Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cryosphere–groundwater connectivity is a missing link in the mountain water cycle

Abstract

The mountain cryosphere and groundwater play pivotal roles in shaping the hydrological cycle, yet their connectivity remains incompletely understood. Current knowledge on meltwater recharge and consequent groundwater discharge processes is better developed for snow–groundwater connectivity than for glacier–groundwater connectivity. Estimates of meltwater recharge vary considerably, which is probably a function of not only inherent catchment characteristics but also of the different spatio-temporal scales involved and the uncertainties in the methods used. This hinders a comprehensive understanding of the mountain water cycle. As glaciers retreat, permafrost thaws and snowpack diminishes, the relative importance of mountain groundwater is expected to increase. However, shifting and declining recharge from the cryosphere may decrease absolute groundwater amounts and fluxes with as-yet unknown effects on catchment-scale hydrological processes. We therefore stress the need to better quantify mountain cryosphere–groundwater connectivity to predict climate change impacts on mountain water supply and to support sustainable water resource management of downstream socio-ecological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Locations of meltwater recharge to groundwater and consequent meltwater flowpaths through the subsurface at different spatial scales.
Fig. 2: Key questions related to cryosphere–groundwater connectivity.

Similar content being viewed by others

References

  1. Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Article  CAS  Google Scholar 

  2. Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

    Article  CAS  Google Scholar 

  3. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 34, 153–178 (2009).

    Article  Google Scholar 

  6. Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article  Google Scholar 

  7. Vincent, A., Violette, S. & Aðalgeirsdóttir, G. Groundwater in catchments headed by temperate glaciers: a review. Earth Sci. Rev. 188, 59–76 (2019).

    Article  Google Scholar 

  8. Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).

    Article  Google Scholar 

  9. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618–632 (2022).

    Article  Google Scholar 

  11. Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J. & Lundquist, J. D. Characterizing biases in mountain snow accumulation from global data sets. Water Resour. Res. 55, 9873–9891 (2019).

    Article  Google Scholar 

  12. Pfeffer, W. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    Article  Google Scholar 

  13. Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour. Res. 43, W07447 (2007).

    Article  Google Scholar 

  14. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Article  Google Scholar 

  15. Huscroft, J., Gleeson, T., Hartmann, J. & Börker, J. Compiling and mapping global permeability of the unconsolidated and consolidated earth: Global Hydrogeology Maps 2.0 (GLHYMPS 2.0). Geophys. Res. Lett. 45, 1897–1904 (2018).

    Article  Google Scholar 

  16. Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  17. De Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article  PubMed  Google Scholar 

  18. Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).

    Article  Google Scholar 

  19. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hock, R. et al. High mountain areas. In Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O.) 131–202 (Cambridge Univ. Press, 2019).

  21. Pepin, N. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).

    Article  Google Scholar 

  22. Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens. Environ. 243, 111781 (2020).

    Article  Google Scholar 

  24. Fontrodona Bach, A., Van der Schrier, G., Melsen, L., Klein Tank, A. & Teuling, A. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophys. Res. Lett. 45, 12312–12319 (2018).

    Article  Google Scholar 

  25. Adler, C. et al. Cross-chapter paper 5: Mountains. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O.) 2273–2318 (Cambridge Univ. Press, 2022).

  26. Arenson, L. U., Harrington, J. S., Koenig, C. E. & Wainstein, P. A. Mountain permafrost hydrology—a practical review following studies from the Andes. Geosciences 12, 48 (2022).

    Article  Google Scholar 

  27. Van Tiel, M., Van Loon, A. F., Seibert, J. & Stahl, K. Hydrological response to warm and dry weather: do glaciers compensate? Hydrol. Earth Syst. Sci. 25, 3245–3265 (2021).

    Article  Google Scholar 

  28. Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Thornton, J., Therrien, R., Mariéthoz, G., Linde, N. & Brunner, P. Simulating fully-integrated hydrological dynamics in complex alpine headwaters: potential and challenges. Water Resour. Res. 58, e2020WR029390 (2022).

    Article  Google Scholar 

  31. Frisbee, M. D., Phillips, F. M., Campbell, A. R., Liu, F. & Sanchez, S. A. Streamflow generation in a large, alpine watershed in the southern Rocky Mountains of Colorado: is streamflow generation simply the aggregation of hillslope runoff responses? Water Resour. Res. 47, W06512 (2011).

    Article  Google Scholar 

  32. Yao, Y. et al. Role of groundwater in sustaining northern Himalayan rivers. Geophys. Res. Lett. 48, e2020GL092354 (2021).

    Article  Google Scholar 

  33. Liljedahl, A., Gädeke, A., O’Neel, S., Gatesman, T. & Douglas, T. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).

    Article  Google Scholar 

  34. Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).

    Article  CAS  Google Scholar 

  35. Cochand, M., Christe, P., Ornstein, P. & Hunkeler, D. Groundwater storage in high alpine catchments and its contribution to streamflow. Water Resour. Res. 55, 2613–2630 (2019).

    Article  Google Scholar 

  36. Somers, L. D. & McKenzie, J. M. A review of groundwater in high mountain environments. WIREs Water 7, e1475 (2020).

    Article  Google Scholar 

  37. Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science 296, 1985–1990 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Staudinger, M. et al. Catchment water storage variation with elevation. Hydrol. Process. 31, 2000–2015 (2017).

    Article  Google Scholar 

  39. Hood, J. L. & Hayashi, M. Characterization of snowmelt flux and groundwater storage in an alpine headwater basin. J. Hydrol. 521, 482–497 (2015).

    Article  Google Scholar 

  40. Andermann, C. et al. Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat. Geosci. 5, 127–132 (2012).

    Article  CAS  Google Scholar 

  41. Schilling, O. S. et al. Revisiting Mt Fuji’s groundwater origins with helium, vanadium and eDNA tracers. Nat. Water 1, 60–73 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Markovich, K. H., Manning, A. H., Condon, L. E. & McIntosh, J. C. Mountain-block recharge: a review of current understanding. Water Resour. Res. 55, 8278–8304 (2019).

    Article  Google Scholar 

  43. Wilson, J. L & Guan, H. Mountain-block hydrology and mountain front recharge. In Groundwater Recharge in a Desert Environment: The Southwestern United States (eds Hogan, H. F.) Vol. 9, 113–137 (AGU, 2004).

  44. van Tiel, M. et al. Melting alpine water towers aggravate downstream low flows: a stress-test storyline approach. Earths Future 11, e2022EF003408 (2023).

    Article  Google Scholar 

  45. Aubry-Wake, C., Pradhananga, D. & Pomeroy, J. W. Hydrological process controls on streamflow variability in a glacierized headwater basin. Hydrol. Process. 36, e14731 (2022).

    Article  Google Scholar 

  46. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  47. Immerzeel, W., Pellicciotti, F. & Bierkens, M. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 6, 742–745 (2013).

    Article  CAS  Google Scholar 

  48. Beniston, M. et al. The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).

    Article  Google Scholar 

  49. Hayashi, M. Alpine hydrogeology: the critical role of groundwater in sourcing the headwaters of the world. Ground Water 58, 498–510 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Gao, H. et al. Permafrost hydrology of the Qinghai-Tibet Plateau: a review of processes and modeling. Front. Earth Sci. 8, 576838 (2021).

    Article  Google Scholar 

  51. Partington, D. et al. Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. J. Hydrol. 458–459, 28–39 (2012).

    Article  Google Scholar 

  52. Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K. & Tallaksen, L. M. Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions. Hydrol. Earth Syst. Sci. 24, 849–867 (2020).

    Article  Google Scholar 

  53. Müller, T., Lane, S. & Schaefli, B. Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment. Hydrol. Earth Syst. Sci. 26, 6029–6054 (2022).

    Article  Google Scholar 

  54. Benettin, P. et al. Transit time estimation in catchments: recent developments and future directions. Water Resour. Res. 58, e2022WR033096 (2022).

    Article  Google Scholar 

  55. Özgen Xian, I. et al. Understanding the hydrological response of a headwater-dominated catchment by analysis of distributed surface–subsurface interactions. Sci. Rep. 13, 4669 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Christensen, C., Hayashi, M. & Bentley, L. Hydrogeological characterization of an alpine aquifer system in the Canadian Rocky Mountains. Hydrogeol. J. 28, 1871–1890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Voigt, C. et al. Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze. Hydrol. Earth Syst. Sci. 25, 5047–5064 (2021).

    Article  Google Scholar 

  58. Chaffaut, Q. et al. New insights on water storage dynamics in a mountainous catchment from superconducting gravimetry. Geophys. J. Int. 228, 432–446 (2022).

    Article  Google Scholar 

  59. Halloran, L. Improving groundwater storage change estimates using time-lapse gravimetry with Gravi4GW. Environ. Model. Softw. 150, 105340 (2022).

    Article  Google Scholar 

  60. Illien, L. et al. Subsurface moisture regulates Himalayan groundwater storage and discharge. AGU Adv. 2, e2021AV000398 (2021).

    Article  Google Scholar 

  61. Castellazzi, P. et al. Glacial melt and potential impacts on water resources in the Canadian Rocky Mountains. Water Resour. Res. 55, 10191–10217 (2019).

    Article  Google Scholar 

  62. Liu, M., Pei, H. & Shen, Y. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. J. Hydrol. 612, 128156 (2022).

    Article  Google Scholar 

  63. Xiang, L. et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 449, 228–239 (2022).

    Article  Google Scholar 

  64. Baraer, M. et al. Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol. Process. 29, 2561–2581 (2015).

    Article  Google Scholar 

  65. Jasechko, S. Global isotope hydrogeology—review. Rev. Geophys. 57, 835–965 (2019).

    Article  Google Scholar 

  66. Barthold, F. K. et al. How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour. Res. 47, W08519 (2011).

    Article  Google Scholar 

  67. Schmieder, J., Garvelmann, J., Marke, T. & Strasser, U. Spatio-temporal tracer variability in the glacier melt end-member—how does it affect hydrograph separation results? Hydrol. Process. 32, 1828–1843 (2018).

    Article  Google Scholar 

  68. Penna, D., Engel, M., Bertoldi, G. & Comiti, F. Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment. Hydrol. Earth Syst. Sci. 21, 23–41 (2017).

    Article  Google Scholar 

  69. Beria, H. et al. Understanding snow hydrological processes through the lens of stable water isotopes. WIREs Water 5, e1311 (2018).

    Article  Google Scholar 

  70. Ala-aho, P. et al. Modeling the isotopic evolution of snowpack and snowmelt: testing a spatially distributed parsimonious approach. Water Resour. Res. 53, 5813–5830 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schilling, O. S. et al. Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour. Res. 57, e2020WR028479 (2021).

    Article  Google Scholar 

  72. Aeschbach-Hertig, W. & Solomon, D. Noble gas thermometry in groundwater hydrology. In Noble Gases as Geochemical Tracers (ed. Brunard, P.) (Springer, 2013).

  73. Grundl, R., Magnusson, N., Brennwald, M. & Kipfer, R. Mechanisms of subglacial groundwater recharge as derived from noble gas, 14C, and stable isotopic data. Earth Planet. Sci. Lett. 363–370, 78–85 (2013).

    Article  Google Scholar 

  74. Urycki, D. R., Bassiouni, M., Good, S. P., Crump, B. C. & Li, B. The streamwater microbiome encodes hydrologic data across scales. Sci. Total Environ. 849, 157911 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Van Tiel, M., Stahl, K., Freudiger, D. & Seibert, J. Glacio-hydrological model calibration and evaluation. WIREs Water 7, e1483 (2020).

    Article  Google Scholar 

  77. Markovich, K. H., Maxwell, R. M. & Fogg, G. E. Hydrogeological response to climate change in alpine hillslopes. Hydrol. Process. 30, 3126–3138 (2016).

    Article  Google Scholar 

  78. Somers, L. D. et al. Groundwater buffers decreasing glacier melt in an Andean watershed—but not forever. Geophys. Res. Lett. 46, 13016–13026 (2019).

    Article  Google Scholar 

  79. Rivera, A. & Calderhead, A. I. Glacial melt in the Canadian Rockies and potential effects on groundwater in the Plains region. Water 14, 733 (2022).

    Article  Google Scholar 

  80. Evans, S. G., Ge, S. & Liang, S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resour. Res. 51, 9564–9576 (2015).

    Article  Google Scholar 

  81. Schilling, O. S., Park, Y.-J., Therrien, R. & Nagare, R. M. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze–thaw. Ground Water 57, 63–74 (2018).

    Article  PubMed  Google Scholar 

  82. Pohl, E., Gloaguen, R., Andermann, C. & Knoche, M. Glacier melt buffers river runoff in the Pamir Mountains. Water Resour. Res. 53, 2467–2489 (2017).

    Article  Google Scholar 

  83. Comeau, L. E., Pietroniro, A. & Demuth, M. N. Glacier contribution to the North and South Saskatchewan rivers. Hydrol. Process. 23, 2640–2653 (2009).

    Article  Google Scholar 

  84. Mackay, J. D. et al. Proglacial groundwater storage dynamics under climate change and glacier retreat. Hydrol. Process. 34, 5456–5473 (2020).

    Article  Google Scholar 

  85. Falatkova, K., Šobr, M., Slavík, M., Bruthans, J. & Janský, B. Hydrological characterization and connectivity of proglacial lakes to a stream, Adygine ice-debris complex, northern Tien Shan. Hydrol. Sci. J. 65, 610–623 (2020).

    Article  CAS  Google Scholar 

  86. Maisch, M., Haeberli, W., Hoelzle, M. & Wenzel, J. Occurrence of rocky and sedimentary glacier beds in the Swiss Alps as estimated from glacier-inventory data. Ann. Glaciol. 28, 231–235 (1999).

    Article  Google Scholar 

  87. Boulton, G., Lunn, R., Vidstrand, P. & Zatsepin, S. Subglacial drainage by groundwater-channel coupling, and the origin of esker systems: part 1—glaciological observations. Quat. Sci. Rev. 26, 1067–1090 (2007).

    Article  Google Scholar 

  88. Finger, D. et al. Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability. Hydrol. Earth Syst. Sci. 17, 3261–3277 (2013).

    Article  Google Scholar 

  89. Gremaud, V., Goldscheider, N., Savoy, L., Favre, G. & Masson, H. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeol. J. 17, 1833–1848 (2009).

    Article  CAS  Google Scholar 

  90. Ofterdinger, U. S., Balderer, W., Loew, S. & Renard, P. Environmental isotopes as indicators for ground water recharge to fractured granite. Ground Water 42, 868–879 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Dochartaigh, B. É. et al. Groundwater–glacier meltwater interaction in proglacial aquifers. Hydrol. Earth Syst. Sci. 23, 4527–4539 (2019).

    Article  CAS  Google Scholar 

  92. Magnusson, J. et al. Melt water driven stream and groundwater stage fluctuations on a glacier forefield (Dammagletscher, Switzerland). Hydrol. Process. 28, 823–836 (2014).

    Article  Google Scholar 

  93. Chesnokova, A., Baraër, M. & Bouchard, É. Proglacial icings as records of winter hydrological processes. Cryosphere 14, 4145–4164 (2020).

    Article  Google Scholar 

  94. Lone, S. A. et al. Meltwaters dominate groundwater recharge in cold arid desert of Upper Indus River Basin (UIRB), western Himalayas. Sci. Total Environ. 786, 147514 (2021).

    Article  CAS  Google Scholar 

  95. Singh, A. T. et al. Hydrograph apportionment of the Chandra River draining from a semi-arid region of the Upper Indus Basin, western Himalaya. Sci. Total Environ. 780, 146500 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Meng, Y., Liu, G. & Li, M. Tracing the sources and processes of groundwater in an alpine glacierized region in southwest China: evidence from environmental isotopes. Water 7, 2673–2690 (2015).

    Article  CAS  Google Scholar 

  97. Flowers, G. E. Modelling water flow under glaciers and ice sheets. Proc. R. Soc. A 471, 20140907 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Person, M., McIntosh, J., Bense, V. & Remenda, V. H. Pleistocene hydrology of North America: the role of ice sheets in reorganizing groundwater flow systems. Rev. Geophys. 45, RG3007 (2007).

    Article  Google Scholar 

  99. Farinotti, D., Usselmann, S., Huss, M., Bauder, A. & Funk, M. Runoff evolution in the Swiss Alps: projections for selected high-alpine catchments based on ENSEMBLES scenarios. Hydrol. Process. 26, 1909–1924 (2012).

    Article  Google Scholar 

  100. Klok, E., Jasper, K., Roelofsma, K., Gurtz, J. & Badoux, A. Distributed hydrological modelling of a heavily glaciated Alpine river basin. Hydrol. Sci. J. 46, 553–570 (2001).

    Article  Google Scholar 

  101. Mimeau, L. et al. Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues. Hydrol. Earth Syst. Sci. 23, 3969–3996 (2019).

    Article  Google Scholar 

  102. Wijngaard, R. R. et al. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra river basins. PLoS ONE 12, e0190224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Naz, B. S., Frans, C., Clarke, G., Burns, P. & Lettenmaier, D. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrol. Earth Syst. Sci. 18, 787–802 (2014).

    Article  Google Scholar 

  104. Saberi, L. et al. Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed. Hydrol. Earth Syst. Sci. 23, 405–425 (2019).

    Article  Google Scholar 

  105. Chen, J., Kuang, X., Lancia, M., Yao, Y. & Zheng, C. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau. J. Hydrol. Reg. Stud. 36, 100871 (2021).

    Article  Google Scholar 

  106. He, Q. et al. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau. J. Hydrol. Reg. Stud. 47, 101368 (2023).

    Article  Google Scholar 

  107. Käser, D. & Hunkeler, D. Contribution of alluvial groundwater to the outflow of mountainous catchments. Water Resour. Res. 52, 680–697 (2016).

    Article  Google Scholar 

  108. Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).

    Article  Google Scholar 

  109. Lutz, A. et al. South Asian agriculture increasingly dependent on meltwater and groundwater. Nat. Clim. Change 12, 566–573 (2022).

    Article  Google Scholar 

  110. Godsey, S. E., Kirchner, J. W. & Tague, C. L. Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA. Hydrol. Process. 28, 5048–5064 (2014).

    Article  Google Scholar 

  111. Carroll, R. W., Deems, J. S., Niswonger, R., Schumer, R. & Williams, K. H. The importance of interflow to groundwater recharge in a snowmelt-dominated headwater basin. Geophys. Res. Lett. 46, 5899–5908 (2019).

    Article  Google Scholar 

  112. Lowry, C. S., Deems, J. S., Loheide, S. P.II & Lundquist, J. D. Linking snowmelt-derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California. Hydrol. Process. 24, 2821–2833 (2010).

    Article  Google Scholar 

  113. Bales, R. C. et al. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J. 10, 786–799 (2011).

    Article  Google Scholar 

  114. Hanich, L. et al. Snow hydrology in the Moroccan Atlas Mountains. J. Hydrol. Reg. Stud. 42, 101101 (2022).

    Article  Google Scholar 

  115. Jasechko, S. et al. The pronounced seasonality of global groundwater recharge. Water Resour. Res. 50, 8845–8867 (2014).

    Article  Google Scholar 

  116. Lucianetti, G., Penna, D., Mastrorillo, L. & Mazza, R. The role of snowmelt on the spatio-temporal variability of spring recharge in a dolomitic mountain group, Italian Alps. Water 12, 2256 (2020).

    Article  Google Scholar 

  117. Jeelani, G., Lone, S. A., Nisa, A. U., Deshpande, R. & Padhya, V. Use of stable water isotopes to identify and estimate the sources of groundwater recharge in an alluvial aquifer of Upper Jhelum Basin (UJB), western Himalayas. Hydrol. Sci. J. 66, 2330–2339 (2021).

    Article  CAS  Google Scholar 

  118. Dar, T., Rai, N. & Kumar, S. Distinguishing mountain front and mountain block recharge in an intermontane basin of the Himalayan region. Ground Water 60, 488–495 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Jódar, J. et al. Groundwater discharge in high-mountain watersheds: a valuable resource for downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain). Sci. Total Environ. 593, 760–772 (2017).

    Article  PubMed  Google Scholar 

  120. Arnoux, M., Halloran, L. J., Berdat, E. & Hunkeler, D. Characterizing seasonal groundwater storage in alpine catchments using time-lapse gravimetry, water stable isotopes and water balance methods. Hydrol. Process. 34, 4319–4333 (2020).

    Article  Google Scholar 

  121. Manning, A. H., Ball, L. B., Wanty, R. B. & Williams, K. H. Direct observation of the depth of active groundwater circulation in an alpine watershed. Water Resour. Res. 57, e2020WR028548 (2021).

    Article  Google Scholar 

  122. Thornton, J. M., Mariethoz, G. & Brunner, P. A 3D geological model of a structurally complex alpine region as a basis for interdisciplinary research. Sci. Data 5, 180238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Earman, S., Campbell, A. R., Phillips, F. M. & Newman, B. D. Isotopic exchange between snow and atmospheric water vapor: estimation of the snowmelt component of groundwater recharge in the southwestern United States. J. Geophys. Res. Atmos. 111, D09302 (2006).

    Article  Google Scholar 

  124. Hammond, J. C., Harpold, A. A., Weiss, S. & Kampf, S. K. Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties. Hydrol. Earth Syst. Sci. 23, 3553–3570 (2019).

    Article  Google Scholar 

  125. Harrison, H. N., Hammond, J. C., Kampf, S. & Kiewiet, L. On the hydrological difference between catchments above and below the intermittent-persistent snow transition. Hydrol. Process. 35, e14411 (2021).

    Article  Google Scholar 

  126. Jasechko, S., Wassenaar, L. I. & Mayer, B. Isotopic evidence for widespread cold-season-biased groundwater recharge and young streamflow across central Canada. Hydrol. Process. 31, 2196–2209 (2017).

    Article  Google Scholar 

  127. Winograd, I. J., Riggs, A. C. & Coplen, T. B. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeol. J. 6, 77–93 (1998).

    Article  Google Scholar 

  128. Huntington, J. L. & Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour. Res. 48, W11524 (2012).

    Article  Google Scholar 

  129. Tague, C. & Grant, G. E. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Water Resour. Res. 45, W07421 (2009).

    Article  Google Scholar 

  130. Rasouli, K., Pomeroy, J. W., Janowicz, J. R., Carey, S. K. & Williams, T. J. Hydrological sensitivity of a northern mountain basin to climate change. Hydrol. Process. 28, 4191–4208 (2014).

    Article  Google Scholar 

  131. Goulden, M. L. & Bales, R. C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl Acad. Sci. 111, 14071–14075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Avanzi, F. et al. Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts. Hydrol. Earth Syst. Sci. 24, 4317–4337 (2020).

    Article  Google Scholar 

  133. Berghuijs, W., Woods, R. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article  Google Scholar 

  134. Nygren, M. et al. Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. J. Hydrol. X 8, 100062 (2020).

    Google Scholar 

  135. Meixner, T. et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534, 124–138 (2016).

    Article  Google Scholar 

  136. Epting, J., Michel, A., Affolter, A. & Huggenberger, P. Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. J. Hydrol. X 11, 100071 (2021).

    Google Scholar 

  137. de Palézieux, L. & Loew, S. Long-term transient groundwater pressure and deep infiltration in Alpine mountain slopes (Poschiavo Valley, Switzerland). Hydrogeol. J. 27, 2817–2834 (2019).

    Article  Google Scholar 

  138. Hansmann, J., Loew, S. & Evans, K. F. Reversible rock-slope deformations caused by cyclic water-table fluctuations in mountain slopes of the Central Alps, Switzerland. Hydrogeol. J. 20, 73–91 (2012).

    Article  Google Scholar 

  139. Oestreicher, N. et al. Controls on spatial and temporal patterns of slope deformation in an alpine valley. J. Geophys. Res. Earth Surf. 126, e2021JF006353 (2021).

    Article  Google Scholar 

  140. Marti, R. et al. Mapping snow depth in open alpine terrain from stereo satellite imagery. Cryosphere 10, 1361–1380 (2016).

    Article  Google Scholar 

  141. Deschamps-Berger, C. et al. Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data. Cryosphere 14, 2925–2940 (2020).

    Article  Google Scholar 

  142. Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. WIREs Water 3, 461–474 (2016).

    Article  Google Scholar 

  143. Freudiger, D., Kohn, I., Seibert, J., Stahl, K. & Weiler, M. Snow redistribution for the hydrological modeling of alpine catchments. WIREs Water 4, e1232 (2017).

    Article  Google Scholar 

  144. Vionnet, V. et al. Multi-scale snowdrift-permitting modelling of mountain snowpack. Cryosphere 15, 743–769 (2021).

    Article  Google Scholar 

  145. Thornton, J., Brauchli, T., Mariethoz, G. & Brunner, P. Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain. J. Hydrol. 598, 126241 (2021).

    Article  Google Scholar 

  146. Mott, R., Vionnet, V. & Grünewald, T. The seasonal snow cover dynamics: review on wind-driven coupling processes. Front. Earth Sci. 6, 197 (2018).

    Article  Google Scholar 

  147. McClymont, A. F., Hayashi, M., Bentley, L. R. & Liard, J. Locating and characterising groundwater storage areas within an alpine watershed using time-lapse gravity, GPR and seismic refraction methods. Hydrol. Process. 26, 1792–1804 (2012).

    Article  Google Scholar 

  148. Langston, G., Bentley, L. R., Hayashi, M., McClymont, A. & Pidlisecky, A. Internal structure and hydrological functions of an alpine proglacial moraine. Hydrol. Process. 25, 2967–2982 (2011).

    Article  Google Scholar 

  149. Langston, G., Hayashi, M. & Roy, J. W. Quantifying groundwater–surface water interactions in a proglacial moraine using heat and solute tracers. Water Resour. Res. 49, 5411–5426 (2013).

    Article  Google Scholar 

  150. Muir, D. L., Hayashi, M. & McClymont, A. F. Hydrological storage and transmission characteristics of an alpine talus. Hydrol. Process. 25, 2954–2966 (2011).

    Article  Google Scholar 

  151. Winkler, G. et al. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol. J. 24, 937–953 (2016).

    Article  Google Scholar 

  152. Gordon, R. P. et al. Sources and pathways of stream generation in tropical proglacial valleys of the Cordillera Blanca, Peru. J. Hydrol. 522, 628–644 (2015).

    Article  Google Scholar 

  153. Somers, L. D. et al. Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol. Process. 30, 2915–2929 (2016).

    Article  Google Scholar 

  154. Calmels, D. et al. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet. Sci. Lett. 303, 48–58 (2011).

    Article  CAS  Google Scholar 

  155. Piña, A., Donado, L. D. & Blessent, D. Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media. J. Hydrol. 569, 556–572 (2019).

    Article  Google Scholar 

  156. Szmigielski, J. T. et al. Hydrogeology of a montane headwater groundwater system downgradient of a coal-mine waste rock dump: Elk Valley, British Columbia, Canada. Hydrogeol. J. 26, 2341–2356 (2018).

    Article  CAS  Google Scholar 

  157. Popp, A. L. et al. A framework for untangling transient groundwater mixing and travel times. Water Resour. Res. 57, e2020WR028362 (2021).

    Article  Google Scholar 

  158. Carroll, R. W. H., Manning, A. H., Niswonger, R., Marchetti, D. & Williams, K. H. Baseflow age distributions and depth of active groundwater flow in a snow-dominated mountain headwater basin. Water Resour. Res. 56, e2020WR028161 (2020).

    Article  Google Scholar 

  159. Ameli, A., Gabrielli, C., Morgenstern, U. & McDonnell, J. Groundwater subsidy from headwaters to their parent water watershed: a combined field-modeling approach. Water Resour. Res. 54, 5110–5125 (2018).

    Article  Google Scholar 

  160. Thiros, N. E., Siirila-Woodburn, E. R., Dennedy-Frank, P. J., Williams, K. H. & Gardner, W. P. Constraining bedrock groundwater residence times in a mountain system with environmental tracer observations and Bayesian uncertainty quantification. Water Resour. Res. 59, e2022WR033282 (2023).

    Article  Google Scholar 

  161. Chang, Q. et al. Using isotopic and geochemical tracers to determine the contribution of glacier-snow meltwater to streamflow in a partly glacierized alpine-gorge catchment in northeastern Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 123, 10037–10056 (2018).

    Article  Google Scholar 

  162. Wilson, A. M., Williams, M. W., Kayastha, R. B. & Racoviteanu, A. Use of a hydrologic mixing model to examine the roles of meltwater, precipitation and groundwater in the Langtang River Basin, Nepal. Ann. Glaciol. 57, 155–168 (2016).

    Article  Google Scholar 

  163. Cowie, R. M. et al. Sources of streamflow along a headwater catchment elevational gradient. J. Hydrol. 549, 163–178 (2017).

    Article  Google Scholar 

  164. Basilio Hazas, M. et al. Drought conditions enhance groundwater table fluctuations caused by hydropower plant management. Water Resour. Res. 58, e2022WR032712 (2022).

    Article  Google Scholar 

  165. Yao, Y. et al. What controls the partitioning between baseflow and mountain block recharge in the Qinghai-Tibet Plateau? Geophys. Res. Lett. 44, 8352–8358 (2017).

    Article  Google Scholar 

  166. Kozhagulova, A. et al. Geological controls on the geothermal system and hydrogeochemistry of the deep low-salinity Upper Cretaceous aquifers in the Zharkent (eastern Ily) Basin, south-eastern Kazakhstan. Front. Earth Sci. 11, 1212064 (2023).

    Article  Google Scholar 

  167. Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G. & Hagolle, O. Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 11, 493–514 (2019).

    Article  Google Scholar 

  168. Potapov, P. et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2014).

    Article  Google Scholar 

  169. Thornton, J. et al. Toward a definition of essential mountain climate variables. One Earth 4, 805–827 (2021).

    Article  Google Scholar 

  170. Cochand, F., Therrien, R. & Lemieux, J.-M. Integrated hydrological modeling of climate change impacts in a snow-influenced catchment. Ground Water 57, 3–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Brookfield, A. et al. Recent advances in integrated hydrologic models: integration of new domains. J. Hydrol. 620, 129515 (2023).

    Article  Google Scholar 

  172. Xu, T. & Liang, F. Machine learning for hydrologic sciences: an introductory overview. WIREs Water 8, e1533 (2021).

    Article  Google Scholar 

  173. Stadnyk, T. A. & Holmes, T. L. On the value of isotope-enabled hydrological model calibration. Hydrol. Sci. J. 65, 1525–1538 (2020).

    Article  CAS  Google Scholar 

  174. Triplett, A. & Condon, L. E. Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River Basin. Hydrol. Earth Syst. Sci. 27, 2763–2785 (2023).

    Article  Google Scholar 

  175. Aubry-Wake, C. & Pomeroy, J. W. Predicting hydrological change in an alpine glacierized basin and its sensitivity to landscape evolution and meteorological forcings. Water Resour. Res. 59, e2022WR033363 (2023).

    Article  Google Scholar 

  176. Ma, R. et al. Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater. Hydrol. Earth Syst. Sci. 21, 4803–4823 (2017).

    Article  CAS  Google Scholar 

  177. Gruber, S. et al. Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 11, 81–99 (2017).

    Article  Google Scholar 

  178. Noetzli, J. & Phillips, M. Mountain Permafrost Hydrology Technical Report (Swiss Federal Office for the Environment, 2019).

  179. Azam, M. F. et al. Glaciohydrology of the Himalaya-Karakoram. Science 373, eabf3668 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. McKenzie, J. M. et al. Invited perspective: what lies beneath a changing Arctic? Cryosphere 15, 479–484 (2021).

    Article  Google Scholar 

  181. Pruessner, L., Huss, M., Phillips, M. & Farinotti, D. Temperature evolution and runoff contribution of three rock glaciers in Switzerland under future climate forcing. Permafr. Periglac. Process. 33, 310–322 (2022).

    Article  Google Scholar 

  182. Rangecroft, S., Harrison, S. & Anderson, K. Rock glaciers as water stores in the Bolivian Andes: an assessment of their hydrological importance. Arct. Antarct. Alp. Res. 47, 89–98 (2015).

    Article  Google Scholar 

  183. Jones, D., Harrison, S., Anderson, K. & Betts, R. Mountain rock glaciers contain globally significant water stores. Sci. Rep. 8, 2834 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zone J. 15, vzj2016.01.0010 (2016).

    Article  Google Scholar 

  185. Rogger, M. et al. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resour. Res. 53, 1288–1308 (2017).

    Article  Google Scholar 

  186. UN World Water Development Report 2022—Groundwater: Making the Invisible Visible (UNESCO, 2022); https://www.unwater.org/publications/un-world-water-development-report-2022

  187. Tschakert, P., Ellis, N. R., Anderson, C., Kelly, A. & Obeng, J. One thousand ways to experience loss: a systematic analysis of climate-related intangible harm from around the world. Glob. Environ. Change 55, 58–72 (2019).

    Article  Google Scholar 

  188. Allison, E. A. The spiritual significance of glaciers in an age of climate change. WIREs Clim. Change 6, 493–508 (2015).

    Article  Google Scholar 

  189. Ross, A. C. et al. Seasonal water storage and release dynamics of bofedal wetlands in the Central Andes. Hydrol. Process. 37, e14940 (2023).

    Article  Google Scholar 

  190. Ochoa-Tocachi, B. et al. Potential contributions of pre-Inca infiltration infrastructure to Andean water security. Nat. Sustain. 2, 584–593 (2019).

    Article  Google Scholar 

  191. Drenkhan, F., Huggel, C., Guardamino, L. & Haeberli, W. Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba Basin. Sci. Total Environ. 665, 465–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Drenkhan, F. et al. Looking beyond glaciers to understand mountain water security. Nat. Sustain. 6, 130–138 (2023).

    Article  Google Scholar 

  193. Bondu, R., Cloutier, V., Rosa, E. & Benzaazoua, M. A review and evaluation of the impacts of climate change on geogenic arsenic in groundwater from fractured bedrock aquifers. Water Air Soil Pollut. 227, 296 (2016).

    Article  Google Scholar 

  194. Yapiyev, V. et al. The hydrochemistry and water quality of glacierized catchments in Central Asia: a review of the current status and anticipated change. J. Hydrol. Reg. Stud. 38, 100960 (2021).

    Article  Google Scholar 

  195. Colombo, N. et al. Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Glob. Planet. Change 162, 69–83 (2018).

    Article  Google Scholar 

  196. Manning, A. H., Verplanck, P. L., Caine, J. S. & Todd, A. S. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed. Appl. Geochem. 37, 64–78 (2013).

    Article  CAS  Google Scholar 

  197. Beard, D. B. et al. Anthropogenic contaminants in glacial environments I: Inputs and accumulation. Prog. Phys. Geogr. Earth Environ. 46, 630–648 (2022).

    Article  Google Scholar 

  198. Grannas, A. M. et al. The role of the global cryosphere in the fate of organic contaminants. Atmos. Chem. Phys. 13, 3271–3305 (2013).

    Article  Google Scholar 

  199. Jones, D. B., Harrison, S., Anderson, K. & Whalley, W. B. Rock glaciers and mountain hydrology: a review. Earth Sci. Rev. 193, 66–90 (2019).

    Article  Google Scholar 

  200. Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River Basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).

    Article  Google Scholar 

  201. Williams, M. W., Knauf, M., Caine, N., Liu, F. & Verplanck, P. Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafr. Periglac. Process. 17, 13–33 (2006).

    Article  Google Scholar 

  202. Williams, M. W., Knauf, M., Cory, R., Caine, N. & Liu, F. Nitrate content and potential microbial signature of rock glacier outflow, Colorado Front Range. Earth Surf. Process. Landf. 32, 1032–1047 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Mountain Research Initiative (MRI) for sponsoring the workshop ‘Cryosphere-groundwater Interactions: A Missing Link in Mountain Water Research’ via their funding from the Swiss Academy of Sciences (SCNAT) under project no. FNW0004 004-2019-00. M.v.T. was supported by a Walter Benjamin fellowship from the German Research Foundation (DFG) under project no. 510684314. C.A.-W. was supported by the Banting Postdoctoral Fellowships programme, administered by the government of Canada. G.C. acknowledges the support of the DFG research unit (FOR2793/2) investigating the ‘Sensitivity of High Alpine Geosystems to Climate Change since 1850’ (SEHAG) under grant CH981/3-2. F.D. acknowledges funding from the Dirección de Fomento de la Investigación at PUCP. I.d.G. acknowledges funding from the European Research Council (ERC) under grant agreement GROW-101041110. V.Y. was supported by Nazarbayev University under CRP research grant no. 021220CRP2122. We thank D. Masovic of VAW, ETH Zurich, for drawing Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

M.v.T., C.A.-W. and L.S. conceived and designed the study, developed the figures and wrote the paper. M.v.T. and C.A.-W. prepared Supplementary Table 1. C.A., C.D., C.L.F., F.A., F.K., G.C., K.T., M.B., S.H., T.M., V.Y. and Z.S. assisted in the writing of the workshop outputs that formed the basis of this Perspective. A.L.P., B.S., D.F., F.D., J.M.T. and O.S.S. contributed to the writing and editing of the paper. M.v.T., C.A.-W., L.S., A.L.P., B.S., C.A., C.D., C.L.F., D.F., F.A., F.D., F.K., G.C., I.d.G., J.M.M., J.M.T., K.T., M.B., O.S.S., S.D., S.H., T.M., V.Y., W.I. and Z.S. contributed to the discussions that led to the writing of this paper, provided feedback on the draft and approved the final version of the paper.

Corresponding author

Correspondence to Marit van Tiel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Rosemary Carroll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Tiel, M., Aubry-Wake, C., Somers, L. et al. Cryosphere–groundwater connectivity is a missing link in the mountain water cycle. Nat Water 2, 624–637 (2024). https://doi.org/10.1038/s44221-024-00277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00277-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing