Abstract
The mountain cryosphere and groundwater play pivotal roles in shaping the hydrological cycle, yet their connectivity remains incompletely understood. Current knowledge on meltwater recharge and consequent groundwater discharge processes is better developed for snow–groundwater connectivity than for glacier–groundwater connectivity. Estimates of meltwater recharge vary considerably, which is probably a function of not only inherent catchment characteristics but also of the different spatio-temporal scales involved and the uncertainties in the methods used. This hinders a comprehensive understanding of the mountain water cycle. As glaciers retreat, permafrost thaws and snowpack diminishes, the relative importance of mountain groundwater is expected to increase. However, shifting and declining recharge from the cryosphere may decrease absolute groundwater amounts and fluxes with as-yet unknown effects on catchment-scale hydrological processes. We therefore stress the need to better quantify mountain cryosphere–groundwater connectivity to predict climate change impacts on mountain water supply and to support sustainable water resource management of downstream socio-ecological systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).
Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).
Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).
Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 34, 153–178 (2009).
Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).
Vincent, A., Violette, S. & Aðalgeirsdóttir, G. Groundwater in catchments headed by temperate glaciers: a review. Earth Sci. Rev. 188, 59–76 (2019).
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618–632 (2022).
Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J. & Lundquist, J. D. Characterizing biases in mountain snow accumulation from global data sets. Water Resour. Res. 55, 9873–9891 (2019).
Pfeffer, W. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour. Res. 43, W07447 (2007).
Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).
Huscroft, J., Gleeson, T., Hartmann, J. & Börker, J. Compiling and mapping global permeability of the unconsolidated and consolidated earth: Global Hydrogeology Maps 2.0 (GLHYMPS 2.0). Geophys. Res. Lett. 45, 1897–1904 (2018).
Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).
De Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).
Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).
Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).
Hock, R. et al. High mountain areas. In Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O.) 131–202 (Cambridge Univ. Press, 2019).
Pepin, N. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).
Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).
Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens. Environ. 243, 111781 (2020).
Fontrodona Bach, A., Van der Schrier, G., Melsen, L., Klein Tank, A. & Teuling, A. Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophys. Res. Lett. 45, 12312–12319 (2018).
Adler, C. et al. Cross-chapter paper 5: Mountains. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O.) 2273–2318 (Cambridge Univ. Press, 2022).
Arenson, L. U., Harrington, J. S., Koenig, C. E. & Wainstein, P. A. Mountain permafrost hydrology—a practical review following studies from the Andes. Geosciences 12, 48 (2022).
Van Tiel, M., Van Loon, A. F., Seibert, J. & Stahl, K. Hydrological response to warm and dry weather: do glaciers compensate? Hydrol. Earth Syst. Sci. 25, 3245–3265 (2021).
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).
Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
Thornton, J., Therrien, R., Mariéthoz, G., Linde, N. & Brunner, P. Simulating fully-integrated hydrological dynamics in complex alpine headwaters: potential and challenges. Water Resour. Res. 58, e2020WR029390 (2022).
Frisbee, M. D., Phillips, F. M., Campbell, A. R., Liu, F. & Sanchez, S. A. Streamflow generation in a large, alpine watershed in the southern Rocky Mountains of Colorado: is streamflow generation simply the aggregation of hillslope runoff responses? Water Resour. Res. 47, W06512 (2011).
Yao, Y. et al. Role of groundwater in sustaining northern Himalayan rivers. Geophys. Res. Lett. 48, e2020GL092354 (2021).
Liljedahl, A., Gädeke, A., O’Neel, S., Gatesman, T. & Douglas, T. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).
Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).
Cochand, M., Christe, P., Ornstein, P. & Hunkeler, D. Groundwater storage in high alpine catchments and its contribution to streamflow. Water Resour. Res. 55, 2613–2630 (2019).
Somers, L. D. & McKenzie, J. M. A review of groundwater in high mountain environments. WIREs Water 7, e1475 (2020).
Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science 296, 1985–1990 (2002).
Staudinger, M. et al. Catchment water storage variation with elevation. Hydrol. Process. 31, 2000–2015 (2017).
