Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solar-light-activated periodate for degradation and detoxification of highly toxic 6PPD-quinone at environmental levels


Degradation and detoxication of highly toxic 6PPD-quinone remain great challenges due to its stable structure. Here we establish a solar-light-driven IO4 activation system for efficient degradation of 6PPD-quinone at environmental concentration levels (10–100 μg l−1), with residual concentration below 5.7 ng l−1 (detection limit) within 30 min. IO3 was determined as the primary reactive species after IO4 activation for cleavage of the highly toxic quinone structure. Single electron transfer is the most favourable route for IO3 attacking, in which single electrons achieve self-driven transfer from 6PPD-quinone to IO3 due to the maintenance of spatial inversion symmetry generated by dipole moments. Femtosecond transient absorption spectra confirmed the formation of 6PPD-quinone cationic radical (6PPD-quinone•+), which was the key reaction intermediate. This study proposes a promising technology for degradation and detoxification of highly toxic 6PPD-quinone in water and brings deep insight into the reaction mechanism within IO4 activation systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram showing the construction of the periodate activation system for degradation of 6PPD-quinone.
Fig. 2: Degradation and toxicity reduction of 6PPD-quinone by solar-light-activating periodate.
Fig. 3: The contribution and identification of reactive species on the degradation of 6PPD-quinone in the solar/IO4 system.
Fig. 4: Degradation pathway of 6PPD-quinone and typical initial reaction for destruction of quinone structure.
Fig. 5: Reactive sites of electrophilic attack and energy change for HAA and SET routes.
Fig. 6: Single electron transfer mechanism from 6PPD-quinone to IO3.

Similar content being viewed by others

Data availability

All relevant data that support the findings of this study are presented in the Article and Supplementary Information. Source data are provided in this paper. The source data can also be accessed through the Figshare repository and are freely available at

Code availability

The codes for structural optimization of organic compounds performed on Gaussian 16 software are provided in this paper. The initial configuration of reactants and conjectured structure of the transition state is built on GaussView. The geometrical optimization and vibrational frequency are calculated at the B3LYP/def-SVP level. Single-point energy, spin density, charge distribution and electrophilicity index are calculated for the optimized geometry at the B3LYP/def2-TZVP level. Specific analysis is completed by Multiwfn 3.8 software, combined with Visual Molecular Dynamics software.


  1. Hu, X. et al. Transformation product formation upon heterogeneous ozonation of the tire rubber antioxidant 6PPD (N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine). Environ. Sci. Technol. Lett. 9, 413–419 (2022).

    Article  CAS  Google Scholar 

  2. Ziajahromi, S., Lu, H.-C., Drapper, D., Hornbuckle, A. & Leusch, F. D. L. Microplastics and tire wear particles in urban stormwater: abundance, characteristics, and potential mitigation strategies. Environ. Sci. Technol. 57, 12829–12837 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Seiwert, B., Nihemaiti, M., Troussier, M., Weyrauch, S. & Reemtsma, T. Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater. Water Res. 212, 118122 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, H. N. et al. Screening p-phenylenediamine antioxidants, their transformation products, and industrial chemical additives in crumb rubber and elastomeric consumer products. Environ. Sci. Technol. 57, 2779–2791 (2023).

    Article  PubMed  Google Scholar 

  5. Hiki, K. et al. Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species. Environ. Sci. Technol. Lett. 8, 779–784 (2021).

    Article  CAS  Google Scholar 

  6. Zoroufchi Benis, K. et al. Environmental occurrence and toxicity of 6PPD quinone, an emerging tire rubber-derived chemical: a review. Environ. Sci. Technol. Lett. 10, 815–823 (2023).

    Article  CAS  Google Scholar 

  7. Rossomme, E., Hart-Cooper, W. M., Orts, W. J., McMahan, C. M. & Head-Gordon, M. Computational studies of rubber ozonation explain the effectiveness of 6PPD as an antidegradant and the mechanism of its quinone formation. Environ. Sci. Technol. 57, 5216–5230 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, C. et al. First insights into 6PPD-quinone formation from 6PPD photodegradation in water environment. J. Hazard. Mater. 459, 132127 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, Y. et al. Sunlight-induced transformation of tire rubber antioxidant N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) to 6PPD-quinone in water. Environ. Sci. Technol. Lett. 10, 798–803 (2023).

    Article  CAS  Google Scholar 

  10. Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y.-J. et al. Widespread N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone in size-fractioned atmospheric particles and dust of different indoor environments. Environ. Sci. Technol. Lett. 9, 420–425 (2022).

    Article  CAS  Google Scholar 

  12. Grasse, N. et al. Uptake and biotransformation of the tire rubber-derived contaminants 6-PPD and 6-PPD quinone in the zebrafish embryo (Danio rerio). Environ. Sci. Technol. 57, 15598–15607 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Di, S. et al. Chiral perspective evaluations: enantioselective hydrolysis of 6PPD and 6PPD-quinone in water and enantioselective toxicity to Gobiocypris rarus and Oncorhynchus mykiss. Environ. Int. 166, 107374 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Tian, Z. Y. et al. 6PPD-quinone: revised toxicity assessment and quantification with a commercial standard. Environ. Sci. Technol. Lett. 9, 140–146 (2022).

    Article  CAS  Google Scholar 

  15. Cao, G. et al. New evidence of rubber-derived quinones in water, air, and soil. Environ. Sci. Technol. 56, 4142–4150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin, R., Anderson, C. E., Zhao, J., Boehm, A. B. & Mitch, W. A. Controlling contaminants using a far-UVC-based advanced oxidation process for potable reuse. Nat. Water 1, 555–562 (2023).

    Article  Google Scholar 

  17. Zhang, D. et al. Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment. Nat. Commun. 14, 3538 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, F. et al. Catalyst-free periodate activation by solar irradiation for bacterial disinfection: performance and mechanisms. Environ. Sci. Technol. 56, 4413–4424 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, Y. et al. Revisiting the oxidizing capacity of the periodate–H2O2 mixture: identification of the primary oxidants and their formation mechanisms. Environ. Sci. Technol. 56, 5763–5774 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, H., He, F. & Choi, W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 54, 6427–6437 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Zong, Y. et al. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. J. Hazard. Mater. 423, 126991 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Wen, H., Hou, G.-L., Huang, W., Govind, N. & Wang, X.-B. Photoelectron spectroscopy of higher bromine and iodine oxide anions: electron affinities and electronic structures of BrO2,3 and IO2–4 radicals. J. Chem. Phys. 135, 184309 (2011).

    Article  PubMed  Google Scholar 

  23. Du, P. H., Wang, J. J., Sun, G. D., Chen, L. & Liu, W. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system. Water Res. 212, 118113 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, N., Samanta, S. R., Rosen, B. M. & Percec, V. Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. Chem. Rev. 114, 5848–5958 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Hu, J. et al. Animal production predominantly contributes to antibiotic profiles in the Yangtze River. Water Res. 242, 120214 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, Q.-Y., Yang, Z.-W., Wang, Z.-W. & Wang, W.-L. Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt–oxo species formation. Proc. Natl Acad. Sci. USA 120, e2219923120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chuang, Y.-H., Wu, K.-L., Lin, W.-C. & Shi, H.-J. Photolysis of chlorine dioxide under UVA irradiation: radical formation, application in treating micropollutants, formation of disinfection byproducts, and toxicity under scenarios relevant to potable reuse and drinking water. Environ. Sci. Technol. 56, 2593–2604 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, J., von Gunten, U. & Kim, J.-H. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 54, 3064–3081 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Li, J. et al. Ozone- and hydroxyl radical-induced degradation of micropollutants in a novel UVA–LED-activated periodate advanced oxidation process. Environ. Sci. Technol. 57, 18607–18616 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Greer, J. B., Dalsky, E. M., Lane, R. F. & Hansen, J. D. Tire-derived transformation product 6PPD-quinone induces mortality and transcriptionally disrupts vascular permeability pathways in developing coho salmon. Environ. Sci. Technol. 57, 10940–10950 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng, W., Liu, C., Chen, D., Duan, X. & Zhong, L. Exposure to N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) affects the growth and development of zebrafish embryos/larvae. Ecotox. Environ. Safe. 232, 113221 (2022).

    Article  CAS  Google Scholar 

  32. Varshney, S., Gora, A. H., Siriyappagouder, P., Kiron, V. & Olsvik, P. A. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. J. Hazard. Mater. 424, 127623 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, S.-Y. et al. 6PPD and its metabolite 6PPDQ induce different developmental toxicities and phenotypes in embryonic zebrafish. J. Hazard. Mater. 455, 131601 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Choi, Y. et al. Activation of periodate by freezing for the degradation of aqueous organic pollutants. Environ. Sci. Technol. 52, 5378–5385 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Long, Y. et al. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 55, 5357–5370 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, T. et al. Understanding the importance of periodate species in the pH-dependent degradation of organic contaminants in the H2O2/periodate process. Environ. Sci. Technol. 56, 10372–10380 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Niu, L. et al. Ferrate(VI)/periodate system: synergistic and rapid oxidation of micropollutants via periodate/iodate-modulated Fe(IV)/Fe(V) intermediates. Environ. Sci. Technol. 57, 7051–7062 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

    Article  CAS  Google Scholar 

  39. Wang, Q. et al. ESP-ALIE analysis as a theoretical tool for identifying the coordination atoms of possible multisite extractants: validation and prediction. ACS Sustain. Chem. Eng. 8, 14353–14364 (2020).

    Article  CAS  Google Scholar 

  40. Li, F., Borthwick, A. G. L. & Liu, W. Environmental theoretical calculation for non-periodic systems. Trends Chem. 5, 410–414 (2023).

    Article  Google Scholar 

  41. Chen, L. et al. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 221, 118747 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, H. et al. Different reaction mechanisms of SO4•− and OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system. Water Res. 229, 119392 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. De Vleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P. & De Proft, F. Electrophilicity and nucleophilicity index for radicals. Org. Lett. 9, 2721–2724 (2007).

    Article  PubMed  Google Scholar 

  44. Rienstra-Kiracofe, J. C., Tschumper, G. S., Schaefer, H. F., Nandi, S. & Ellison, G. B. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 102, 231–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ren, W. et al. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environ. Sci. Technol. 56, 78–97 (2021).

    Article  PubMed  Google Scholar 

  46. Bím, D., Maldonado-Domínguez, M., Rulíšek, L. & Srnec, M. Beyond the classical thermodynamic contributions to hydrogen atom abstraction reactivity. Proc. Natl Acad. Sci. USA 115, E10287–E10294 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao, H.-Y. et al. First direct and unequivocal electron spin resonance spin-trapping evidence for pH-dependent production of hydroxyl radicals from sulfate radicals. Environ. Sci. Technol. 54, 14046–14056 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Zeman, C. J. I. V., Kim, S., Zhang, F. & Schanze, K. S. Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion. J. Am. Chem. Soc. 142, 2204–2207 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Shi, Y. A. et al. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat. Commun. 13, 3256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ponseca, C. S. Jr., Chábera, P., Uhlig, J., Persson, P. & Sundström, V. Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 117, 10940–11024 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Yin, R., Ling, L. & Shang, C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. Water Res. 142, 452–458 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals Section 2 (OECD, 2013);

  53. Frisch, M. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  54. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

Download references


We thank the National Natural Science Foundation of China (52270053 (W.L.)), the National Key Research and Development Program of China (2021YFA1202500 (W.L.)), the Beijing Natural Science Foundation (8232035 (W.L.)) and the Beijing Nova Program (20220484215 (W.L.)) for financial support. The High-Performance Computing Platform of Peking University is also greatly acknowledged for DFT calculation support.

Author information

Authors and Affiliations



L.C. and W.L. conceived the idea and designed the research. L.C., J.H. and D.J. performed the experiment including degradation kinetics, transformation products detection, radical detection and Zebrafish exposure tests. L.C. and H.Z. performed the DFT calculations. A.G.L.B. and W.S. provided constructive suggestions for the results and discussion. L.C., W.L. and A.G.L.B. contributed to writing the manuscript. All co-authors discussed the results.

Corresponding author

Correspondence to Wen Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Zuotai Zhang, Changha Lee, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–11, Tables 1–9 and Figs. 1–26.

Supplementary Data 1

Source data for Supplementary Figs. 2, 3, 4, 5, 6, 7, 9, 10, 13, 15, 17, 23, 24 and 25.

Supplementary Code 1

Codes for structural optimization.

Source data

Source Data Fig. 2

Source data for Fig. 2a–d.

Source Data Fig. 3

Source data for Fig. 3a–d.

Source Data Fig. 5

Source data for Fig. 5c,f.

Source Data Fig. 6

Source data for Fig. 6c,d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hu, J., Borthwick, A.G.L. et al. Solar-light-activated periodate for degradation and detoxification of highly toxic 6PPD-quinone at environmental levels. Nat Water 2, 453–463 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing