Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Transboundary cooperation in infrastructure operation generates economic and environmental co-benefits in the Lancang-Mekong River Basin

An Author Correction to this article was published on 13 June 2024

This article has been updated


The Lancang-Mekong River Basin is facing booming water resources infrastructure development, long-term transboundary conflicts and trade-offs between economic goals and ecosystem services provision. Optimizing the pathway towards sustainable infrastructure operation has lacked multisector-coordinated and decision behaviour-based perspectives for transboundary water systems. In this study we quantified how, and to what extent, transboundary cooperation generates economic and environmental co-benefits by jointly using a coupled simulation–optimization approach and cooperative game theoretical analysis. We found that full cooperation outweighs partial or non-cooperation modes to promote economic benefits by 3 to 21% and to minimize the losses in fishery and sediment transport from 23% and 60% to 12% and 22%, respectively. Full cooperation becomes more beneficial and stable alongside infrastructure expansion, climate change and satisfying the hydrological needs of river ecosystems. These findings underscore the importance of full cooperation for sustaining socio-environmental systems and highlight the need for a benefit reallocation mechanism and designed flow management to stabilize basin-level full cooperation in the Lancang-Mekong River Basin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the LMRB.
Fig. 2: Economic benefits and environmental impacts in the LMRB under different scenarios.
Fig. 3: Nonlinear response of economic benefits to different environmental impacts.
Fig. 4: Negotiation space and incremental benefit allocation among riparian countries in the LMRB.

Similar content being viewed by others

Data availability

All of the data needed to replicate our results are available in the article, online or in the Supplementary Information.

Code availability

All of the codes used in this study can be provided by the corresponding authors upon request.

Change history


  1. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

    Article  Google Scholar 

  3. Sadoff, C. W. & Grey, D. Beyond the river: the benefits of cooperation on international rivers. Water Policy 4, 389–403 (2002).

    Article  Google Scholar 

  4. Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2016).

    Article  Google Scholar 

  5. Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Poff, N. L. & Olden, J. D. Can dams be designed for sustainability? Dam design on the Mekong River can help to support water, energy, and fisheries needs. Science 358, 1252–1253 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Almeida, R. M. et al. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Curr. Opin. Environ. Sustain. 56, 101175 (2022).

    Article  Google Scholar 

  8. Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Schmitt, R. J., Bizzi, S., Castelletti, A., Opperman, J. J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5, eaaw2175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104 (2018).

    Article  Google Scholar 

  11. Schmitt, R. J. et al. Strategic basin and delta planning increases the resilience of the Mekong Delta under future uncertainty. Proc. Natl Acad. Sci. USA 118, e2026127118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, Y., Zhao, J., Li, D. & Wang, Z. Effects of hydrologic conditions and reservoir operation on transboundary cooperation in the Lancang–Mekong River Basin. J. Water Resour. Plan. Manag. 145, 04019020 (2019).

    Article  Google Scholar 

  13. Giuliani, M. & Castelletti, A. Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization. Water Resour. Res. 49, 3912–3926 (2013).

    Article  Google Scholar 

  14. Pastor, A. V. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2, 499–507 (2019).

    Article  Google Scholar 

  15. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, B. et al. Dual water-electricity cooperation improves economic benefits and water equality in the Lancang-Mekong River Basin. Nat. Commun. 14, 6228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hensengerth, O. Transboundary river cooperation and the regional public good: the case of the Mekong River. Contemp. Southeast Asia 31, 326–349 (2009).

    Article  Google Scholar 

  18. Chen, W. & Olden, J. D. Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat. Commun. 8, 2158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, eaao1053 (2017).

    Article  PubMed  Google Scholar 

  20. Gao, J., Castelletti, A., Burlado, P., Wang, H. & Zhao, J. Soft-cooperation via data sharing eases transboundary conflicts in the Lancang-Mekong River Basin. J. Hydrol. 606, 127464 (2022).

    Article  Google Scholar 

  21. Momblanch, A., Connor, J. D., Crossman, N. D., Paredes-Arquiola, J. & Andreu, J. Using ecosystem services to represent the environment in hydro-economic models. J. Hydrol. 538, 293–303 (2016).

