Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elemental sulfur–siderite composite filler empowers sustainable tertiary treatment of municipal wastewater even at an ultra-low temperature of 7.3 °C

Abstract

Tertiary treatment, the ‘polisher’ for wastewater nutrients, has assumed an increasingly greater role in municipal wastewater treatment plants, particularly given the growing demands for wastewater treatment worldwide and more stringent discharge standards. However, most municipal wastewater treatment plants in service use first-generation tertiary treatment processes (for example, additional carbon source-dependent denitrification and chemical dephosphorization), raising significant sustainability concerns. For effective, yet sustainable nutrient polishing, we develop an elemental sulfur (S0)–siderite composite filler (S0SCF) using a melting–embedding strategy based on the liquid immersion granulation technique. As a prerequisite for engineering use, S0SCF overcomes the poor mechanical properties and safety concerns plaguing traditional S0-based reactive fillers. S0SCF inherits efficient S0-driven autotrophic denitrification and acquires an effective dephosphorization capability, with the dephosphorization mechanism linked to S0-driven autotrophic denitrification-induced Fe2+ leaching from siderite and subsequent Fe2+–PO43− coprecipitation. During ultra-low temperature tests (7.3 ± 0.3 °C), the S0SCF-packed bed bioreactor demonstrated robust removal rates for NOx (NO3 and NO2) (0.29 ± 0.02 kg N m3 per day) and PO43− (0.014 ± 0.004 kg P m3 per day), with removal efficiencies reaching 91.2 ± 3.2% and 81.4 ± 7.8%, respectively. Meanwhile, the low levels of nitrous oxide emissions and free sulfide generation further highlight the sustainability implications of S0SCF-based nutrient polishing. This work sheds fresh light on developing low-carbon and eco-friendly tertiary treatment processes, taking a necessary step towards addressing the sustainability crisis in the wastewater treatment sector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication process and physicochemical characteristics of S0SCF.
Fig. 2: Set-up and operation of the S0SCF-packed bed bioreactor.
Fig. 3: Multifaceted roles of siderite in S0SCF.
Fig. 4: Microbial community characteristics based on S0SCF.

Similar content being viewed by others

Data availability

The data generated in this study are provided within the article and Supplementary Information. Raw sequencing data have been archived in NCBI Sequence Read Archive (SRA) with the project accession number PRJNA905363. Source data are provided with this paper.

References

  1. Naddaf, M. The world faces a water crisis—4 powerful charts show how. Nature 615, 774–775 (2023).

    CAS  PubMed  Google Scholar 

  2. Xu, Z. et al. Assessing progress towards sustainable development over space and time. Nature 577, 74–78 (2020).

    CAS  PubMed  Google Scholar 

  3. Sachs, J. D. et al. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2, 805–814 (2019).

    Google Scholar 

  4. Editorial: The quest to address the global sanitation crisis. Nat. Water 1, 899 (2023).

  5. Kone, D. Transforming sanitation to combat the global water crisis. Nat. Water 1, 752–753 (2023).

    Google Scholar 

  6. Zagklis, D. P. & Bampos, G. Tertiary wastewater treatment technologies: a review of technical, economic, and life cycle aspects. Processes 10, 2304 (2022).

    CAS  Google Scholar 

  7. Tortajada, C. Reused water as a source of clean water and energy. Nat. Water 2, 102–103 (2024).

    Google Scholar 

  8. Grego, S. The humble toilet is an opportunity for sustainable water reuse. Nat. Water 1, 900–901 (2023).

    Google Scholar 

  9. Du, W. et al. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 1, 166–175 (2023).

    Google Scholar 

  10. Bellas, C. M., Campbell, K., Tranter, M. & Sanchez-Baracaldo, P. Nitrogen and sulfur metabolisms encoded in prokaryotic communities associated with sea ice algae. ISME Commun. 3, 131 (2023).

    PubMed  PubMed Central  Google Scholar 

  11. Ntagia, E. & Lens, P. Pyrite-based denitrification combined with electrochemical disinfection to remove nitrate and microbial contamination from groundwater. npj Clean Water 6, 11–59 (2023).

    Google Scholar 

  12. Gong, Q. et al. Ultra-stable mixotrophic denitrification coupled with anammox under organic stress for mainstream municipal wastewater treatment. Water Res. 249, 120932 (2024).

    CAS  PubMed  Google Scholar 

  13. Leprich, D. J. et al. Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. ISME J. 15, 2043–2056 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Macalady, J. L. et al. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J. 2, 590–601 (2008).

    CAS  PubMed  Google Scholar 

  15. Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).

    CAS  PubMed  Google Scholar 

  16. Findlay, A. J. et al. Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes. Nat. Commun. 10, 1597 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Li, R., Zhang, Y. & Guan, M. Investigation into pyrite autotrophic denitrification with different mineral properties. Water Res. 221, 118763 (2022).

    CAS  PubMed  Google Scholar 

  18. Li, R., Guan, M. & Wang, W. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification. Water Res. 189, 116662 (2021).

    CAS  PubMed  Google Scholar 

  19. Hu, Y., Wu, G., Li, R., Xiao, L. & Zhan, X. Iron sulphides mediated autotrophic denitrification: an emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Res. 179, 115914 (2020).

    CAS  PubMed  Google Scholar 

  20. Wang, X. et al. Mackinawite (FeS) chemodenitrification of nitrate (NO3) under acidic to neutral pH conditions and its stable N and O isotope dynamics. ACS Earth Space Chem. 6, 2801–2811 (2022).

    CAS  Google Scholar 

  21. Deng, Y. et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: a review. Water Res. 224, 119051 (2022).

    CAS  PubMed  Google Scholar 

  22. Johni, A. K. & OmidbakhshAmiri, E. Simulation and multi-objective optimization of Claus process of sulfur recovery unit. J. Environ. Chem. Eng. 11, 110969 (2023).

    CAS  Google Scholar 

  23. Jing, L. et al. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization. Nat. Commun. 13, 7853 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagenfeld, J., Al-Ali, K., Almheiri, S., Slavens, A. F. & Calvet, N. Sustainable applications utilizing sulfur, a by-product from oil and gas industry: a state-of-the-art review. Waste Manage. 95, 78–89 (2019).

    Google Scholar 

  25. Kang, K. et al. Segmented polyurethanes and thermoplastic elastomers from elemental sulfur with enhanced thermomechanical properties and flame retardancy. Angew. Chem. Int. Ed. 60, 22900–22907 (2021).

    CAS  Google Scholar 

  26. Teng, Y., Zhou, Q. & Gao, P. Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit. Rev. Environ. Sci. Technol. 49, 2314–2358 (2019).

    CAS  Google Scholar 

  27. Cheng, X. et al. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 4, 65–72 (2014).

    CAS  Google Scholar 

  28. Ohmoto, H., Watanabe, Y. & Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before approximately 1.8 billion years ago. Nature 429, 395–399 (2004).

    CAS  PubMed  Google Scholar 

  29. Füllenbach, L. C. et al. Nanoanalytical identification of siderite dissolution-coupled Pb removal mechanisms from oxic and anoxic aqueous solutions. ACS Earth Space Chem. 4, 1966–1977 (2020).

    Google Scholar 

  30. Su, R. et al. Arsenic removal from hydrometallurgical waste sulfuric acid via scorodite formation using siderite (FeCO3). Chem. Eng. J. 424, 130552 (2021).

    CAS  Google Scholar 

  31. Weber, J. et al. Grain boundary widening controls siderite (FeCO3) replacement of limestone (CaCO3). Sci. Rep. 13, 4581 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ha, J., Zhao, X., Yu, R., Barkay, T. & Yee, N. Hg(II) reduction by siderite (FeCO3). Appl. Geochem. 78, 211–218 (2017).

    CAS  Google Scholar 

  33. Song, Q., Feng, Y., Liu, G. & Lv, W. Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: kinetics, pathways, and mechanisms. Chem. Eng. J. 361, 929–936 (2019).

    CAS  Google Scholar 

  34. Wang, S., Liu, C., Wang, X., Yuan, D. & Zhu, G. Dissimilatory nitrate reduction to ammonium (DNRA) in traditional municipal wastewater treatment plants in China: widespread but low contribution. Water Res. 179, 115877 (2020).

    CAS  PubMed  Google Scholar 

  35. Li, J. et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor. Water Res. 160, 178–187 (2019).

    CAS  PubMed  Google Scholar 

  36. Zhou, H., Li, X., Xu, G. & Yu, H. Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. Sci. Total Environ. 643, 225–237 (2018).

    CAS  PubMed  Google Scholar 

  37. Wan, D., Liu, Y., Wang, Y., Wang, H. & Xiao, S. Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: kinetics and bacterial community structure. Water Res. 108, 280–292 (2017).

    PubMed  Google Scholar 

  38. Guo, J. et al. pH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: sulfate reduction or sulfur reduction? Water Res. 204, 117628 (2021).

    CAS  PubMed  Google Scholar 

  39. Wilfert, P. et al. Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water Res. 104, 449–460 (2016).

    CAS  PubMed  Google Scholar 

  40. Wang, L. et al. S0-driven partial denitrification coupled with anammox (S0PDA) enables highly efficient autotrophic nitrogen removal from wastewater. Water Res. 255, 121418 (2024).

    CAS  PubMed  Google Scholar 

  41. Qiu, Y. et al. Achieving a novel polysulfide-involved sulfur-based autotrophic denitrification process for high-rate nitrogen removal in elemental sulfur-packed bed reactors. ACS EST Eng. 2, 1504–1513 (2022).

    CAS  Google Scholar 

  42. Qiu, Y. et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation. Water Res. 169, 115084 (2020).

    CAS  PubMed  Google Scholar 

  43. Luna-Velasco, A., Sierra-Alvarez, R., Castro, B. & Field, J. A. Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero‐valent iron. Biotechnol. Bioeng. 107, 933–942 (2010).

    CAS  PubMed  Google Scholar 

  44. Zhao, Q. et al. Partial denitrifying phosphorus removal coupling with anammox (PDPRA) enables synergistic removal of C, N, and P nutrients from municipal wastewater: a year-round pilot-scale evaluation. Water Res. 253, 121321 (2024).

    CAS  PubMed  Google Scholar 

  45. Laroche, E. et al. Dynamics of bacterial communities mediating the treatment of an As-rich acid mine drainage in a field pilot. Front. Microbiol. 9, 3169 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Shao, M., Zhang, T. & Fang, H. H. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl. Microbiol. Biotechnol. 88, 1027–1042 (2010).

    CAS  PubMed  Google Scholar 

  47. Wang, W., Wei, D., Li, F., Zhang, Y. & Li, R. Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal: from feasibility to pilot experiments. Water Res. 160, 52–59 (2019).

    CAS  PubMed  Google Scholar 

  48. Mehta-Kolte, M. G. & Bond, D. R. Geothrix fermentans secretes two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl. Environ. Microbiol. 78, 6987–6995 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghane, E., Fausey, N. R. & Brown, L. C. Modeling nitrate removal in a denitrification bed. Water Res. 71, 294–305 (2015).

    CAS  PubMed  Google Scholar 

  50. Halaburka, B. J., LeFevre, G. H. & Luthy, R. G. Quantifying the temperature dependence of nitrate reduction in woodchip bioreactors: experimental and modeled results with applied case-study. Environ. Sci. Water Res. Technol. 5, 782–797 (2019).

    CAS  Google Scholar 

  51. Schmidt, C. A. & Clark, M. W. Deciphering and modeling the physicochemical drivers of denitrification rates in bioreactors. Ecol. Eng. 60, 276–288 (2013).

    Google Scholar 

  52. Park, K. Y., Inamori, Y., Mizuochi, M. & Ahn, K. H. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration. J. Biosci. Bioeng. 90, 247–252 (2000).

    CAS  PubMed  Google Scholar 

  53. Lu, H. & Chandran, K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnol. Bioeng. 106, 390–398 (2010).

    CAS  PubMed  Google Scholar 

  54. Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. & Siegrist, H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res. 46, 1027–1037 (2012).

    CAS  PubMed  Google Scholar 

  55. Huang, D. et al. The current status, energy implications, and governance of urban wastewater treatment and reuse: a system analysis of the Beijing case. Water 15, 630 (2023).

    CAS  Google Scholar 

  56. van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the shared socio-economic pathways. J. Environ. Manage. 231, 446–456 (2019).

    PubMed  Google Scholar 

  57. Tortajada, C. Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals.npj Clean Water 3, 22 (2020).

    CAS  Google Scholar 

  58. Lefebvre, O. Beyond NEWater: an insight into Singapore’s water reuse prospects. Curr. Opin. Environ. Sci. Health 2, 26–31 (2018).

    Google Scholar 

  59. Li, P. et al. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium. Water Res. 93, 74–83 (2016).

    CAS  PubMed  Google Scholar 

  60. Hounslow, M. J., Oullion, M. & Reynolds, G. K. Kinetic models for granule nucleation by the immersion mechanism. Powder Technol. 189, 177–189 (2009).

    CAS  Google Scholar 

  61. Rough, S. L., Wilson, D. I., Bayly, A. E. & York, D. W. Mechanisms in high-viscosity immersion–granulation. Chem. Eng. Sci. 60, 3777–3793 (2005).

    CAS  Google Scholar 

  62. Zhang, Y. et al. Nutrient removal through pyrrhotite autotrophic denitrification: implications for eutrophication control. Sci. Total Environ. 662, 287–296 (2019).

    CAS  PubMed  Google Scholar 

  63. Li, R., Morrison, L., Collins, G., Li, A. & Zhan, X. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction. Water Res. 96, 32–41 (2016).

    CAS  PubMed  Google Scholar 

  64. Yang, Y. et al. Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents. Chem. Eng. J. 328, 511–518 (2017).

    CAS  Google Scholar 

  65. Sartoris, J. J., Thullen, J. S., Barber, L. B. & Salas, D. E. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland. Ecol. Eng. 14, 49–65 (2000).

    Google Scholar 

  66. Husband, J. A. et al. Full-scale operating experience of deep bed denitrification filter achieving <3 mg/l total nitrogen and <0.18 mg/l total phosphorus. Water Sci. Technol. 65, 519–524 (2012).

    PubMed  Google Scholar 

  67. Kartal, B., Kuenen, J. G. & van Loosdrecht, M. C. M. Sewage treatment with anammox. Science 328, 702–703 (2010).

    CAS  PubMed  Google Scholar 

  68. Kuenen, J. G. Anammox bacteria: from discovery to application. Nat. Rev. Microbiol. 6, 320–326 (2008).

    CAS  PubMed  Google Scholar 

  69. Zhao, Q. et al. From hybrid process to pure biofilm anammox process: suspended sludge biomass management contributing to high-level anammox enrichment in biofilms. Water Res. 236, 119959 (2023).

    CAS  PubMed  Google Scholar 

  70. Zhao, Q. et al. Carbon-restricted anoxic zone as an overlooked anammox hotspot in municipal wastewater treatment plants. Environ. Sci. Technol. 57, 21767–21778 (2023).

    CAS  PubMed  Google Scholar 

  71. Mora, M., Guisasola, A., Gamisans, X. & Gabriel, D. Examining thiosulfate-driven autotrophic denitrification through respirometry. Chemosphere. 113, 1–8 (2014).

    CAS  PubMed  Google Scholar 

  72. Dennis, K. L. et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10–producing T cells. Cancer Res. 73, 5905–5913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Program of National Natural Science Foundation of China (grant no. 52131004, Y.P.), the Higher Education Discipline Innovation Project (111 Project, grant no. D16003, to Y.P.) and the Funding Projects of Beijing Municipal Commission of Education (Y.P.).

Author information

Authors and Affiliations

Authors

Contributions

Y.P. conceived and led the project. Q. Zhao, L.W., T.J., X.L. and Q. Zhang contributed to the chemical, material, microbial and statistical analysis. Q. Zhao, L.W. and T.J. wrote the manuscript. Y.P., X.L. and Q. Zhang contributed significantly by commenting upon and revising the manuscript. All authors discussed and interpreted the results and contributed to the manuscript.

Corresponding author

Correspondence to Yongzhen Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Xiaoli Chai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Tables 1–9 and Figs. 1–7.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Wang, L., Jia, T. et al. Elemental sulfur–siderite composite filler empowers sustainable tertiary treatment of municipal wastewater even at an ultra-low temperature of 7.3 °C. Nat Water 2, 782–792 (2024). https://doi.org/10.1038/s44221-024-00285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00285-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research