Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resonant energy transfer for membrane-free, off-grid solar thermal humidification–dehumidification desalination

Abstract

Fresh water scarcity is a pressing global issue exacerbated by climate change and growing populations. Current desalination technologies face limitations: reverse osmosis requires grid electrical power and specialized membranes, thermal desalination is inefficient and membrane systems are prone to fouling. Here we introduce Solar Thermal Resonant Energy Exchange Desalination (STREED)—a robust, membrane-free and efficient solar thermal desalination approach. STREED couples the basic mechanisms of humidification–dehumidification distillation to Resonant Energy Transfer, a dynamic energy recovery scheme described in the language of oscillators. Resonant Energy Transfer achieves optimized and controllable thermal gradients for passive evaporation and condensation. Dynamic tuning of system flow rates in response to varying solar intensities substantially increases efficiency, extending fresh water production over 24 hours per day. We predict week-long fresh water productivity increases of 77% with an average gained output ratio near ~1.9 at seawater salinity, depending on available solar irradiation. STREED adapts to fluctuating solar inputs, offering a scalable solution for decentralized, off-grid water treatment crucial for remote communities facing water scarcity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STREED prototype schematics, experimental data and simulations.
Fig. 2: RET and its application in solar thermal desalination.
Fig. 3: Time-explicit simulations of increased and nocturnal production with resonant energy transfer and dynamic flow-rate control in the OS.
Fig. 4: Predicted week-long performance of OS and XS under a realistic solar intensity profile.
Fig. 5: Predicted day-long performance of the OS for recorded solar intensity profiles measured on 13 May 2022 at different locations throughout the western United States.

Similar content being viewed by others

Data availability

The experimental and numerical data that support the findings of this work are available via GitHub at https://github.com/multiphysicsrice/streed_data.

References

  1. UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2024: Water for Prosperity and Peace (UNESCO, 2024).

  2. Swain, S., Taloor, A. K., Dhal, L., Sahoo, S. & Al-Ansari, N. Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Appl. Water Sci. 12, 120 (2022).

    Article  Google Scholar 

  3. Zubaidi, S. L. et al. Using LARS –WG model for prediction of temperature in Columbia City. USA. Mater. Sci. Eng. 584, 012026 (2019).

    Google Scholar 

  4. Zubaidi, S. L. et al. Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng Province case study. Water 12, 1885 (2020).

    Article  Google Scholar 

  5. Gordon, J. M. & Chua, H. T. The merits of plasmonic desalination. Nat. Photon. 11, 70 (2017).

    Article  CAS  Google Scholar 

  6. Gordon, J. M. & Hui, T. C. Thermodynamic perspective for the specific energy consumption of seawater desalination. Desalination 386, 13–18 (2016).

    Article  CAS  Google Scholar 

  7. Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Quist-Jensen, C. A., Macedonio, F., Horbez, D. & Drioli, E. Reclamation of sodium sulfate from industrial wastewater by using membrane distillation and membrane crystallization. Desalination 401, 112–119 (2017).

    Article  CAS  Google Scholar 

  11. Chung, H. W., Swaminathan, J., Warsinger, D. M. & Lienhard V, J. H. Multistage vacuum membrane distillation (MSVMD) systems for high salinity applications. J. Membr. Sci. 497, 128–141 (2016).

    Article  CAS  Google Scholar 

  12. Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

  13. Zhang, L. et al. Passive, high-efficiency thermally localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    Article  CAS  Google Scholar 

  14. Zhu, Z., Zheng, H., Kong, H., Ma, X. & Xiong, J. Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimetre-scale thickness. Nat. Water 1, 790–799 (2023).

    Article  CAS  Google Scholar 

  15. Schmid, W. et al. Decentralized solar-driven photothermal desalination: an interdisciplinary challenge to transition lab-scale research to off-grid applications. ACS Photon. 9, 3764–3776 (2022).

    Article  CAS  Google Scholar 

  16. Yadav, A., Labhasetwar, P. K. & Shahi, V. K. Membrane distillation using low-grade energy for desalination: a review. J. Environ. Chem. Eng. 9, 105818 (2021).

    Article  CAS  Google Scholar 

  17. Swaminathan, J., Chung, H. W., Warsinger, D. M. & Lienhard V, J. H. Simple method for balancing direct contact membrane distillation. Desalination 383, 53–59 (2016).

    Article  CAS  Google Scholar 

  18. Swaminathan, J., Chung, H. W., Warsinger, D. M. & Lienhard V, J. H. Membrane distillation model based on heat exchanger theory and configuration comparison. Appl. Energy 184, 491–505 (2016).

    Article  CAS  Google Scholar 

  19. Lin, S., Yip, N. Y. & Elimelech, M. Direct contact membrane distillation with heat recovery: thermodynamic insights from module scale modeling. J. Membr. Sci. 453, 498–515 (2014).

    Article  CAS  Google Scholar 

  20. Alabastri, A. Flow-driven resonant energy systems. Phys. Rev. Applied 14, 034045 (2020).

    Article  CAS  Google Scholar 

  21. Ye, Q., Sanders, S. & Alabastri, A. Resonant energy transfer and storage in coupled flow-driven heat oscillators. PRX Energy 2, 023007 (2023).

    Article  Google Scholar 

  22. Alabastri, A. et al. Resonant energy transfer enhances solar thermal desalination. Energy Environ. Sci. 13, 968–976 (2020).

    Article  CAS  Google Scholar 

  23. Chen, Y., Yang, S., Wang, Z. & Elimelech, M. Transforming membrane distillation to a membraneless fabric distillation for desalination. Nat. Water 2, 52–61 (2024).

    Article  CAS  Google Scholar 

  24. Lim, Y. J., Goh, K., Kurihara, M. & Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication—a review. J. Membr. Sci. 629, 119292 (2021).

    Article  CAS  Google Scholar 

  25. Warsinger, D. M., Swaminathan, J., Guillen-Burrieza, E., Arafat, H. A. & Lienhard V, J. H. Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 356, 294–313 (2015).

    Article  CAS  Google Scholar 

  26. Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).

    Article  CAS  Google Scholar 

  27. Lawson, K. W. & Lloyd, D. R. Membrane distillation. J. Membr. Sci. 124, 1–25 (1997).

    Article  CAS  Google Scholar 

  28. Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).

    Article  CAS  Google Scholar 

  29. Chen, H. et al. Ultrahigh-water-flux desalination on graphdiyne membranes. Nat. Water 1, 800–807 (2023).

    Article  CAS  Google Scholar 

  30. Cao, L. & Lai, Z. Graphdiyne membranes for ultrafast desalination. Nat. Water 1, 756–757 (2023).

    Article  CAS  Google Scholar 

  31. Wang, X. Solar steam-driven membrane filtration for high flux water purification. Figshare https://doi.org/10.6084/M9.FIGSHARE.22188103.V1 (2023).

  32. Dong, Y. et al. Ultrastable ceramic-based metal–organic framework membranes with missing linkers for robust desalination. Nat. Water 2, 464–474 (2024).

    Article  CAS  Google Scholar 

  33. Li, T., Zhou, H., Ding, W., Wang, J. & Zhang, T. Energy system for evaluation of modification methods on energy transfer efficiency and optimization of membranes. npj Clean Water 7, 16 (2024).

    Article  Google Scholar 

  34. Sengupta, M. et al. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 89, 51–60 (2018).

    Article  Google Scholar 

  35. NSRDB: National Solar Radiation Database (NREL, 2023); https://nsrdb.nrel.gov/

  36. Liu, C. et al. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Adv. Sustain. Syst. 1, 1600013 (2017).

    Article  Google Scholar 

  37. Yin, X. et al. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl. Mater. Interfaces 10, 10998–11007 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Li, W., Li, Z., Bertelsmann, K. & Fan, D. E. Portable low‐pressure solar steaming‐collection unisystem with polypyrrole origamis. Adv. Mater. 31, 1900720 (2019).

    Article  Google Scholar 

  39. Guo, Y. et al. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13, 2087–2095 (2020).

    Article  CAS  Google Scholar 

  40. Ji, M. et al. Plasmonic metal nanoparticle loading to enhance the photothermal conversion of carbon fibers. J. Phys. Chem. C 126, 2454–2462 (2022).

    Article  CAS  Google Scholar 

  41. Enescu, D., Chicco, G., Porumb, R. & Seritan, G. Thermal energy storage for grid applications: current status and emerging trends. Energies 13, 340 (2020).

    Article  Google Scholar 

  42. Prakash Narayan, G., Lienhard J. H. & Zubair, S. M. Entropy generation minimization of combined heat and mass transfer devices. Int. J. Therm. Sci. https://doi.org/10.1016/j.ijthermalsci.2010.04.024

  43. Lienhard, J. H. in Desalination (ed. Kucera, J.) 387–446 (Wiley, 2019); https://doi.org/10.1002/9781119407874.ch9

  44. Dongare, P. D., Alabastri, A., Neumann, O., Nordlander, P. & Halas, N. J. Solar thermal desalination as a nonlinear optical process. Proc. Natl Acad. Sci. USA 116, 13182–13187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gohil, P. P., Desai, H., Kumar, A. & Kumar, R. Current status and advancement in thermal and membrane-based hybrid seawater desalination technologies. Water 15, 2274 (2023).

    Article  CAS  Google Scholar 

  47. Rahimi-Ahar, Z., Hatamipour, M. S. & Ahar, L. R. Air humidification–dehumidification process for desalination: a review. Prog. Energy Combust. Sci. 80, 100850 (2020).

    Article  Google Scholar 

  48. Sievers, M. & Lienhard, J. H. Design of flat-plate dehumidifiers for humidification–dehumidification desalination systems. Heat Transfer Eng. 34, 543–561 (2013).

    Article  CAS  Google Scholar 

  49. Summers, E. K., Lienhard, J. H. & Zubair, S. M. Air-heating solar collectors for humidification–dehumidification desalination systems. J. Sol. Energy Eng. 133, 011016 (2011).

    Article  Google Scholar 

  50. Amer, E. H., Kotb, H., Mostafa, G. H. & El-Ghalban, A. R. Theoretical and experimental investigation of humidification–dehumidification desalination unit. Desalination 249, 949–959 (2009).

    Article  CAS  Google Scholar 

  51. Al-Hallaj, S., Farid, M. M. & Rahman Tamimi, A. Solar desalination with a humidification–dehumidification cycle: performance of the unit. Desalination 120, 273–280 (1998).

  52. Gude, V. G. Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl. Energy 137, 877–898 (2015).

    Article  Google Scholar 

  53. Zheng, Y., Caceres Gonzalez, R. A., Hatzell, K. B. & Hatzell, M. C. Large-scale solar-thermal desalination. Joule 5, 1971–1986 (2021).

    Article  CAS  Google Scholar 

  54. Shah, K. M. et al. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: a critical review. Desalination 538, 115827 (2022).

    Article  CAS  Google Scholar 

  55. Powell, M. J. D. in Advances in Optimization and Numerical Analysis (eds Gomez, S. & Hennart, J.-P.) 51–67 (Springer Netherlands, 1994); https://doi.org/10.1007/978-94-015-8330-5_4

  56. Optimization Module User’s Guide, COMSOL Multiphysics 5.6. (COMSOL Inc., 2018).

  57. Sharqawy, M. H., Lienhard, J. H. & Zubair, S. M. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380 (2010).

    Article  CAS  Google Scholar 

  58. Nayar, K. G., Sharqawy, M. H., Banchik, L. D. & Lienhard V, J. H. Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination 390, 1–24 (2016).

    Article  CAS  Google Scholar 

  59. 2015–2020 Dietary Guidelines for Americans, 8th edn (US HHS & USDA, 2015); https://odphp.health.gov/sites/default/files/2019-09/2015-2020_Dietary_Guidelines.pdf

  60. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum (WHO, 2017).

  61. Pethkool, S., Eiamsa-ard, S., Kwankaomeng, S. & Promvonge, P. Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. Int. Commun. Heat Mass Transfer 38, 340–347 (2011).

    Article  Google Scholar 

  62. Liu, S. & Sakr, M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew. Sustain. Energy Rev. 19, 64–81 (2013).

    Article  Google Scholar 

  63. Abdullah, A. S., Panchal, H., Alawee, W. H. & Omara, Z. M. Methods used to improve solar still performance with generated turbulence for water desalination- detailed review. Results Eng. 19, 101251 (2023).

    Article  CAS  Google Scholar 

  64. Ali, K., Kharraz, J. A., Khatab, M. Z., Hasan, S. W. & Hassan Ali, M. I. Numerical investigation of multiple channels module for enhanced water production in membrane distillation. Desalination 586, 117886 (2024).

    Article  CAS  Google Scholar 

  65. Schlichting, H. & Gersten, K. Boundary-Layer Theory (Springer, 2017); https://doi.org/10.1007/978-3-662-52919-5

Download references

Acknowledgements

W.S. acknowledges financial support from the National Science Foundation; this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant number 1842494. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. A.M.-O. acknowledges financial support from CONACyT (Mexico, scholarship number 2021-000014-01EXTF-00140). P.N. acknowledges funding from the Robert A. Welch Foundation under grant C-1222. N.J.H. acknowledges funding from the Robert A. Welch Foundation under grant C-1220. P.N., P.D.D., N.J.H. and A.A. acknowledge funding support from the Department of Energy’s Solar Desalination Prize. We thank W. Wolf of Localized Water Solutions for his assistance in designing and fabricating the physical apparatus.

Author information

Authors and Affiliations

Authors

Contributions

P.D.D., N.J.H. and A.A. conceived the study and supervised the experimental and computational work. W.S. developed the numerical models, conceived and conducted the numerical analysis, developed the figures and wrote the paper. A.M.-O. and P.D.D. conducted the experiments on the physical apparatus, analysed the experimental data and assisted with writing the paper and developing supplementary figures. Q.Y. assisted with the numerical analysis. W.S., P.N. and A.A. discussed the simulation results and interpreted the results. All authors approved the final version of the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Naomi J. Halas or Alessandro Alabastri.

Ethics declarations

Competing interests

The authors declare the following competing interests: P.N., P.D.D., N.J.H. and A.A. are co-inventors on a provisional patent relating to the resonant energy transfer concept. P.D.D. and A.A. have a small share in Localized Water Solutions Inc., a start-up developing smart and sustainable water solutions.

Peer review

Peer review information

Nature Water thanks David Warsinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Tables 1–3 and Supplementary Notes 1–17.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, W., Machorro-Ortiz, A., Ye, Q. et al. Resonant energy transfer for membrane-free, off-grid solar thermal humidification–dehumidification desalination. Nat Water 3, 605–616 (2025). https://doi.org/10.1038/s44221-025-00438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-025-00438-3

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene