Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electro-driven cycling Fenton catalysis through two-dimensional electroresponsive metal–organic frameworks for water purification

Abstract

The electro-Fenton process is a promising technology for eliminating emerging organic pollutants from water. However, its potential is hindered by the lack of cathode materials with the essential cycling catalytic functionality for sustained Fenton reactions. In this study, we developed an innovative catalytic cathode comprising a two-dimensional electroresponsive ferrocene metal–organic framework (ER-Fc-MOF) for effective H2O2 activation in a reagent-free dual-cathode electro-Fenton process. The ER-Fc-MOF cathode also enables the electro-driven regeneration of the Fe(II) sites through direct electron transfer within the ferrocene sandwich structure, achieving continuous cycling of the Fc+-Fe(III)/Fc-Fe(II) species for Fenton reactions. Electron paramagnetic resonance and quenching tests confirmed that the ER-Fc-MOF catalytic cathode generates both radical (HO·) and non-radical (1O2) species for highly efficient degradation of organic pollutants across a broad pH range in diverse water matrices. This novel electroresponsive cycling catalyst for the electro-Fenton process presents a promising route towards the development of green and sustainable oxidation technologies for water purification and wastewater treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the novel dual-cathode electro-Fenton system.
Fig. 2: Characterization of the ER-Fc-MOF cathode material.
Fig. 3: Catalytic performance of ER-Fc-MOF, FeNi-MOF and NiF as cathode materials in the electro-Fenton process.
Fig. 4: Determination of reactive species and the proposed mechanism for electroresponsive catalysis in the electro-Fenton system.
Fig. 5: Catalytic performance of the ER-Fc-MOF cathode for SMX removal from wastewater.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Menon, A. K., Haechler, I., Kaur, S., Lubner, S. & Prasher, R. S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat. Sustain. 3, 144–151 (2020).

    Google Scholar 

  2. Almassad, H. A., Abaza, R. I., Siwwan, L., Al-Maythalony, B. & Cordova, K. E. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting. Nat. Commun. 13, 4873 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rojas, S. & Horcajada, P. Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 120, 8378–8415 (2020).

    CAS  PubMed  Google Scholar 

  4. Yang, C., Fan, Y., Li, P., Gu, Q. & Li, X. Y. Freestanding 3-dimensional macro-porous SnO2 electrodes for efficient electrochemical degradation of antibiotics in wastewater. Chem. Eng. J. 422, 130032 (2021).

    CAS  Google Scholar 

  5. Duan, X., Sun, H. & Wang, S. Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 51, 678–687 (2018).

    CAS  PubMed  Google Scholar 

  6. Xu, J. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).

    PubMed  Google Scholar 

  7. Brillas, E., Sirés, I. & Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109, 6570–6631 (2009).

    CAS  PubMed  Google Scholar 

  8. Martínez-Huitle, C. A. & Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B. 87, 105–145 (2009).

    Google Scholar 

  9. Kim, H. W. et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018).

    Google Scholar 

  10. Guo, D. et al. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environ. Sci. Technol. 55, 4045–4053 (2021).

    CAS  PubMed  Google Scholar 

  11. Ye, Z. et al. A highly stable metal–organic framework-engineered FeS2/C nanocatalyst for heterogeneous electro-Fenton treatment: validation in wastewater at mild pH. Environ. Sci. Technol. 54, 4664–4674 (2020).

    CAS  PubMed  Google Scholar 

  12. Deng, F. et al. Critical review on the mechanisms of Fe2+ regeneration in the electro-Fenton process: fundamentals and boosting strategies. Chem. Rev. 123, 4635–4662 (2023).

    CAS  PubMed  Google Scholar 

  13. Ye, Z., Oriol, R., Yang, C., Sirés, I. & Li, X. Y. A novel NH2-MIL-88B(Fe)-modified ceramic membrane for the integration of electro-Fenton and filtration processes: a case study on naproxen degradation. Chem. Eng. J. 433, 133547 (2022).

    CAS  Google Scholar 

  14. Pacheco-Álvarez, M., Benítez, R. P., Rodríguez-Narváez, O. M., Brillas, E. & Peralta-Hernández, J. M. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. Chemosphere 303, 134883 (2022).

    PubMed  Google Scholar 

  15. Qin, X. et al. Highly efficient metal-free electro-Fenton degradation of organic contaminants on a bifunctional catalyst. J. Hazard. Mater. 416, 125859 (2021).

    CAS  PubMed  Google Scholar 

  16. Yin, Y. et al. Boosting Fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 53, 11391–11400 (2019).

    CAS  PubMed  Google Scholar 

  17. Su, P. et al. A carbon nanotube-confined iron modified cathode with prominent stability and activity for heterogeneous electro-Fenton reactions. J. Mater. Chem. A 7, 24408–24419 (2019).

    CAS  Google Scholar 

  18. Wang, J., Li, S., Qin, Q. & Peng, C. Sustainable and feasible reagent-free electro-Fenton via sequential dual-cathode electrocatalysis. Proc. Natl Acad. Sci. USA 118, e2108573118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chu, Y. Y., Qian, Y., Wang, W. J. & Deng, X. L. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. J. Hazard. Mater. 199, 179–185 (2012).

    PubMed  Google Scholar 

  20. Roy, K., Devi, P. & Kumar, P. Magnetic-field induced sustainable electrochemical energy harvesting and storage devices: recent progress, opportunities, and future perspectives. Nano Energy 87, 106119 (2021).

    CAS  Google Scholar 

  21. Mao, X., Tian, W., Wu, J., Rutledge, G. C. & Hatton, T. A. Electrochemically responsive heterogeneous catalysis for controlling reaction kinetics. J. Am. Chem. Soc. 137, 1348–1355 (2015).

    CAS  PubMed  Google Scholar 

  22. He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    CAS  PubMed  Google Scholar 

  23. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    PubMed  Google Scholar 

  24. Fleischmann, E. K. & Zentel, R. Liquid‐crystalline ordering as a concept in materials science: from semiconductors to stimuli‐responsive devices. Angew. Chem. Int. Ed. 52, 8810–8827 (2013).

    CAS  Google Scholar 

  25. Wiese, S., Spiess, A. C. & Richtering, W. Microgel‐stabilized smart emulsions for biocatalysis. Angew. Chem. 125, 604–607 (2013).

    Google Scholar 

  26. Wang, Y. et al. Selective electrochemical H2O2 generation on the graphene aerogel for efficient electro-Fenton degradation of ciprofloxacin. Sep. Purif. Technol. 272, 118884 (2021).

    CAS  Google Scholar 

  27. Horikoshi, R. & Mochida, T. Ferrocene‐containing coordination polymers: ligand design and assembled structures. Eur. J. Inorg. Chem. 2010, 5355–5371 (2010).

    Google Scholar 

  28. Yang, C. et al. Incorporation of atomically dispersed cobalt in the 2D metal–organic framework of a lamellar membrane for highly efficient peroxymonosulfate activation. Appl. Catal. B. 325, 122344 (2023).

    CAS  Google Scholar 

  29. Comninellis, C. et al. Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83, 769–776 (2008).

    CAS  Google Scholar 

  30. Ding, M., Cai, X. & Jiang, H. L. Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Woodbridge, C. M., Pugmire, D. L., Johnson, R. C., Boag, N. M. & Langell, M. A. HREELS and XPS studies of ferrocene on Ag(100). J. Phys. Chem. B 104, 3085–3093 (2000).

    CAS  Google Scholar 

  32. Fabbrizzi, L. The ferrocenium/ferrocene couple: a versatile redox switch. ChemTexts 6, 22 (2020).

    CAS  Google Scholar 

  33. Cao, X. et al. Atomic bridging structure of nickel–nitrogen–carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem. 134, e202113918 (2022).

    Google Scholar 

  34. Herbert, D. E., Mayer, U. F. & Manners, I. Strained metallocenophanes and related organometallic rings containing π‐hydrocarbon ligands and transition‐metal centers. Angew. Chem. Int. Ed. 46, 5060–5081 (2007).

    CAS  Google Scholar 

  35. Astruc, D. Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat. Chem. 4, 255–267 (2012).

    CAS  PubMed  Google Scholar 

  36. Yang, C., Shang, S. & Li, X. Y. Oxygen-vacancy-enriched substrate-less SnOx/La-Sb anode for high-performance electrocatalytic oxidation of antibiotics in wastewater. J. Hazard. Mater. 436, 129212 (2022).

    CAS  PubMed  Google Scholar 

  37. Kurapati, N., Pathirathna, P., Ziegler, C. J. & Amemiya, S. Adsorption and electron‐transfer mechanisms of ferrocene carboxylates and sulfonates at highly oriented pyrolytic graphite. ChemElectroChem 6, 5651–5660 (2019).

    CAS  Google Scholar 

  38. Lu, Y., Yuan, J., Polzer, F., Drechsler, M. & Preussner, J. In situ growth of catalytic active Au–Pt bimetallic nanorods in thermoresponsive core–shell microgels. ACS Nano 4, 7078–7086 (2010).

    CAS  PubMed  Google Scholar 

  39. Katsoyiannis, I. A., Canonica, S. & von Gunten, U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res. 45, 3811–3822 (2011).

    CAS  PubMed  Google Scholar 

  40. Al-Obaidi, M. A., Li, J. P., Alsadaie, S., Kara-Zaïtri, C. & Mujtaba, I. M. Modelling and optimisation of a multistage reverse osmosis processes with permeate reprocessing and recycling for the removal of N-nitrosodimethylamine from wastewater using species conserving genetic algorithms. Chem. Eng. J. 350, 824–834 (2018).

    CAS  Google Scholar 

  41. Sandford, C. et al. A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chem. Sci. 10, 6404–6422 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng, L., Duan, X., Shang, Y., Gao, B. & Xu, X. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways. Appl. Catal. B. 287, 119963 (2021).

    CAS  Google Scholar 

  43. Zhao, Y. et al. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 11, 6228 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, B. et al. Coupled surface-confinement effect and pore engineering in a single-Fe-atom catalyst for ultrafast Fenton-like reaction with high-valent iron-oxo complex oxidation. Environ. Sci. Technol. 57, 15667–15679 (2023).

    CAS  PubMed  Google Scholar 

  45. Jennings, J. R., Huang, Q. & Wang, Q. Kinetics of LixFePO4 lithiation/delithiation by ferrocene-based redox mediators: an electrochemical approach. J. Phys. Chem. C 119, 17522–17528 (2015).

    CAS  Google Scholar 

  46. Han, G. F. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).

    CAS  PubMed  Google Scholar 

  47. Wang, Z. et al. Electronic control of traditional iron–carbon electrodes to regulate the oxygen reduction route to scale up water purification. Environ. Sci. Technol. 56, 13740–13750 (2022).

    CAS  PubMed  Google Scholar 

  48. Dou, X. et al. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem. Commun. 49, 5871–5873 (2013).

    CAS  Google Scholar 

  49. Yang, Z., Qian, J., Yu, A. & Pan, B. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl Acad. Sci. USA 116, 6659–6664 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1, 87 (2021).

    CAS  Google Scholar 

  51. Wei, J. et al. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 12, 7811–7820 (2022).

    CAS  Google Scholar 

  52. Chen, H. Q. et al. Unmasking the critical role of the ordering degree of bimetallic nanocatalysts on oxygen reduction reaction by in situ Raman spectroscopy. Angew. Chem. 134, e202117834 (2022).

    Google Scholar 

  53. Feng, Y., Wu, D., Deng, Y., Zhang, T. & Shih, K. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms. Environ. Sci. Technol. 50, 3119–3127 (2016).

    CAS  PubMed  Google Scholar 

  54. Liu, Y. et al. Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon. Environ. Sci. Technol. 49, 13528–13533 (2015).

    CAS  PubMed  Google Scholar 

  55. Ltaïef, A. H. et al. Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes. Chemosphere 202, 111–118 (2018).

    PubMed  Google Scholar 

  56. Radjenovic, J. & Sedlak, D. L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49, 11292–11302 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (project nos 52100093 for L.L. and 52270128 for X.-y.L.), the Basic and Applied Basic Research Foundation of the GuangDong Government (project nos 2021B1515120068 for X.-y.L. and 2023A1515011734 for L.L.), the Municipal Science and Technology Innovation Commission of the Shenzhen Government (project nos KCXFZ20211020163556020 and SGDX20230116092359002 for L.L.), the Research Grants Council (project nos 17210219 for X.-y.L.) and the Innovation and Technology Fund (project no. ITS/242/20FP for X.-y.L.) of the Hong Kong Government, China.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. and X.-y.L. led the project and designed the study; C.Y. and S.S. performed the experiments with the assistance of P.W. and Y.W.; C.Y., S.S., L.L., Z.Y., K.S., L.S. and X.-y.L. contributed to the interpretation of the data; C.Y., S.S., L.L. and X.-y.L. co-wrote the paper.

Corresponding authors

Correspondence to Shanshan Shang, Lin Lin or Xiao-yan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Deli Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–15 and Tables 1–5.

Source data

Source Data Figs. 2–5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Shang, S., Lin, L. et al. Electro-driven cycling Fenton catalysis through two-dimensional electroresponsive metal–organic frameworks for water purification. Nat Water 2, 793–802 (2024). https://doi.org/10.1038/s44221-024-00262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00262-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing