 

  99. Lindau, D., Gielen, P., Kroesen, M., Wesseling, P. & Adema, G. J. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105–115 (2013).

    Article  Google Scholar 

  100. Brandenburg, S. et al. IL-2 induces in vivo suppression by CD4+CD25+Foxp3+ regulatory T cells. Eur. J. Immunol. 38, 1643–1653 (2008).

    Article  Google Scholar 

  101. Dankner, M., Gray-Owen, S. D., Huang, Y. H., Blumberg, R. S. & Beauchemin, N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 6, e1328336 (2017).

    Google Scholar 

  102. Hurwitz, A. A. & Watkins, S. K. Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol. Immunother. 61, 289–293 (2012).

    Article  Google Scholar 

  103. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  Google Scholar 

  104. Hirayama, A. V. et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133, 1876–1887 (2019).

    Article  Google Scholar 

  105. Gattinoni, L., Powell, D. J., Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383 (2006).

    Article  Google Scholar 

  106. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  Google Scholar 

  107. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article  Google Scholar 

  108. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  Google Scholar 

  109. Ghilardi, G. et al. Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas. Ann. Oncol. 33, 916–928 (2022).

    Article  Google Scholar 

  110. Maziarz, R. T., Diaz, A., Miklos, D. & Shah, N. N. Perspective: An international fludarabine shortage: supply chain issues impacting transplantation and immune effector cell therapy delivery. Transpl. Cell Ther. 28, 723–726 (2022).

    Article  Google Scholar 

  111. Pocaterra, A., Catucci, M. & Mondino, A. Adoptive T cell therapy of solid tumors: time to team up with immunogenic chemo/radiotherapy. Curr. Opin. Immunol. 74, 53–59 (2022).

    Article  Google Scholar 

  112. Murad, J. P. et al. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol. Ther. 29, 2335–2349 (2021).

    Article  Google Scholar 

  113. Srivastava, S. et al. Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade. Cancer Cell 39, 193–208.e10 (2021).

    Article  Google Scholar 

  114. Menon, H. et al. Role of radiation therapy in modulation of the tumor stroma and microenvironment. Front. Immunol. 10, 193 (2019).

    Article  Google Scholar 

  115. Dewan, M. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  Google Scholar 

  116. Lugade, A. A. et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 174, 7516–7523 (2005).

    Article  Google Scholar 

  117. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    Article  Google Scholar 

  118. Curtsinger, J. M. & Mescher, M. F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol. 22, 333–340 (2010).

    Article  Google Scholar 

  119. Pouw, N., Treffers-Westerlaken, E., Mondino, A., Lamers, C. & Debets, R. TCR gene-engineered T cell: limited T cell activation and combined use of IL-15 and IL-21 ensure minimal differentiation and maximal antigen-specificity. Mol. Immunol. 47, 1411–1420 (2010).

    Article  Google Scholar 

  120. Bondanza, A. et al. Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood 107, 1828–1836 (2006).

    Article  Google Scholar 

  121. Mescher, M. F. Surface contact requirements for activation of cytotoxic T lymphocytes. J. Immunol. 149, 2402–2405 (1992).

    Article  Google Scholar 

  122. Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018). This article describes a mesoporous silica-based artificial APC system that supports T cell receptor clustering and paracrine signalling to rapidly expand CAR T cells with improved in vivo efficacy.

    Article  Google Scholar 

  123. Sunshine, J. C., Perica, K., Schneck, J. P. & Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35, 269–277 (2014).

    Article  Google Scholar 

  124. Fadel, T. R. et al. A carbon nanotube–polymer composite for T-cell therapy. Nat. Nanotechnol. 9, 639–647 (2014).

    Article  Google Scholar 

  125. Meyer, R. A. et al. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small 11, 1519–1525 (2015).

    Article  Google Scholar 

  126. Alvarez-Fernández, C., Escribà-Garcia, L., Vidal, S., Sierra, J. & Briones, J. A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy. J. Transl Med. 14, 214 (2016).

    Article  Google Scholar 

  127. Badovinac, V. P. & Harty, J. T. Manipulating the rate of memory CD8+ T cell generation after acute infection. J. Immunol. 179, 53–63 (2007).

    Article  Google Scholar 

  128. D’Souza, W. N. & Hedrick, S. M. Cutting edge: latecomer CD8 T cells are imprinted with a unique differentiation program. J. Immunol. 177, 777–781 (2006).

    Article  Google Scholar 

  129. Solouki, S. et al. TCR signal strength and antigen affinity regulate CD8+ memory T cells. J. Immunol. 205, 1217–1227 (2020).

    Article  Google Scholar 

  130. Mandal, S. et al. Polymer-based synthetic dendritic cells for tailoring robust and multifunctional T cell responses. ACS Chem. Biol. 10, 485–492 (2015).

    Article  Google Scholar 

  131. Sun, L. et al. DNA-edited ligand positioning on red blood cells to enable optimized T cell activation for adoptive immunotherapy. Angew. Chem. Int. Ed. 59, 14842–14853 (2020).

    Article  Google Scholar 

  132. Zhang, D. K. Y., Cheung, A. S. & Mooney, D. J. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat. Protoc. 15, 773–798 (2020).

    Article  Google Scholar 

  133. Philipson, B. I. et al. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Sci. Signal. 13, eaay8248 (2020).

    Article  Google Scholar 

  134. Zhang, H. et al. 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. J. Immunol. 179, 4910–4918 (2007).

    Article  Google Scholar 

  135. Maus, M. V. et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat. Biotechnol. 20, 143–148 (2002).

    Article  Google Scholar 

  136. Chacon, J. A. et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE 8, e60031 (2013).

    Article  Google Scholar 

  137. Hernandez-Chacon, J. A. et al. Co-stimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances anti-tumor effector function. J. Immunother. 34, 236–250 (2011).

    Article  Google Scholar 

  138. Liegel, J. et al. T cells educated by DC/AML fusions in the context of 4-1BB costimulation as a potent strategy for adoptive cellular therapy. Blood 134, 2673 (2019).

    Article  Google Scholar 

  139. McNamara, J. O. et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Invest. 118, 376–386 (2008).

    Article  Google Scholar 

  140. Ramakrishna, V. et al. Characterization of the human T cell response to in vitro CD27 costimulation with varlilumab. J. Immunother. Cancer 3, 1–13 (2015).

    Article  MathSciNet  Google Scholar 

  141. Lee, S.-J. et al. CD134 costimulation couples the CD137 pathway to induce production of supereffector CD8 T cells that become IL-7 dependent. J. Immunol. 179, 2203–2214 (2007).

    Article  Google Scholar 

  142. Alves Costa Silva, C., Facchinetti, F., Routy, B. & Derosa, L. New pathways in immune stimulation: targeting OX40. ESMO Open 5, e000573 (2020).

    Article  Google Scholar 

  143. Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    Article  Google Scholar 

  144. Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018).

    Article  Google Scholar 

  145. Moroz, A. et al. IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J. Immunol. 173, 900–909 (2004).

    Article  Google Scholar 

  146. Guo, Y., Luan, L., Patil, N. K. & Sherwood, E. R. Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine Growth Factor. Rev. 38, 10–21 (2017).

    Article  Google Scholar 

  147. Floros, T. & Tarhini, A. A. Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin. Oncol. 42, 539–548 (2015).

    Article  Google Scholar 

  148. Parlato, S. et al. Expression of CCR-7, MIP-3β, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98, 3022–3029 (2001).

    Article  Google Scholar 

  149. Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128, 519–528 (2016).

    Article  Google Scholar 

  150. Li, Y. et al. MART-1–Specific melanoma tumor-infiltrating lymphocytes maintaining CD28 expression have improved survival and expansion capability following antigenic restimulation in vitro. J. Immunol. 184, 452–465 (2010).

    Article  Google Scholar 

  151. Yang, S. et al. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol. Immunother. 62, 727–736 (2013).

    Article  Google Scholar 

  152. Cui, W., Joshi, N. S., Jiang, A. & Kaech, S. M. Effects of signal 3 during CD8 T cell priming: bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine 27, 2177–2187 (2009).

    Article  Google Scholar 

  153. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    Article  Google Scholar 

  154. van der Waart, A. B. et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood 124, 3490–3500 (2014).

    Article  Google Scholar 

  155. Eid, R. A. et al. Akt1 and -2 inhibition diminishes terminal differentiation and enhances central memory CD8+ T-cell proliferation and survival. Oncoimmunology 4, e1005448 (2015).

    Article  Google Scholar 

  156. Urak, R. et al. Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy. J. Immunother. Cancer 5, 1–13 (2017).

    Article  Google Scholar 

  157. Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    Article  Google Scholar 

  158. Petersen, C. T. et al. Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists. Blood Adv. 2, 210–223 (2018).

    Article  Google Scholar 

  159. Bowers, J. S. et al. PI3Kδ inhibition enhances the antitumor fitness of adoptively transferred CD8+ T cells. Front. Immunol. 8, 1221 (2017).

    Article  Google Scholar 

  160. Mineharu, Y., Kamran, N., Lowenstein, P. R. & Castro, M. G. Blockade of mTOR signaling via rapamycin combined with immunotherapy augments antiglioma cytotoxic and memory T-cell functions. Mol. Cancer Ther. 13, 3024–3036 (2014).

    Article  Google Scholar 

  161. Chatterjee, S. et al. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor t-cell response. Clin. Cancer Res. 25, 1036–1049 (2019).

    Article  Google Scholar 

  162. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  Google Scholar 

  163. Sukumar, M., Kishton, R. J. & Restifo, N. P. Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 46, 14–22 (2017).

    Article  Google Scholar 

  164. O’Sullivan, D. & Pearce, E. L. Targeting T cell metabolism for therapy. Trends Immunol. 36, 71–80 (2015).

    Article  Google Scholar 

  165. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  Google Scholar 

  166. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017).

    Article  Google Scholar 

  167. Geiger, R. et al. l-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016). This article demonstrates that increasing the level of l-arginine improves T cells’ antitumour activity and enables modulation of ACT product phenotypes by tuning medium metabolites.

    Article  Google Scholar 

  168. Balmer, M. L. et al. Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016).

    Article  Google Scholar 

  169. Huang, Y. et al. Resuscitating cancer immunosurveillance: selective stimulation of DLL1-Notch signaling in T cells rescues T-cell function and inhibits tumor growth. Cancer Res. 71, 6122–6131 (2011).

    Article  Google Scholar 

  170. Biktasova, A. K. et al. Multivalent forms of the notch ligand DLL-1 enhance antitumor T-cell immunity in lung cancer and improve efficacy of EGFR-targeted therapy. Cancer Res. 75, 4728–4741 (2015).

    Article  Google Scholar 

  171. Kondo, T. et al. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat. Commun. 8, 15338 (2017).

    Article  Google Scholar 

  172. Ando, M. et al. Rejuvenating effector/exhausted CAR T cells to stem cell memory–like CAR T cells by resting them in the presence of CXCL12 and the NOTCH ligand. Cancer Res. Commun. 1, 41–55 (2021).

    Article  Google Scholar 

  173. Janghorban, M., Xin, L., Rosen, J. M. & Zhang, X. H. F. Notch signaling as a regulator of the tumor immune response: to target or not to target? Front. Immunol. 9, 1649 (2018).

    Article  Google Scholar 

  174. Muralidharan, S. et al. Activation of Wnt signaling arrests effector differentiation in human peripheral and cord blood-derived T lymphocytes. J. Immunol. 187, 5221–5232 (2011).

    Article  Google Scholar 

  175. Muranski, P. et al. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972–985 (2011).

    Article  Google Scholar 

  176. D’Souza, W. N., Chang, C.-F., Fischer, A. M., Li, M. & Hedrick, S. M. The Erk2 MAPK regulates CD8 T cell proliferation and survival. J. Immunol. 181, 7617–7629 (2008).

    Article  Google Scholar 

  177. Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70, 5213–5219 (2010).

    Article  Google Scholar 

  178. Gurusamy, D. et al. Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell 37, 818–833.e9 (2020).

    Article  Google Scholar 

  179. Hao, M. et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci. Transl Med. 12, 6667 (2020).

    Article  Google Scholar 

  180. Liu, Y. et al. Cytokine conjugation to enhance T cell therapy. Proc. Natl Acad. Sci. USA 120, e2213222120 (2022).

    Article  Google Scholar 

  181. Yeku, O. O., Purdon, T. J., Koneru, M., Spriggs, D. & Brentjens, R. J. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci. Rep. 7, 10541 (2017).

    Article  Google Scholar 

  182. Chmielewski, M. & Abken, H. CAR T cells transform to trucks: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol. Immunother. 61, 1269–1277 (2012).

    Article  Google Scholar 

  183. Zhang, S., Zhao, J., Bai, X., Handley, M. & Shan, F. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int. Immunopharmacol. 91, 107318 (2021).

    Article  Google Scholar 

  184. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018). This article demonstrates that nanogels backpacked onto T cells containing large quantities of cytokines are released upon T cell receptor activation, which improves ACT efficacy.

    Article  Google Scholar 

  185. Wang, H. et al. Metabolic labeling and targeted modulation of dendritic cells. Nat. Mater. 19, 1244–1252 (2020).

    Article  Google Scholar 

  186. Luo, Y. et al. IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials 281, 121341 (2022).

    Article  Google Scholar 

  187. Jones, R. B. et al. Antigen recognition-triggered drug delivery mediated by nanocapsule-functionalized cytotoxic T-cells. Biomaterials 117, 44–53 (2017).

    Article  Google Scholar 

  188. Stephan, M. T., Moon, J. J., Um, S. H., Bersthteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  Google Scholar 

  189. Sanz-Ortega, L. et al. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J. Nanobiotechnol. 17, 14 (2019).

    Article  Google Scholar 

  190. Siriwon, N. et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol. Res. 6, 812–824 (2018).

    Article  Google Scholar 

  191. Nie, W. et al. Magnetic nanoclusters armed with responsive PD-1 antibody synergistically improved adoptive T-cell therapy for solid tumors. ACS Nano 13, 1469–1478 (2019).

    Article  Google Scholar 

  192. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  Google Scholar 

  193. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  Google Scholar 

  194. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  Google Scholar 

  195. Zebley, C. C. et al. CD19–CAR T cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Rep. 37, 110079 (2021).

    Article  Google Scholar 

  196. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl Med. 13, eabh0272 (2021).

    Article  Google Scholar 

  197. Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21, 2278–2288 (2015).

    Article  Google Scholar 

  198. Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    Article  Google Scholar 

  199. Flinn, I. W. et al. A first-in-human study of YTB323, a novel, autologous CD19-directed CAR-T cell therapy manufactured using the novel T-charge TM platform, for the treatment of patients (Pts) with relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL). Blood 138, 740 (2021).

    Article  Google Scholar 

  200. Sperling, A. S. et al. P1446: phase I study data update of PHE885, a fully human BCMA-directed CAR-T cell therapy manufactured using the T-ChargeTM platform for patients with relapsed/refractory (R/R) multiple myeloma (MM). Hemasphere 6, 1329–1330 (2022).

    Article  Google Scholar 

  201. Nawaz, W. et al. AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer J. 11, 119 (2021).

    Article  Google Scholar 

  202. Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022). This article describes and characterizes a rapid in vivo CAR T cell manufacturing system based on alginate scaffolds.

    Article  Google Scholar 

  203. Agarwal, S. et al. In vivo generation of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. 28, 1783–1794 (2020).

    Article  Google Scholar 

  204. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  Google Scholar 

  205. Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020). This article describes and characterizes a polymer nanoparticle bearing a CAR or T cell receptor encoding mRNA to transiently reprogramme T cells in vivo.

    Article  Google Scholar 

  206. Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    Article  Google Scholar 

  207. O’Connor, R. et al. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189, 1330–1339 (2012).

    Article  Google Scholar 

  208. Majedi, F. S. et al. T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials 252, 120058 (2020).

    Article  Google Scholar 

  209. Jiang, J. & Ahuja, S. Addressing patient to patient variability for autologous CAR T therapies. J. Pharm. Sci. 110, 1871–1876 (2021).

    Article  Google Scholar 

  210. Mueller-schoell, A. et al. Early survival prediction framework in CD19-specific CAR-T cell immunotherapy using a quantitative systems pharmacology model. Cancers 13, 2782 (2021).

    Article  Google Scholar 

  211. Zhang, D. K. Y. et al. Enhancing CAR-T cell functionality in a patient-specific manner. Nat. Commun. 14, 506 (2023).

    Article  Google Scholar 

  212. Weiss, T., Weller, M., Guckenberger, M., Sentman, C. L. & Roth, P. NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res. 78, 1031–1043 (2018).

    Article  Google Scholar 

  213. Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).

    Article  Google Scholar 

  214. Song, W. & Zhang, M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin. Immunol. 214, 108382 (2020).

    Article  Google Scholar 

  215. Liu, Y. et al. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade. Cell Death Dis. 11, 1062 (2020).

    Article  Google Scholar 

  216. Park, A. K. et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl Med. 12, 1863 (2020).

    Article  Google Scholar 

  217. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    Article  Google Scholar 

  218. Wang, M. et al. Automation platform for CAR-T manufacturing: the benefits and the clinical outcomes. Blood 134, 1960 (2019).

    Article  Google Scholar 

  219. Nam, S., Smith, J. & Yang, G. Driving the next wave of innovation in CAR T-cell therapies. McKinsey https://www.mckinsey.com/industries/life-sciences/our-insights/driving-the-next-wave-of-innovation-in-car-t-cell-therapies (2019).

  220. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

    Article  Google Scholar 

  221. Santomasso, B., Bachier, C., Westin, J., Rezvani, K. & Shpall, E. J. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am. Soc. Clin. Oncol. Educ. Book 39, 433–444 (2019).

    Article  Google Scholar 

  222. Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood 130, 2295 (2017).

    Article  Google Scholar 

  223. Tedesco, V. E. & Mohan, C. Biomarkers for predicting cytokine release syndrome following CD19-targeted CAR T cell therapy. J. Immunol. 206, 1561–1568 (2021).

    Article  Google Scholar 

  224. Hartmann, J., Schüßler-Lenz, M., Bondanza, A. & Buchholz, C. J. Clinical development of CAR T cells — challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med. 9, 1183–1197 (2017).

    Article  Google Scholar 

  225. Engel, C. et al. The digital edge in CAR-T manufacturing and delivery. BCG https://www.bcg.com/publications/2021/car-t-cell-therapy-digital-supply-chain (2021).

  226. Salih, H. R. & Jung, G. The challenges of translation. EMBO Mol. Med. 11, e10874 (2019).

    Article  Google Scholar 

  227. le Gouill, S. et al. Is good clinical practice becoming poor clinical care? Hemasphere 1, e4 (2017).

    Article  Google Scholar 

  228. Ahmed, N. et al. Socioeconomic and racial disparity in chimeric antigen receptor T cell therapy access. Transpl. Cell Ther. 28, 358–364 (2022).

    Article  Google Scholar 

  229. Burki, T. K. CAR T-cell therapy roll-out in low-income and middle-income countries. Lancet Haematol. 8, e252–e253 (2021).

    Article  Google Scholar 

  230. Fleming, M., Okebukola, P. & Skiba, K. Port to patient: improving country cold chains for COVID-19 vaccines. McKinsey https://www.mckinsey.com/industries/public-and-social-sector/our-insights/port-to-patient-improving-country-cold-chains-for-covid-19-vaccines (2021).

  231. Angel, S. et al. Toward optimal cryopreservation and storage for achievement of high cell recovery and maintenance of cell viability and T cell functionality. Biopreserv. Biobank. 14, 539–547 (2016).

    Article  Google Scholar 

  232. Ivanics, T. et al. Patient-derived xenograft cryopreservation and reanimation outcomes are dependent on cryoprotectant type. Lab. Invest. 98, 947–956 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and A.S.S. researched data and wrote the manuscript. Y.L., A.S.S., E.L.S. and D.J.M. discussed the content, reviewed and edited the manuscript.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

A.S.S. has consulted for Adaptive Technologies. E.L.S. has had research funded by Bristol Myers Squibb and Sanofi, is on the scientific advisory boards of Bristol Myers Squibb, Sanofi, and Chimeric Therapeutics and the data safety monitoring board of Eureka Therapeutics, has consulted for Chroma Medicine, ImmuneBridge, Secura Bio, Clade Therapeutics, Sana Biotech and Allogene, and holds licensed patents for BCMA and GPRC5D targeted CAR T cells licensed to Bristol Myers Squibb and for GPRC5D targeted antibody therapies licensed through Sanofi. D.J.M. has had research sponsored by Novartis, has consulted for Medicenna, Johnson & Johnson and IVIVA Medical, and has equity in Lyell and Attivare. Y.L. declares no competing interest.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Saul Priceman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sperling, A.S., Smith, E.L. et al. Optimizing the manufacturing and antitumour response of CAR T therapy. Nat Rev Bioeng 1, 271–285 (2023). https://doi.org/10.1038/s44222-023-00031-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00031-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing