Abstract
Fresh water scarcity is a pressing global issue exacerbated by climate change and growing populations. Current desalination technologies face limitations: reverse osmosis requires grid electrical power and specialized membranes, thermal desalination is inefficient and membrane systems are prone to fouling. Here we introduce Solar Thermal Resonant Energy Exchange Desalination (STREED)—a robust, membrane-free and efficient solar thermal desalination approach. STREED couples the basic mechanisms of humidification–dehumidification distillation to Resonant Energy Transfer, a dynamic energy recovery scheme described in the language of oscillators. Resonant Energy Transfer achieves optimized and controllable thermal gradients for passive evaporation and condensation. Dynamic tuning of system flow rates in response to varying solar intensities substantially increases efficiency, extending fresh water production over 24 hours per day. We predict week-long fresh water productivity increases of 77% with an average gained output ratio near ~1.9 at seawater salinity, depending on available solar irradiation. STREED adapts to fluctuating solar inputs, offering a scalable solution for decentralized, off-grid water treatment crucial for remote communities facing water scarcity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The experimental and numerical data that support the findings of this work are available via GitHub at https://github.com/multiphysicsrice/streed_data.
References
UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2024: Water for Prosperity and Peace (UNESCO, 2024).
Swain, S., Taloor, A. K., Dhal, L., Sahoo, S. & Al-Ansari, N. Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Appl. Water Sci. 12, 120 (2022).
Zubaidi, S. L. et al. Using LARS –WG model for prediction of temperature in Columbia City. USA. Mater. Sci. Eng. 584, 012026 (2019).
Zubaidi, S. L. et al. Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng Province case study. Water 12, 1885 (2020).
Gordon, J. M. & Chua, H. T. The merits of plasmonic desalination. Nat. Photon. 11, 70 (2017).
Gordon, J. M. & Hui, T. C. Thermodynamic perspective for the specific energy consumption of seawater desalination. Desalination 386, 13–18 (2016).
Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).
Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009).
Quist-Jensen, C. A., Macedonio, F., Horbez, D. & Drioli, E. Reclamation of sodium sulfate from industrial wastewater by using membrane distillation and membrane crystallization. Desalination 401, 112–119 (2017).
Chung, H. W., Swaminathan, J., Warsinger, D. M. & Lienhard V, J. H. Multistage vacuum membrane distillation (MSVMD) systems for high salinity applications. J. Membr. Sci. 497, 128–141 (2016).
Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).
Zhang, L. et al. Passive, high-efficiency thermally localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).
Zhu, Z., Zheng, H., Kong, H., Ma, X. & Xiong, J. Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimetre-scale thickness. Nat. Water 1, 790–799 (2023).
Schmid, W. et al. Decentralized solar-driven photothermal desalination: an interdisciplinary challenge to transition lab-scale research to off-grid applications. ACS Photon. 9, 3764–3776 (2022).
Yadav, A., Labhasetwar, P. K. & Shahi, V. K. Membrane distillation using low-grade energy for desalination: a review. J. Environ. Chem. Eng. 9, 105818 (2021).
Swaminathan, J., Chung, H. W., Warsinger, D. M. & Lienhard V, J. H. Simple method for balancing direct contact membrane distillation. Desalination 383, 53–59 (2016).
Swaminathan, J., Chung, H. W., Warsinger, D. M. & Lienhard V, J. H. Membrane distillation model based on heat exchanger theory and configuration comparison. Appl. Energy 184, 491–505 (2016).
Lin, S., Yip, N. Y. & Elimelech, M. Direct contact membrane distillation with heat recovery: thermodynamic insights from module scale modeling. J. Membr. Sci. 453, 498–515 (2014).
Alabastri, A. Flow-driven resonant energy systems. Phys. Rev. Applied 14, 034045 (2020).
Ye, Q., Sanders, S. & Alabastri, A. Resonant energy transfer and storage in coupled flow-driven heat oscillators. PRX Energy 2, 023007 (2023).
Alabastri, A. et al. Resonant energy transfer enhances solar thermal desalination. Energy Environ. Sci. 13, 968–976 (2020).
Chen, Y., Yang, S., Wang, Z. & Elimelech, M. Transforming membrane distillation to a membraneless fabric distillation for desalination. Nat. Water 2, 52–61 (2024).
Lim, Y. J., Goh, K., Kurihara, M. & Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication—a review. J. Membr. Sci. 629, 119292 (2021).
Warsinger, D. M., Swaminathan, J., Guillen-Burrieza, E., Arafat, H. A. & Lienhard V, J. H. Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 356, 294–313 (2015).
Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).
Lawson, K. W. & Lloyd, D. R. Membrane distillation. J. Membr. Sci. 124, 1–25 (1997).
Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).
Chen, H. et al. Ultrahigh-water-flux desalination on graphdiyne membranes. Nat. Water 1, 800–807 (2023).
Cao, L. & Lai, Z. Graphdiyne membranes for ultrafast desalination. Nat. Water 1, 756–757 (2023).
Wang, X. Solar steam-driven membrane filtration for high flux water purification. Figshare https://doi.org/10.6084/M9.FIGSHARE.22188103.V1 (2023).
Dong, Y. et al. Ultrastable ceramic-based metal–organic framework membranes with missing linkers for robust desalination. Nat. Water 2, 464–474 (2024).
Li, T., Zhou, H., Ding, W., Wang, J. & Zhang, T. Energy system for evaluation of modification methods on energy transfer efficiency and optimization of membranes. npj Clean Water 7, 16 (2024).
Sengupta, M. et al. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 89, 51–60 (2018).
NSRDB: National Solar Radiation Database (NREL, 2023); https://nsrdb.nrel.gov/
Liu, C. et al. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Adv. Sustain. Syst. 1, 1600013 (2017).
Yin, X. et al. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl. Mater. Interfaces 10, 10998–11007 (2018).
Li, W., Li, Z., Bertelsmann, K. & Fan, D. E. Portable low‐pressure solar steaming‐collection unisystem with polypyrrole origamis. Adv. Mater. 31, 1900720 (2019).
Guo, Y. et al. Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13, 2087–2095 (2020).
Ji, M. et al. Plasmonic metal nanoparticle loading to enhance the photothermal conversion of carbon fibers. J. Phys. Chem. C 126, 2454–2462 (2022).
Enescu, D., Chicco, G., Porumb, R. & Seritan, G. Thermal energy storage for grid applications: current status and emerging trends. Energies 13, 340 (2020).
Prakash Narayan, G., Lienhard J. H. & Zubair, S. M. Entropy generation minimization of combined heat and mass transfer devices. Int. J. Therm. Sci. https://doi.org/10.1016/j.ijthermalsci.2010.04.024
Lienhard, J. H. in Desalination (ed. Kucera, J.) 387–446 (Wiley, 2019); https://doi.org/10.1002/9781119407874.ch9
Dongare, P. D., Alabastri, A., Neumann, O., Nordlander, P. & Halas, N. J. Solar thermal desalination as a nonlinear optical process. Proc. Natl Acad. Sci. USA 116, 13182–13187 (2019).
Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).
Gohil, P. P., Desai, H., Kumar, A. & Kumar, R. Current status and advancement in thermal and membrane-based hybrid seawater desalination technologies. Water 15, 2274 (2023).
Rahimi-Ahar, Z., Hatamipour, M. S. & Ahar, L. R. Air humidification–dehumidification process for desalination: a review. Prog. Energy Combust. Sci. 80, 100850 (2020).
Sievers, M. & Lienhard, J. H. Design of flat-plate dehumidifiers for humidification–dehumidification desalination systems. Heat Transfer Eng. 34, 543–561 (2013).
Summers, E. K., Lienhard, J. H. & Zubair, S. M. Air-heating solar collectors for humidification–dehumidification desalination systems. J. Sol. Energy Eng. 133, 011016 (2011).
Amer, E. H., Kotb, H., Mostafa, G. H. & El-Ghalban, A. R. Theoretical and experimental investigation of humidification–dehumidification desalination unit. Desalination 249, 949–959 (2009).
Al-Hallaj, S., Farid, M. M. & Rahman Tamimi, A. Solar desalination with a humidification–dehumidification cycle: performance of the unit. Desalination 120, 273–280 (1998).
Gude, V. G. Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl. Energy 137, 877–898 (2015).
Zheng, Y., Caceres Gonzalez, R. A., Hatzell, K. B. & Hatzell, M. C. Large-scale solar-thermal desalination. Joule 5, 1971–1986 (2021).
Shah, K. M. et al. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: a critical review. Desalination 538, 115827 (2022).
Powell, M. J. D. in Advances in Optimization and Numerical Analysis (eds Gomez, S. & Hennart, J.-P.) 51–67 (Springer Netherlands, 1994); https://doi.org/10.1007/978-94-015-8330-5_4
Optimization Module User’s Guide, COMSOL Multiphysics 5.6. (COMSOL Inc., 2018).
Sharqawy, M. H., Lienhard, J. H. & Zubair, S. M. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380 (2010).
Nayar, K. G., Sharqawy, M. H., Banchik, L. D. & Lienhard V, J. H. Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination 390, 1–24 (2016).
2015–2020 Dietary Guidelines for Americans, 8th edn (US HHS & USDA, 2015); https://odphp.health.gov/sites/default/files/2019-09/2015-2020_Dietary_Guidelines.pdf
Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum (WHO, 2017).
Pethkool, S., Eiamsa-ard, S., Kwankaomeng, S. & Promvonge, P. Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. Int. Commun. Heat Mass Transfer 38, 340–347 (2011).
Liu, S. & Sakr, M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew. Sustain. Energy Rev. 19, 64–81 (2013).
Abdullah, A. S., Panchal, H., Alawee, W. H. & Omara, Z. M. Methods used to improve solar still performance with generated turbulence for water desalination- detailed review. Results Eng. 19, 101251 (2023).
Ali, K., Kharraz, J. A., Khatab, M. Z., Hasan, S. W. & Hassan Ali, M. I. Numerical investigation of multiple channels module for enhanced water production in membrane distillation. Desalination 586, 117886 (2024).
Schlichting, H. & Gersten, K. Boundary-Layer Theory (Springer, 2017); https://doi.org/10.1007/978-3-662-52919-5
Acknowledgements
W.S. acknowledges financial support from the National Science Foundation; this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant number 1842494. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. A.M.-O. acknowledges financial support from CONACyT (Mexico, scholarship number 2021-000014-01EXTF-00140). P.N. acknowledges funding from the Robert A. Welch Foundation under grant C-1222. N.J.H. acknowledges funding from the Robert A. Welch Foundation under grant C-1220. P.N., P.D.D., N.J.H. and A.A. acknowledge funding support from the Department of Energy’s Solar Desalination Prize. We thank W. Wolf of Localized Water Solutions for his assistance in designing and fabricating the physical apparatus.
Author information
Authors and Affiliations
Contributions
P.D.D., N.J.H. and A.A. conceived the study and supervised the experimental and computational work. W.S. developed the numerical models, conceived and conducted the numerical analysis, developed the figures and wrote the paper. A.M.-O. and P.D.D. conducted the experiments on the physical apparatus, analysed the experimental data and assisted with writing the paper and developing supplementary figures. Q.Y. assisted with the numerical analysis. W.S., P.N. and A.A. discussed the simulation results and interpreted the results. All authors approved the final version of the paper. All authors discussed the results and commented on the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare the following competing interests: P.N., P.D.D., N.J.H. and A.A. are co-inventors on a provisional patent relating to the resonant energy transfer concept. P.D.D. and A.A. have a small share in Localized Water Solutions Inc., a start-up developing smart and sustainable water solutions.
Peer review
Peer review information
Nature Water thanks David Warsinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–30, Tables 1–3 and Supplementary Notes 1–17.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Schmid, W., Machorro-Ortiz, A., Ye, Q. et al. Resonant energy transfer for membrane-free, off-grid solar thermal humidification–dehumidification desalination. Nat Water 3, 605–616 (2025). https://doi.org/10.1038/s44221-025-00438-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44221-025-00438-3