Hood, J. L. & Hayashi, M. Characterization of snowmelt flux and groundwater storage in an alpine headwater basin. J. Hydrol. 521, 482–497 (2015).
Andermann, C. et al. Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat. Geosci. 5, 127–132 (2012).
Schilling, O. S. et al. Revisiting Mt Fuji’s groundwater origins with helium, vanadium and eDNA tracers. Nat. Water 1, 60–73 (2023).
Markovich, K. H., Manning, A. H., Condon, L. E. & McIntosh, J. C. Mountain-block recharge: a review of current understanding. Water Resour. Res. 55, 8278–8304 (2019).
Wilson, J. L & Guan, H. Mountain-block hydrology and mountain front recharge. In Groundwater Recharge in a Desert Environment: The Southwestern United States (eds Hogan, H. F.) Vol. 9, 113–137 (AGU, 2004).
van Tiel, M. et al. Melting alpine water towers aggravate downstream low flows: a stress-test storyline approach. Earths Future 11, e2022EF003408 (2023).
Aubry-Wake, C., Pradhananga, D. & Pomeroy, J. W. Hydrological process controls on streamflow variability in a glacierized headwater basin. Hydrol. Process. 36, e14731 (2022).
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Immerzeel, W., Pellicciotti, F. & Bierkens, M. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 6, 742–745 (2013).
Beniston, M. et al. The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).
Hayashi, M. Alpine hydrogeology: the critical role of groundwater in sourcing the headwaters of the world. Ground Water 58, 498–510 (2020).
Gao, H. et al. Permafrost hydrology of the Qinghai-Tibet Plateau: a review of processes and modeling. Front. Earth Sci. 8, 576838 (2021).
Partington, D. et al. Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. J. Hydrol. 458–459, 28–39 (2012).
Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K. & Tallaksen, L. M. Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions. Hydrol. Earth Syst. Sci. 24, 849–867 (2020).
Müller, T., Lane, S. & Schaefli, B. Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment. Hydrol. Earth Syst. Sci. 26, 6029–6054 (2022).
Benettin, P. et al. Transit time estimation in catchments: recent developments and future directions. Water Resour. Res. 58, e2022WR033096 (2022).
Özgen Xian, I. et al. Understanding the hydrological response of a headwater-dominated catchment by analysis of distributed surface–subsurface interactions. Sci. Rep. 13, 4669 (2023).
Christensen, C., Hayashi, M. & Bentley, L. Hydrogeological characterization of an alpine aquifer system in the Canadian Rocky Mountains. Hydrogeol. J. 28, 1871–1890 (2020).
Voigt, C. et al. Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze. Hydrol. Earth Syst. Sci. 25, 5047–5064 (2021).
Chaffaut, Q. et al. New insights on water storage dynamics in a mountainous catchment from superconducting gravimetry. Geophys. J. Int. 228, 432–446 (2022).
Halloran, L. Improving groundwater storage change estimates using time-lapse gravimetry with Gravi4GW. Environ. Model. Softw. 150, 105340 (2022).
Illien, L. et al. Subsurface moisture regulates Himalayan groundwater storage and discharge. AGU Adv. 2, e2021AV000398 (2021).
Castellazzi, P. et al. Glacial melt and potential impacts on water resources in the Canadian Rocky Mountains. Water Resour. Res. 55, 10191–10217 (2019).
Liu, M., Pei, H. & Shen, Y. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China. J. Hydrol. 612, 128156 (2022).
Xiang, L. et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 449, 228–239 (2022).
Baraer, M. et al. Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol. Process. 29, 2561–2581 (2015).
Jasechko, S. Global isotope hydrogeology—review. Rev. Geophys. 57, 835–965 (2019).
Barthold, F. K. et al. How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour. Res. 47, W08519 (2011).
Schmieder, J., Garvelmann, J., Marke, T. & Strasser, U. Spatio-temporal tracer variability in the glacier melt end-member—how does it affect hydrograph separation results? Hydrol. Process. 32, 1828–1843 (2018).
Penna, D., Engel, M., Bertoldi, G. & Comiti, F. Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment. Hydrol. Earth Syst. Sci. 21, 23–41 (2017).
Beria, H. et al. Understanding snow hydrological processes through the lens of stable water isotopes. WIREs Water 5, e1311 (2018).
Ala-aho, P. et al. Modeling the isotopic evolution of snowpack and snowmelt: testing a spatially distributed parsimonious approach. Water Resour. Res. 53, 5813–5830 (2017).
Schilling, O. S. et al. Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour. Res. 57, e2020WR028479 (2021).
Aeschbach-Hertig, W. & Solomon, D. Noble gas thermometry in groundwater hydrology. In Noble Gases as Geochemical Tracers (ed. Brunard, P.) (Springer, 2013).
Grundl, R., Magnusson, N., Brennwald, M. & Kipfer, R. Mechanisms of subglacial groundwater recharge as derived from noble gas, 14C, and stable isotopic data. Earth Planet. Sci. Lett. 363–370, 78–85 (2013).
Urycki, D. R., Bassiouni, M., Good, S. P., Crump, B. C. & Li, B. The streamwater microbiome encodes hydrologic data across scales. Sci. Total Environ. 849, 157911 (2022).
Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).
Van Tiel, M., Stahl, K., Freudiger, D. & Seibert, J. Glacio-hydrological model calibration and evaluation. WIREs Water 7, e1483 (2020).
Markovich, K. H., Maxwell, R. M. & Fogg, G. E. Hydrogeological response to climate change in alpine hillslopes. Hydrol. Process. 30, 3126–3138 (2016).
Somers, L. D. et al. Groundwater buffers decreasing glacier melt in an Andean watershed—but not forever. Geophys. Res. Lett. 46, 13016–13026 (2019).
Rivera, A. & Calderhead, A. I. Glacial melt in the Canadian Rockies and potential effects on groundwater in the Plains region. Water 14, 733 (2022).
Evans, S. G., Ge, S. & Liang, S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resour. Res. 51, 9564–9576 (2015).
Schilling, O. S., Park, Y.-J., Therrien, R. & Nagare, R. M. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze–thaw. Ground Water 57, 63–74 (2018).
Pohl, E., Gloaguen, R., Andermann, C. & Knoche, M. Glacier melt buffers river runoff in the Pamir Mountains. Water Resour. Res. 53, 2467–2489 (2017).
Comeau, L. E., Pietroniro, A. & Demuth, M. N. Glacier contribution to the North and South Saskatchewan rivers. Hydrol. Process. 23, 2640–2653 (2009).
Mackay, J. D. et al. Proglacial groundwater storage dynamics under climate change and glacier retreat. Hydrol. Process. 34, 5456–5473 (2020).
Falatkova, K., Šobr, M., Slavík, M., Bruthans, J. & Janský, B. Hydrological characterization and connectivity of proglacial lakes to a stream, Adygine ice-debris complex, northern Tien Shan. Hydrol. Sci. J. 65, 610–623 (2020).
Maisch, M., Haeberli, W., Hoelzle, M. & Wenzel, J. Occurrence of rocky and sedimentary glacier beds in the Swiss Alps as estimated from glacier-inventory data. Ann. Glaciol. 28, 231–235 (1999).
Boulton, G., Lunn, R., Vidstrand, P. & Zatsepin, S. Subglacial drainage by groundwater-channel coupling, and the origin of esker systems: part 1—glaciological observations. Quat. Sci. Rev. 26, 1067–1090 (2007).
Finger, D. et al. Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability. Hydrol. Earth Syst. Sci. 17, 3261–3277 (2013).
Gremaud, V., Goldscheider, N., Savoy, L., Favre, G. & Masson, H. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeol. J. 17, 1833–1848 (2009).
Ofterdinger, U. S., Balderer, W., Loew, S. & Renard, P. Environmental isotopes as indicators for ground water recharge to fractured granite. Ground Water 42, 868–879 (2004).
Dochartaigh, B. É. et al. Groundwater–glacier meltwater interaction in proglacial aquifers. Hydrol. Earth Syst. Sci. 23, 4527–4539 (2019).
Magnusson, J. et al. Melt water driven stream and groundwater stage fluctuations on a glacier forefield (Dammagletscher, Switzerland). Hydrol. Process. 28, 823–836 (2014).
Chesnokova, A., Baraër, M. & Bouchard, É. Proglacial icings as records of winter hydrological processes. Cryosphere 14, 4145–4164 (2020).
Lone, S. A. et al. Meltwaters dominate groundwater recharge in cold arid desert of Upper Indus River Basin (UIRB), western Himalayas. Sci. Total Environ. 786, 147514 (2021).
Singh, A. T. et al. Hydrograph apportionment of the Chandra River draining from a semi-arid region of the Upper Indus Basin, western Himalaya. Sci. Total Environ. 780, 146500 (2021).
Meng, Y., Liu, G. & Li, M. Tracing the sources and processes of groundwater in an alpine glacierized region in southwest China: evidence from environmental isotopes. Water 7, 2673–2690 (2015).
Flowers, G. E. Modelling water flow under glaciers and ice sheets. Proc. R. Soc. A 471, 20140907 (2015).
Person, M., McIntosh, J., Bense, V. & Remenda, V. H. Pleistocene hydrology of North America: the role of ice sheets in reorganizing groundwater flow systems. Rev. Geophys. 45, RG3007 (2007).
Farinotti, D., Usselmann, S., Huss, M., Bauder, A. & Funk, M. Runoff evolution in the Swiss Alps: projections for selected high-alpine catchments based on ENSEMBLES scenarios. Hydrol. Process. 26, 1909–1924 (2012).
Klok, E., Jasper, K., Roelofsma, K., Gurtz, J. & Badoux, A. Distributed hydrological modelling of a heavily glaciated Alpine river basin. Hydrol. Sci. J. 46, 553–570 (2001).
Mimeau, L. et al. Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues. Hydrol. Earth Syst. Sci. 23, 3969–3996 (2019).
Wijngaard, R. R. et al. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra river basins. PLoS ONE 12, e0190224 (2017).
Naz, B. S., Frans, C., Clarke, G., Burns, P. & Lettenmaier, D. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrol. Earth Syst. Sci. 18, 787–802 (2014).
Saberi, L. et al. Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed. Hydrol. Earth Syst. Sci. 23, 405–425 (2019).
Chen, J., Kuang, X., Lancia, M., Yao, Y. & Zheng, C. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau. J. Hydrol. Reg. Stud. 36, 100871 (2021).
He, Q. et al. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau. J. Hydrol. Reg. Stud. 47, 101368 (2023).
Käser, D. & Hunkeler, D. Contribution of alluvial groundwater to the outflow of mountainous catchments. Water Resour. Res. 52, 680–697 (2016).
Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).
Lutz, A. et al. South Asian agriculture increasingly dependent on meltwater and groundwater. Nat. Clim. Change 12, 566–573 (2022).
Godsey, S. E., Kirchner, J. W. & Tague, C. L. Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA. Hydrol. Process. 28, 5048–5064 (2014).
Carroll, R. W., Deems, J. S., Niswonger, R., Schumer, R. & Williams, K. H. The importance of interflow to groundwater recharge in a snowmelt-dominated headwater basin. Geophys. Res. Lett. 46, 5899–5908 (2019).
Lowry, C. S., Deems, J. S., Loheide, S. P.II & Lundquist, J. D. Linking snowmelt-derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California. Hydrol. Process. 24, 2821–2833 (2010).
Bales, R. C. et al. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J. 10, 786–799 (2011).
Hanich, L. et al. Snow hydrology in the Moroccan Atlas Mountains. J. Hydrol. Reg. Stud. 42, 101101 (2022).
Jasechko, S. et al. The pronounced seasonality of global groundwater recharge. Water Resour. Res. 50, 8845–8867 (2014).
Lucianetti, G., Penna, D., Mastrorillo, L. & Mazza, R. The role of snowmelt on the spatio-temporal variability of spring recharge in a dolomitic mountain group, Italian Alps. Water 12, 2256 (2020).
Jeelani, G., Lone, S. A., Nisa, A. U., Deshpande, R. & Padhya, V. Use of stable water isotopes to identify and estimate the sources of groundwater recharge in an alluvial aquifer of Upper Jhelum Basin (UJB), western Himalayas. Hydrol. Sci. J. 66, 2330–2339 (2021).
Dar, T., Rai, N. & Kumar, S. Distinguishing mountain front and mountain block recharge in an intermontane basin of the Himalayan region. Ground Water 60, 488–495 (2022).
Jódar, J. et al. Groundwater discharge in high-mountain watersheds: a valuable resource for downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain). Sci. Total Environ. 593, 760–772 (2017).
Arnoux, M., Halloran, L. J., Berdat, E. & Hunkeler, D. Characterizing seasonal groundwater storage in alpine catchments using time-lapse gravimetry, water stable isotopes and water balance methods. Hydrol. Process. 34, 4319–4333 (2020).
Manning, A. H., Ball, L. B., Wanty, R. B. & Williams, K. H. Direct observation of the depth of active groundwater circulation in an alpine watershed. Water Resour. Res. 57, e2020WR028548 (2021).
Thornton, J. M., Mariethoz, G. & Brunner, P. A 3D geological model of a structurally complex alpine region as a basis for interdisciplinary research. Sci. Data 5, 180238 (2018).
Earman, S., Campbell, A. R., Phillips, F. M. & Newman, B. D. Isotopic exchange between snow and atmospheric water vapor: estimation of the snowmelt component of groundwater recharge in the southwestern United States. J. Geophys. Res. Atmos. 111, D09302 (2006).
Hammond, J. C., Harpold, A. A., Weiss, S. & Kampf, S. K. Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties. Hydrol. Earth Syst. Sci. 23, 3553–3570 (2019).
Harrison, H. N., Hammond, J. C., Kampf, S. & Kiewiet, L. On the hydrological difference between catchments above and below the intermittent-persistent snow transition. Hydrol. Process. 35, e14411 (2021).
Jasechko, S., Wassenaar, L. I. & Mayer, B. Isotopic evidence for widespread cold-season-biased groundwater recharge and young streamflow across central Canada. Hydrol. Process. 31, 2196–2209 (2017).
Winograd, I. J., Riggs, A. C. & Coplen, T. B. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeol. J. 6, 77–93 (1998).
Huntington, J. L. & Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour. Res. 48, W11524 (2012).
Tague, C. & Grant, G. E. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions. Water Resour. Res. 45, W07421 (2009).
Rasouli, K., Pomeroy, J. W., Janowicz, J. R., Carey, S. K. & Williams, T. J. Hydrological sensitivity of a northern mountain basin to climate change. Hydrol. Process. 28, 4191–4208 (2014).
Goulden, M. L. & Bales, R. C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl Acad. Sci. 111, 14071–14075 (2014).
Avanzi, F. et al. Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts. Hydrol. Earth Syst. Sci. 24, 4317–4337 (2020).
Berghuijs, W., Woods, R. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).
Nygren, M. et al. Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. J. Hydrol. X 8, 100062 (2020).
Meixner, T. et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534, 124–138 (2016).
Epting, J., Michel, A., Affolter, A. & Huggenberger, P. Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. J. Hydrol. X 11, 100071 (2021).
de Palézieux, L. & Loew, S. Long-term transient groundwater pressure and deep infiltration in Alpine mountain slopes (Poschiavo Valley, Switzerland). Hydrogeol. J. 27, 2817–2834 (2019).
Hansmann, J., Loew, S. & Evans, K. F. Reversible rock-slope deformations caused by cyclic water-table fluctuations in mountain slopes of the Central Alps, Switzerland. Hydrogeol. J. 20, 73–91 (2012).
Oestreicher, N. et al. Controls on spatial and temporal patterns of slope deformation in an alpine valley. J. Geophys. Res. Earth Surf. 126, e2021JF006353 (2021).
Marti, R. et al. Mapping snow depth in open alpine terrain from stereo satellite imagery. Cryosphere 10, 1361–1380 (2016).
Deschamps-Berger, C. et al. Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data. Cryosphere 14, 2925–2940 (2020).
Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. WIREs Water 3, 461–474 (2016).
Freudiger, D., Kohn, I., Seibert, J., Stahl, K. & Weiler, M. Snow redistribution for the hydrological modeling of alpine catchments. WIREs Water 4, e1232 (2017).
Vionnet, V. et al. Multi-scale snowdrift-permitting modelling of mountain snowpack. Cryosphere 15, 743–769 (2021).
Thornton, J., Brauchli, T., Mariethoz, G. & Brunner, P. Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain. J. Hydrol. 598, 126241 (2021).
Mott, R., Vionnet, V. & Grünewald, T. The seasonal snow cover dynamics: review on wind-driven coupling processes. Front. Earth Sci. 6, 197 (2018).
McClymont, A. F., Hayashi, M., Bentley, L. R. & Liard, J. Locating and characterising groundwater storage areas within an alpine watershed using time-lapse gravity, GPR and seismic refraction methods. Hydrol. Process. 26, 1792–1804 (2012).
Langston, G., Bentley, L. R., Hayashi, M., McClymont, A. & Pidlisecky, A. Internal structure and hydrological functions of an alpine proglacial moraine. Hydrol. Process. 25, 2967–2982 (2011).
Langston, G., Hayashi, M. & Roy, J. W. Quantifying groundwater–surface water interactions in a proglacial moraine using heat and solute tracers. Water Resour. Res. 49, 5411–5426 (2013).
Muir, D. L., Hayashi, M. & McClymont, A. F. Hydrological storage and transmission characteristics of an alpine talus. Hydrol. Process. 25, 2954–2966 (2011).
Winkler, G. et al. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol. J. 24, 937–953 (2016).
Gordon, R. P. et al. Sources and pathways of stream generation in tropical proglacial valleys of the Cordillera Blanca, Peru. J. Hydrol. 522, 628–644 (2015).
Somers, L. D. et al. Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol. Process. 30, 2915–2929 (2016).
Calmels, D. et al. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet. Sci. Lett. 303, 48–58 (2011).
Piña, A., Donado, L. D. & Blessent, D. Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media. J. Hydrol. 569, 556–572 (2019).
Szmigielski, J. T. et al. Hydrogeology of a montane headwater groundwater system downgradient of a coal-mine waste rock dump: Elk Valley, British Columbia, Canada. Hydrogeol. J. 26, 2341–2356 (2018).
Popp, A. L. et al. A framework for untangling transient groundwater mixing and travel times. Water Resour. Res. 57, e2020WR028362 (2021).
Carroll, R. W. H., Manning, A. H., Niswonger, R., Marchetti, D. & Williams, K. H. Baseflow age distributions and depth of active groundwater flow in a snow-dominated mountain headwater basin. Water Resour. Res. 56, e2020WR028161 (2020).
Ameli, A., Gabrielli, C., Morgenstern, U. & McDonnell, J. Groundwater subsidy from headwaters to their parent water watershed: a combined field-modeling approach. Water Resour. Res. 54, 5110–5125 (2018).
Thiros, N. E., Siirila-Woodburn, E. R., Dennedy-Frank, P. J., Williams, K. H. & Gardner, W. P. Constraining bedrock groundwater residence times in a mountain system with environmental tracer observations and Bayesian uncertainty quantification. Water Resour. Res. 59, e2022WR033282 (2023).
Chang, Q. et al. Using isotopic and geochemical tracers to determine the contribution of glacier-snow meltwater to streamflow in a partly glacierized alpine-gorge catchment in northeastern Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 123, 10037–10056 (2018).
Wilson, A. M., Williams, M. W., Kayastha, R. B. & Racoviteanu, A. Use of a hydrologic mixing model to examine the roles of meltwater, precipitation and groundwater in the Langtang River Basin, Nepal. Ann. Glaciol. 57, 155–168 (2016).
Cowie, R. M. et al. Sources of streamflow along a headwater catchment elevational gradient. J. Hydrol. 549, 163–178 (2017).
Basilio Hazas, M. et al. Drought conditions enhance groundwater table fluctuations caused by hydropower plant management. Water Resour. Res. 58, e2022WR032712 (2022).
Yao, Y. et al. What controls the partitioning between baseflow and mountain block recharge in the Qinghai-Tibet Plateau? Geophys. Res. Lett. 44, 8352–8358 (2017).
Kozhagulova, A. et al. Geological controls on the geothermal system and hydrogeochemistry of the deep low-salinity Upper Cretaceous aquifers in the Zharkent (eastern Ily) Basin, south-eastern Kazakhstan. Front. Earth Sci. 11, 1212064 (2023).
Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G. & Hagolle, O. Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 11, 493–514 (2019).
Potapov, P. et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2014).
Thornton, J. et al. Toward a definition of essential mountain climate variables. One Earth 4, 805–827 (2021).
Cochand, F., Therrien, R. & Lemieux, J.-M. Integrated hydrological modeling of climate change impacts in a snow-influenced catchment. Ground Water 57, 3–20 (2019).
Brookfield, A. et al. Recent advances in integrated hydrologic models: integration of new domains. J. Hydrol. 620, 129515 (2023).
Xu, T. & Liang, F. Machine learning for hydrologic sciences: an introductory overview. WIREs Water 8, e1533 (2021).
Stadnyk, T. A. & Holmes, T. L. On the value of isotope-enabled hydrological model calibration. Hydrol. Sci. J. 65, 1525–1538 (2020).
Triplett, A. & Condon, L. E. Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River Basin. Hydrol. Earth Syst. Sci. 27, 2763–2785 (2023).
Aubry-Wake, C. & Pomeroy, J. W. Predicting hydrological change in an alpine glacierized basin and its sensitivity to landscape evolution and meteorological forcings. Water Resour. Res. 59, e2022WR033363 (2023).
Ma, R. et al. Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater. Hydrol. Earth Syst. Sci. 21, 4803–4823 (2017).
Gruber, S. et al. Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 11, 81–99 (2017).
Noetzli, J. & Phillips, M. Mountain Permafrost Hydrology Technical Report (Swiss Federal Office for the Environment, 2019).
Azam, M. F. et al. Glaciohydrology of the Himalaya-Karakoram. Science 373, eabf3668 (2021).
McKenzie, J. M. et al. Invited perspective: what lies beneath a changing Arctic? Cryosphere 15, 479–484 (2021).
Pruessner, L., Huss, M., Phillips, M. & Farinotti, D. Temperature evolution and runoff contribution of three rock glaciers in Switzerland under future climate forcing. Permafr. Periglac. Process. 33, 310–322 (2022).
Rangecroft, S., Harrison, S. & Anderson, K. Rock glaciers as water stores in the Bolivian Andes: an assessment of their hydrological importance. Arct. Antarct. Alp. Res. 47, 89–98 (2015).
Jones, D., Harrison, S., Anderson, K. & Betts, R. Mountain rock glaciers contain globally significant water stores. Sci. Rep. 8, 2834 (2018).
Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zone J. 15, vzj2016.01.0010 (2016).
Rogger, M. et al. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resour. Res. 53, 1288–1308 (2017).
UN World Water Development Report 2022—Groundwater: Making the Invisible Visible (UNESCO, 2022); https://www.unwater.org/publications/un-world-water-development-report-2022
Tschakert, P., Ellis, N. R., Anderson, C., Kelly, A. & Obeng, J. One thousand ways to experience loss: a systematic analysis of climate-related intangible harm from around the world. Glob. Environ. Change 55, 58–72 (2019).
Allison, E. A. The spiritual significance of glaciers in an age of climate change. WIREs Clim. Change 6, 493–508 (2015).
Ross, A. C. et al. Seasonal water storage and release dynamics of bofedal wetlands in the Central Andes. Hydrol. Process. 37, e14940 (2023).
Ochoa-Tocachi, B. et al. Potential contributions of pre-Inca infiltration infrastructure to Andean water security. Nat. Sustain. 2, 584–593 (2019).
Drenkhan, F., Huggel, C., Guardamino, L. & Haeberli, W. Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba Basin. Sci. Total Environ. 665, 465–483 (2019).
Drenkhan, F. et al. Looking beyond glaciers to understand mountain water security. Nat. Sustain. 6, 130–138 (2023).
Bondu, R., Cloutier, V., Rosa, E. & Benzaazoua, M. A review and evaluation of the impacts of climate change on geogenic arsenic in groundwater from fractured bedrock aquifers. Water Air Soil Pollut. 227, 296 (2016).
Yapiyev, V. et al. The hydrochemistry and water quality of glacierized catchments in Central Asia: a review of the current status and anticipated change. J. Hydrol. Reg. Stud. 38, 100960 (2021).
Colombo, N. et al. Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Glob. Planet. Change 162, 69–83 (2018).
Manning, A. H., Verplanck, P. L., Caine, J. S. & Todd, A. S. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed. Appl. Geochem. 37, 64–78 (2013).
Beard, D. B. et al. Anthropogenic contaminants in glacial environments I: Inputs and accumulation. Prog. Phys. Geogr. Earth Environ. 46, 630–648 (2022).
Grannas, A. M. et al. The role of the global cryosphere in the fate of organic contaminants. Atmos. Chem. Phys. 13, 3271–3305 (2013).
Jones, D. B., Harrison, S., Anderson, K. & Whalley, W. B. Rock glaciers and mountain hydrology: a review. Earth Sci. Rev. 193, 66–90 (2019).
Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River Basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).
Williams, M. W., Knauf, M., Caine, N., Liu, F. & Verplanck, P. Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafr. Periglac. Process. 17, 13–33 (2006).
Williams, M. W., Knauf, M., Cory, R., Caine, N. & Liu, F. Nitrate content and potential microbial signature of rock glacier outflow, Colorado Front Range. Earth Surf. Process. Landf. 32, 1032–1047 (2007).
Acknowledgements
We acknowledge the Mountain Research Initiative (MRI) for sponsoring the workshop ‘Cryosphere-groundwater Interactions: A Missing Link in Mountain Water Research’ via their funding from the Swiss Academy of Sciences (SCNAT) under project no. FNW0004 004-2019-00. M.v.T. was supported by a Walter Benjamin fellowship from the German Research Foundation (DFG) under project no. 510684314. C.A.-W. was supported by the Banting Postdoctoral Fellowships programme, administered by the government of Canada. G.C. acknowledges the support of the DFG research unit (FOR2793/2) investigating the ‘Sensitivity of High Alpine Geosystems to Climate Change since 1850’ (SEHAG) under grant CH981/3-2. F.D. acknowledges funding from the Dirección de Fomento de la Investigación at PUCP. I.d.G. acknowledges funding from the European Research Council (ERC) under grant agreement GROW-101041110. V.Y. was supported by Nazarbayev University under CRP research grant no. 021220CRP2122. We thank D. Masovic of VAW, ETH Zurich, for drawing Fig. 1.
Author information
Authors and Affiliations
Contributions
M.v.T., C.A.-W. and L.S. conceived and designed the study, developed the figures and wrote the paper. M.v.T. and C.A.-W. prepared Supplementary Table 1. C.A., C.D., C.L.F., F.A., F.K., G.C., K.T., M.B., S.H., T.M., V.Y. and Z.S. assisted in the writing of the workshop outputs that formed the basis of this Perspective. A.L.P., B.S., D.F., F.D., J.M.T. and O.S.S. contributed to the writing and editing of the paper. M.v.T., C.A.-W., L.S., A.L.P., B.S., C.A., C.D., C.L.F., D.F., F.A., F.D., F.K., G.C., I.d.G., J.M.M., J.M.T., K.T., M.B., O.S.S., S.D., S.H., T.M., V.Y., W.I. and Z.S. contributed to the discussions that led to the writing of this paper, provided feedback on the draft and approved the final version of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Water thanks Rosemary Carroll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
van Tiel, M., Aubry-Wake, C., Somers, L. et al. Cryosphere–groundwater connectivity is a missing link in the mountain water cycle. Nat Water 2, 624–637 (2024). https://doi.org/10.1038/s44221-024-00277-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44221-024-00277-8