    Article  Google Scholar 

  22. Darby, S. E. et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 539, 276–279 (2016).

    Article  PubMed  Google Scholar 

  23. Tangi, M., Bizzi, S., Schmitt, R. & Castelletti, A. Balancing sediment connectivity and energy production via optimized reservoir sediment management strategies. Water Resour. Res. 59, e2022WR034033 (2023).

    Article  CAS  Google Scholar 

  24. Ran, L. S. & Lu, X. X. Cooperation is key to Asian hydropower. Nature 473, 452–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Haefner, A. Regional environmental security: cooperation and challenges in the Mekong subregion. Glob. Change Peace Secur. 25, 27–41 (2013).

    Article  Google Scholar 

  26. Kondolf, G. M. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total Environ. 625, 114–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Suong, T. Mekong basin stirs up region: Thai water diversion project could have mega risks. Mekong Eye (2016).

  29. Fischer, G., Tubiello, F. N., Van Velthuizen, H. & Wiberg, D. A. Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 74, 1083–1107 (2007).

    Article  Google Scholar 

  30. Gao, J., Zhao, J. & Wang, H. Dam-impacted water–energy–food nexus in Lancang-Mekong River Basin. J. Water Resour. Plan. Manag. 147, 04021010 (2021).

    Article  Google Scholar 

  31. Tickner, D. et al. Managing rivers for multiple benefits—a coherent approach to research, policy and planning. Front. Environ. Sci. 5, 4 (2017). 2017.

    Article  Google Scholar 

  32. Bhagabati, S., Kawasaki, A., Babel, M., Rogers, P. & Ninsawat, S. A cooperative game analysis of transboundary hydropower development in the lower Mekong: case of the 3S sub-basins. Water Resour. Manag. 28, 3417–3437 (2014).

    Article  Google Scholar 

  33. Basin Development Strategy for the Mekong River Basin 2021–2030 (Mekong River Commission, 2021);

  34. Gao, J., Zhao, J., Hou, P. & Wang, H. Effects of ENSO on hydrological process and hydropower across the Lancang‐Mekong River Basin. River 1, 172–188 (2022).

    Article  Google Scholar 

  35. Siala, K., Chowdhury, A. K., Dang, T. D. & Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Myerson, R. B. Effectiveness of electoral systems for reducing government corruption: a game-theoretic analysis. Games Econ. Behav. 5, 118–132 (1993).

    Article  Google Scholar 

  37. Yu, Y., Tang, P., Zhao, J., Liu, B. & Mclaughlin, D. Evolutionary cooperation in transboundary river basins. Water Resour. Res. 55, 9977–9994 (2019).

    Article  Google Scholar 

  38. State of the Basin Report 2010 (Mekong River Commission, 2010).

  39. Spink, A., Sparks, R. E., Van Oorschot, M. & Verhoeven, J. T. Nutrient dynamics of large river floodplains. Regul. Rivers Res. Manag. 14, 203–216 (1998).

    Article  Google Scholar 

  40. Jha, S., Das, J. & Goyal, M. K. Assessment of risk and resilience of terrestrial ecosystem productivity under the influence of extreme climatic conditions over India. Sci. Rep. 9, 18923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdullah, A., Kobayashi, H., Matsumura, I. & Ito, S. World rice demand towards 2050: impact of decreasing demand of per capita rice consumption for China and India. In Japan and East Asian Regionalism (eds Hassan, A. & Akhir, M. N. M.) 1–17 (University of Malaya, 2008).

  42. Liu, B., Liao, S., Cheng, C., Chen, F. & Li, W. Hydropower curtailment in Yunnan Province, southwestern China: constraint analysis and suggestions. Renew. Energy 121, 700–711 (2018).

    Article  Google Scholar 

  43. Lancang-Mekong Cooperation. Joint statement on enhancing sustainable development cooperation of the Lancang-Mekong countries. The Sixth Lancang-Mekong Cooperation Foreign Ministers’ Meeting (Ministry of Foreign Affairs of the People’s Republic of China, 2021).

  44. Lancang-Mekong Cooperation. Joint statement on production capacity cooperation among Lancang-Mekong countries. The First Lancang-Mekong Cooperation Leaders’ Meeting (Ministry of Foreign Affairs of the People’s Republic of China, 2016).

  45. Full text of Vientiane Declaration of the Third Mekong-Lancang Cooperation (MLC) Leaders' Meeting. Mekong-Lancang Cooperation (2020).

  46. Joint Press Communiqué of the Seventh Mekong-Lancang Cooperation Foreign Ministers’ Meeting China News (5 July 2022);',Union%20of%20Myanmar%20and%20H.E

  47. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  48. De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

    Article  Google Scholar 

  49. Munia, H. et al. Water stress in global transboundary river basins: significance of upstream water use on downstream stress. Environ. Res. Lett. 11, 014002 (2016).

    Article  Google Scholar 

  50. Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Article  Google Scholar 

  51. Zhao, R. J. The Xinanjiang model applied in China. J. Hydrol. 135, 371–381 (1992).

    Article  Google Scholar 

  52. Liang, X., Wood, E. F. & Lettenmaier, D. P. Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Glob. Planet. Change 13, 195–206 (1996).

    Article  Google Scholar 

  53. Han, Z., Long, D., Fang, Y., Hou, A. & Hong, Y. Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. J. Hydrol. 570, 96–105 (2019).

    Article  Google Scholar 

  54. Li, D., Zhao, J. & Govindaraju, R. Water benefits sharing under transboundary cooperation in the Lancang-Mekong River Basin. J. Hydrol. 577, 123989 (2019).

    Article  Google Scholar 

  55. Intralawan, A., Wood, D., Frankel, R., Costanza, R. & Kubiszewski, I. Tradeoff analysis between electricity generation and ecosystem services in the Lower Mekong Basin. Ecosyst. Serv. 30, 27–35 (2018).

    Article  Google Scholar 

  56. Smith, M. & Steduto, P. Yield Response to Water: The Original FAO Water Production Function FAO Irrigation and Drainage Paper, 6–13 (FAO, 2012).

  57. Rice and narrowing the yield gap. FAO (2004).

  58. Do, P. et al. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Sci. Total Environ. 728, 137996 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Stewart-Koster, B., Olden, J. D. & Gido, K. B. Quantifying flow–ecology relationships with functional linear models. Hydrol. Sci. J. 59, 629–644 (2014).

    Article  Google Scholar 

  60. Campbell, I. & Barlow, C. Hydropower development and the loss of fisheries in the Mekong River Basin. Front. Environ. Sci. 2020, e566509 (2020).

    Article  Google Scholar 

  61. Brune, G. M. Trap efficiency of reservoirs. Eos 34, 407–418 (1953).

  62. Bussi, G. et al. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 755, 142468 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Treaty Database of the People’s Republic of China. Ministry of Foreign Affairs of the People’s Republic of China (2000).

  64. Shadkam, S., Ludwig, F., van Vliet, M. T., Pastor, A. & Kabat, P. Preserving the world second largest hypersaline lake under future irrigation and climate change. Sci. Total Environ. 559, 317–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 8, 15900 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dataset on the Dams of the Irrawaddy, Mekong, Red and Salween River Basins (WLE, 2017).

  67. Assessment of Basin-Wide Development Scenarios (Mekong River Commission, 2011).

  68. Basin Development Strategy 2016–2020 (Mekong River Commission, 2016).

  69. Brook, A., Kendrick, D. & Meeraus, A. GAMS, a user’s guide. ACM Signum Newsletter 23, 10–11 (1988).

    Article  Google Scholar 

  70. Madani, K. & Hooshyar, M. A game theory–reinforcement learning (GT–RL) method to develop optimal operation policies for multi-operator reservoir systems. J. Hydrol. 519, 732–742 (2014).

    Article  Google Scholar 

  71. Loucks, D. P. & van Beek, E. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications (Springer, 2017).

Download references


This study was supported by the National Natural Science Foundation of China (grant nos. 92047302, U2243215, 42225102 and 42361144876).

Author information

Authors and Affiliations



J.Z. and F.Z. designed the study. Y.Y., Y.B. and J.G. performed the computational analyses. F.Z., J.Z., Y.Y., A.C. and S.H. drafted the paper. Y.Y., Y.B., B.L., S.H. and J.G. collected the data and prepared figures and tables. P.D., X.C., J.L., T.K. and Y.W. reviewed and commented on the paper.

Corresponding authors

Correspondence to Feng Zhou or Jianshi Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Daniel P. Loucks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–12 and Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Bo, Y., Castelletti, A. et al. Transboundary cooperation in infrastructure operation generates economic and environmental co-benefits in the Lancang-Mekong River Basin. Nat Water 2, 589–601 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing