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Notable shifts beyond pre-industrial 
streamflow and soil moisture conditions 
transgress the planetary boundary for 
freshwater change
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Dieter Gerten    6,7, Tom Gleeson8,9, Chinchu Mohan    8,10,11, Ingo Fetzer    4,5, 
Fernando Jaramillo    5,12, Arie Staal    13, Sofie te Wierik6,14, Arne Tobian    4,6, 
Ruud van der Ent    15, Petra Döll    16,17, Martina Flörke18, Simon N. Gosling    19, 
Naota Hanasaki    20, Yusuke Satoh    21,22, Hannes Müller Schmied    16,17, 
Niko Wanders    23, James S. Famiglietti10,24, Johan Rockström4,6,25 & 
Matti Kummu    1

Human actions compromise the many life-supporting functions provided 
by the freshwater cycle. Yet, scientific understanding of anthropogenic 
freshwater change and its long-term evolution is limited. Here, using 
a multi-model ensemble of global hydrological models, we estimate 
how, over a 145-year industrial period (1861–2005), streamflow and soil 
moisture have deviated from pre-industrial baseline conditions (defined 
by 5th–95th percentiles, at 0.5° grid level and monthly timestep over 
1661–1860). Comparing the two periods, we find an increased frequency of 
local deviations on ~45% of land area, mainly in regions under heavy direct 
or indirect human pressures. To estimate humanity’s aggregate impact 
on these two important elements of the freshwater cycle, we present the 
evolution of deviation occurrence at regional to global scales. Annually, 
local streamflow and soil moisture deviations now occur on 18.2% and 15.8% 
of global land area, respectively, which is 8.0 and 4.7 percentage points 
beyond the ~3 percentage point wide pre-industrial variability envelope. 
Our results signify a substantial shift from pre-industrial streamflow and 
soil moisture reference conditions to persistently increasing change. This 
indicates a transgression of the new planetary boundary for freshwater 
change, which is defined and quantified using our approach, calling for 
urgent actions to reduce human disturbance of the freshwater cycle.

Freshwater systems globally are under unprecedented pressure 
from human actions. Water extraction and infrastructure, land use 
and land cover change, and climate change now considerably modify 
the quantity and timing of atmospheric and terrestrial freshwater 

flows, with crucial implications for Earth’s climate and ecosystems1. 
Remarkable signals of water cycle changes include widespread and 
severe river flow regime alterations2, intensification3 and homogeniza-
tion4 of the global water cycle, profound changes in terrestrial water 
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flows such that changes in streamflow and soil moisture can severely 
affect ecosystem status and biodiversity27–29. Moreover, the wetness 
of landscapes regulates climate from micro- to regional and global 
scales, such that changes in the magnitude and timing of wetness can 
impact rainfall and consequently streamflow and soil moisture both 
locally and remotely30.

In addition to a comprehensive standalone assessment of chang-
ing streamflow and soil moisture conditions globally, our analysis 
concludes recent efforts to revise the planetary boundary (PB) for 
freshwater31,32. PBs set limits to nine processes, including freshwa-
ter change, that together regulate the state of the Earth system and 
thus delimit a safe operating space for retaining a quasi-stable Holo-
cene-like state33–35. The recent third assessment of the PB framework 
uses our approach and globally aggregated results to redefine and 
quantify a PB for freshwater change33. The new definition replaces 
the previous estimates of the PB for freshwater use, which have been 
criticized for their limited capacity to capture the interconnected 
direct and indirect anthropogenic pressures on the water cycle31. 
Our approach refines and advances the method first proposed by  
Wang-Erlandsson et al.32 for quantifying a PB for green water by present-
ing a coherent, comparable and spatially explicit assessment of blue 
(streamflow) and green water (soil moisture) change.

The contribution of this paper is, thus, twofold. First, we present 
a comprehensive, cross-scale assessment of how, where and when 
streamflow and soil moisture have changed globally from their pre-
industrial reference conditions, utilizing an ensemble of consistently 
forced, state-of-the-art global hydrological models (GHMs; Fig. 1 and 
Methods). Second, we use our results to unpack the spatial and tempo-
ral distribution of streamflow and soil moisture deviations underlying 
the new freshwater change PB to substantiate and further interpret the 
globally aggregated results used in the latest PB assessment33.

Estimating streamflow and soil moisture 
deviations
To estimate streamflow and soil moisture change across scales, we used 
data simulated by an ensemble of state-of-the-art gridded GHMs forced 
with bias-adjusted CMIP5-generation climate models and dynamic 

storage5, and increases in the severity, frequency and duration of floods  
and droughts6.

Scientific understanding of the magnitude and nature of anthro-
pogenic water cycle change—and particularly change that is relevant 
to the hydroclimatic and hydroecological stability of the Earth sys-
tem—is yet limited. This is due to three main shortcomings. First, water 
cycle changes are typically analysed over relatively short time peri-
ods, often decades7–11, which leads to disregarding natural variability 
over multidecadal to centennial scales. Second, changes are often 
quantified against reference conditions that are already affected by 
anthropogenic influences such as climate change12–15, hiding the full 
extent of anthropogenic change. Finally, change is typically assessed 
in terms of single elements of the water cycle2,8,14,16–21 or by aggregating 
freshwater flows and stocks very broadly (whether in space10,22,23 or in 
time11,24), which may disregard the interconnectedness of the water 
cycle and its integral role in the Earth system25,26. Thus, a global assess-
ment that acknowledges the Earth system relevance of freshwater by 
using long time scales and adequate reference conditions together 
with an approach incorporating interactions and feedbacks between 
different water cycle elements is still missing.

In this Article, we quantify deviations of blue (represented by 
streamflow) and green water (represented by root-zone soil mois-
ture—hereinafter simply soil moisture—that is, the soil water available 
to plants) from pre-industrial baseline conditions. Jointly assessing 
change in streamflow and soil moisture conditions, using coherent 
methodology, allows for qualitatively inferring changes in other water 
cycle elements and the varying drivers of change. Moreover, our cross-
scale assessment method enables analysing change at local, regional 
and global scales. We establish a baseline state before the onset of 
major human impacts on the water cycle using the pre-industrial period 
1661–1860 as reference conditions and assess change over the follow-
ing 145 years (1861–2005) against it—illustrating the trajectory of how 
human-driven change in streamflow and soil moisture has evolved. 
Widespread deviations from the ‘pristine’ state that are detected by 
our approach can be considered to pose elevated risks to the Earth 
system functions of freshwater. For example, terrestrial and freshwater 
ecosystems have adapted to specific quantities and timing of water 
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Fig. 1 | Methodological outline. a–f, The analysis steps consist of setting the local baseline range (a), identifying local deviations (b), computing the percentage of 
land area with local deviations (c), defining pre-industrial variability (d), and comparing the industrial period against the pre-industrial period locally (e) and at global 
and regional scales (f). The steps a–d are described in detail in Methods.
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socio-economic conditions (Methods and Supplementary Table 1). 
The data were given in two time periods: a pre-industrial (1661–1860) 
and an industrial period (1861–2005).

Based on the 200-year pre-industrial period, we defined the local 
baseline range of streamflow and soil moisture, separately for each 0.5° 
grid cell and month, as the range between the 5th (dry bound) and the 
95th (wet bound) percentiles of pre-industrial monthly streamflow or 
soil moisture (Fig. 1a). We then compared pre-industrial streamflow 
and soil moisture data against the local baseline range to detect local 
deviations (Fig. 1b). Months with values below the dry bound were 
marked as dry local deviations and months with values above the 
wet bound were marked as wet local deviations (Fig. 1b). The areas 
of grid cells with local streamflow or soil moisture deviations were 
then summed up globally (or regionally). We divided this sum by the 
total ice-free land area to yield the percentage of land area with local 
deviations (Fig. 1c). Finally, to establish global (or regional) reference 
conditions, we defined pre-industrial variability (Fig. 1d) from the pre-
industrial percentage of land area with local deviations. Two key met-
rics characterize pre-industrial variability: the median and the upper 
end of pre-industrial variability (Fig. 1d). The median corresponds to 
the 50th and the upper end to the 95th percentile of the percentage 
of land area with local streamflow or soil moisture deviations during 
the pre-industrial period.

After defining the pre-industrial reference conditions, we 
compared streamflow and soil moisture data during the industrial 
period against them. We repeated the detection of local deviations  
(Fig. 1b) and computed the percentage of land area with local devia-
tions (Fig. 1c), which allowed us to compare changes in local devia-
tion frequency (Fig. 1e) and in the percentage of land area with local 
deviations (Fig. 1f).

Global land area with local deviations
The global land area with local streamflow or soil moisture deviations 
showed relatively little variation during the pre-industrial period  
(Fig. 2), as expected because of our modelling setup that uses fixed 
forcing to prescribe the pre-industrial period as stable (Methods). 
Therefore, these pre-industrial conditions can be considered a useful 
reference baseline that existed before the onset of major anthropogenic 
impacts on the water cycle. The median of pre-industrial variability 
(that is, the typical land area with local streamflow or soil moisture 
deviations) was at 9.4% for streamflow and 9.8% for soil moisture  
(Fig. 2). This is in accordance with the expectation that dry or wet devia-
tions should each occur in 5% of the data points in each grid cell over the 
pre-industrial period (Methods). Annually, the pre-industrial percent-
age of land area with local deviations varied mostly within ±1.5 percent-
age points (p.p.) around the median of pre-industrial variability (Fig. 2).
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Fig. 2 | Percentage of global ice-free land area with local deviations. a,b, For 
streamflow (a) and soil moisture (b), the annual percentage is shown, which is 
computed as an average of monthly percentages. The annotated years mark the 
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from n = 23 (streamflow) and n = 15 (soil moisture) ensemble members. Values 
before 1691 are excluded and the ensemble median line for 1861–1890 is shaded 
and dashed due to traces of model spinups being common during these years 
(Methods).
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However, occurrence of streamflow and soil moisture deviations 
started to steadily increase after the end of the pre-industrial period, 
with both global indicators surpassing the upper end of pre-industrial 
variability in the early twentieth century (Fig. 2). Global land area with 
local streamflow deviations transgressed the upper end of pre-indus-
trial variability (10.2%) already in 1905. The degree of transgression 
continued to increase, apart from two dips around 1940 and 1970. 
By the end of our study period (mean of 1996–2005), areas with local 
streamflow deviations covered 18.2% (~24 million km2) of global ice-free 
land area (Fig. 2a). This absolute increase of 8.0 p.p. corresponds to a 
relative increase of 78% compared with the upper end and almost a dou-
bling (8.8 p.p. absolute, 94% relative increase) compared to the median 
of pre-industrial variability. The evolution of streamflow deviation 
occurrence is mainly due to dry deviations, which were still increasing 
in spatial coverage by the end of our study period, while the increase in 
wet deviations had plateaued decades earlier (Extended Data Fig. 1b,c).

Soil moisture exhibits a similar, though slightly less pronounced, 
global trajectory and pattern: the upper end of pre-industrial variability 
(11.1%) was transgressed in 1929, after which the land area with local 
soil moisture deviations increased consistently, apart from two dips 
(like streamflow) in the latter half of the twentieth century (Fig. 2b). 
During the last decade of our analysis period (1996–2005), local soil 
moisture deviations occurred on 15.8% (~20 million km2) of global ice-
free land area, which signifies a 4.7 p.p. absolute (42% relative) increase 
compared with the upper end of pre-industrial variability and a 6.0 p.p. 
(61%) increase relative to the median. In contrast to streamflow, by the 
end of our study period, occurrence of dry soil moisture deviations 
was declining slowly, yet remaining at considerably higher levels than 
during the pre-industrial period, while the occurrence of wet devia-
tions continued to increase towards the end of the twentieth century 
(Extended Data Fig. 1e,f).

When assessing how sensitive our results are to the definition of 
the local baseline range (Extended Data Fig. 2), we found that trans-
gressions relative to the upper end of global pre-industrial variability 
become larger when widening the local baseline range. For example, 
the relative transgression was three- to fourfold larger when using 
the 1st–99th percentiles as the local baseline range in Extended Data  
Fig. 2e,f. This indicates that the most extreme conditions increased 
more than less extreme conditions, but the temporal evolution during 
the industrial period remains similar regardless of the local baseline 
definition (Extended Data Fig. 2). Although the model spread is rela-
tively large (Extended Data Figs. 3 and 4), especially towards the pre-
sent day and in the case of dry streamflow deviations (Extended Data  
Fig. 1c), the entire ensemble interquartile range of both streamflow and 
soil moisture surpassed the upper end of pre-industrial variability in 
the latter half of the twentieth century (Fig. 2). Thus, the global patterns 
we observed are robust against key methodological sensitivity, and the 
hydrological models used here mostly agree on the evolution of the 
percentage of global land area with local deviations. To summarize, 
there has been—and is still ongoing—a robust and remarkable drift 
away from the quasi-stable pre-industrial streamflow and soil moisture 
conditions (characterized by a narrow, ~3-p.p.-wide variability range) 
to persistently increasing change (currently 4.7–8.0 p.p. beyond pre-
industrial variability).

Local and regional evolution of deviations
Mapping changes in the frequency of local deviations reveals a general 
pattern of more frequent dry deviations of both streamflow and soil 
moisture in much of the tropics and subtropics, with wet deviations 
becoming more common in temperate and subpolar regions, and in 
many highland areas (Fig. 3 and Extended Data Fig. 5). For stream-
flow, increases in the frequency of dry local deviations are more com-
mon, while for soil moisture, neither dry nor wet deviation frequency 
increases dominate. Comparing local deviation frequency in 1976–2005 
against 1691–1860, 39.2% of land area shows a statistically significant 

increase in dry streamflow deviation frequency, while 9.2% of land area 
exhibits a statistically significant increase in wet streamflow deviation 
frequency. For soil moisture, 26.9% of land area shows an increase in 
dry and 19.2% an increase in wet deviation frequency. Areas in which 
the frequency of both dry and wet local deviations increased signifi-
cantly cover 2.0% (streamflow) and 1.0% (soil moisture) of land area. 
Therefore, 46.4% of land area has experienced a statistically significant 
increase in streamflow deviation frequency and 45.1% in soil moisture 
deviation frequency. Considering that 5% of all months were marked as 
local deviations during the pre-industrial period (Methods), increases 
in local deviation frequency were major (more than a 5 p.p. increase, 
that is, more than a doubling) in approximately half of the area with 
increased frequency of dry streamflow deviations, a third of the area 
with increased frequency of soil moisture deviations (both dry and wet), 
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Fig. 3 | Statistically significant increases in dry and wet local deviation 
frequency. a,b, For streamflow (a) and soil moisture (b), changes in the 
frequency of local deviations are computed by comparing the ensemble 
median frequency of local deviations during 1976–2005 against 1691–1860, 
and significance of change is tested at a 95% confidence level (P = 0.05) with 
R package stats function prop.test96 (one-sided test). Colours denoted with 
‘+‘ indicate statistically significant increases with magnitude ≤5 p.p. (minor), 
whereas colours denoted with ‘++’ indicate statistically significant increases 
with magnitude >5 p.p. (major). Colours denoted with ‘+(+)’ pool together any 
statistically significant increase (minor or major).

http://www.nature.com/natwater


Nature Water | Volume 2 | March 2024 | 262–273 266

Article https://doi.org/10.1038/s44221-024-00208-7

and a quarter of the area with increased frequency of wet streamflow 
deviations (Fig. 3). Increases in the frequency of wet local deviations 
are concentrated in the boreal winter months (DJF) while the boreal 
summer months ( JJA) are characterized by increased dry local devia-
tion frequency, especially around the Mediterranean, the Sahel region 
and Central and North America (Extended Data Fig. 6).

Persistent streamflow and soil moisture changes and their timing 
are spread out unevenly (see Fig. 4, in which local streamflow and soil 
moisture deviations are aggregated at river basin scales instead of the 
global scale). In many regions—especially around mid-latitudes—land 
area with local deviations persistently transgressed the region-specific 
upper end of pre-industrial variability already before 1940, while in 
other areas—particularly in humid regions—a transgression has not 
occurred yet. The Mississippi, Indus and Nile basins, for instance, were 
among the first regions where persistent transgression happened in 
the case of streamflow (in the Nile, also for soil moisture) (Fig. 4a,b). 
For soil moisture, a persistent transgression has occurred in fewer 
regions and often later than in the case of streamflow (Fig. 4c,d). This 
is visible particularly in Siberia, South/Southeast Asia and the Congo 
Basin, where the persistent transgression year for soil moisture fol-
lowed 10–20 years after that of streamflow—or the transgression has 
not occurred yet (Fig. 4).

Interpreting local deviation patterns
Assessing the changes in local streamflow and soil moisture deviations 
in unison and qualitatively comparing them with literature provides 
more detailed insights into their potential causes and impacts. These 
qualitative assessments should be considered preliminary, and analyti-
cal driver attribution with improved data is warranted in future studies 
(Methods). The general pattern of increasing wet deviation frequency 
of both streamflow and soil moisture in the Northern Hemisphere prob-
ably arises from the precipitation change following ~1 °C of mean global 
warming6, which affects both streamflow and soil moisture similarly if 
major human impacts on land surface, such as land cover change and 

soil degradation, do not change precipitation partitioning. Another 
distinctive example of climate-induced deviations is found in the Sahel 
region (stretching across the African continent south of the Sahara; 
partially covered by the Niger River Basin in Fig. 5). Drier conditions 
(relative to pre-industrial climate) dominated in the region already in 
the first half of the twentieth century36—which agrees with our analysis 
showing increased dry deviation frequency already when comparing 
the years 1931–1960 against 1691–1860 (Extended Data Fig. 7)—and 
intensified from the 1970s onwards. Recent decades in the Sahel have 
additionally witnessed widespread wet local deviations (and different 
combinations of dry and wet), which could be explained by changes 
in temporal dynamics, such as intensity of precipitation, number of 
wet days, occurrence of dry spells and timing and length of the rainy 
season36–38.

As an example of direct human drivers, increased frequency of 
dry local streamflow deviations coinciding with increased wet local 
soil moisture deviations in a given area probably indicates an effect of 
irrigation expansion. Indeed, by inspecting local deviation frequency 
on areas equipped for irrigation, we found that irrigation intensity 
is associated with increasing dry streamflow and wet soil moisture 
deviation frequency (Supplementary Fig. 1). These cases are observed 
in many heavily irrigated regions39, such as South Asia, eastern China, 
Western United States and the Nile Delta (Fig. 5, pink colour). These 
regions are also the likely early drivers of globally aggregated devia-
tions, as their irrigation extent was relatively large already in the early 
twentieth century39, and local deviations were prevalent already then 
(Extended Data Fig. 7). Increases in the frequency of both wet and 
dry streamflow deviations, as well as wet soil moisture deviations, 
(Fig. 5, dark blue) could indicate yet more signals of river flow regula-
tion (decreased flood peaks and increased dry season streamflow) 
in combination with extensive irrigation (decreased streamflow and 
increased soil moisture)23. These cases can be found in many heavily 
modified river basins40, such as the Nile, the Aral Sea and parts of India 
and Thailand (Fig. 5).
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The persistent transgression year is defined as the first year, during which the 
10-year moving (trailing) mean of percentage of land area with local deviations 
has exceeded the region-specific upper end of pre-industrial variability for ten 
consecutive years, without returning below this limit after this year. The regions 
shown here depict basins delineated by the HydroBASINS data set97 level 2  
(a and c; n = 60, mean area 2,247,000 km2, median area 2,045,000 km2) and level 
3 (b and d; n = 265, mean area 509,000 km2, median area 312,000 km2).
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Our findings of increased streamflow and soil moisture devia-
tion frequency are consistent with many regional to global freshwa-
ter-mediated impacts that have been reported independently. One 
of the most dramatic examples of blue water change is the Aral Sea, 
where the overuse of water for irrigation resulted in considerable lake 
depletion, consequent ecological degradation and regional climate 
change41. In our results, the region’s two large river basins, Amu Darya 
and Syr Darya, exhibit a steep increase in dry streamflow and a moder-
ate increase in wet soil moisture deviations, starting in the late 1960s 
(Fig. 5)—in accordance with the substantial irrigation expansion that 
started in the region at that time41.

Soil moisture changes have been associated with productivity 
loss, as exemplified by drying-induced forest dieback42 in many of the 
regions where we find a major frequency increase in dry soil moisture 
deviations, such as the Mediterranean basin, central North America 
and West Africa (for example, Niger River Basin in Fig. 5). Productiv-
ity shocks due to dry and wet soil moisture deviations (droughts and 
floods) have also been reported on many cultivated lands, particularly 
in South and East Asia, Australia and North Africa43, where we find both 
drying and wetting (Fig. 3b, India in Fig. 5). Other examples of ecological 
and climatic impacts of water surpluses are habitat loss in the Central 
Amazon floodplains due to anthropogenic flood pulse disturbance 
by dams44, and increased greenhouse gas emissions from reservoirs45, 
though these freshwater alterations are relatively small scale and thus 
not clearly visible in our maps.

The new planetary boundary for freshwater 
change
Our approach has been adopted as the new standard for defining and 
assessing the PB for freshwater change33, replacing the relatively narrow 
outlook on global freshwater change achieved by previous freshwater 
use PB estimates. The previous approaches—which assessed water 
use and withdrawals—fell short in capturing freshwater change due 
to, for example, land use and land cover change and anthropogenic 
greenhouse gas and aerosol emissions, which alter evaporation, soil 
moisture, precipitation and runoff patterns31,46–50. They have also been 
criticized for aggregating freshwater fluxes too broadly, for example, 
by operating on an annual scale only or simply summing global water 
use and availability despite diverse local impacts51,52. Most recently, safe 
and just Earth System Boundaries were proposed for several domains, 
including freshwater15—partly building on earlier iterations of the PB 
framework. However, accommodating for the additional justice aspect 
in the freshwater Earth System Boundaries resulted in conceptual and 
methodological trade-offs similar to those of the earlier freshwater use 
PB approaches (Supplementary Text). The approach presented in this 
paper captures the breadth of global water cycle change better than the 
earlier approaches by analysing two key components of the freshwater 
cycle, by using metrics that relate to freshwater’s Earth system impacts, 
and by adopting meaningful baselines and long time scales. Although 
streamflow and soil moisture do not explicitly represent all aspects of 
the freshwater cycle, such as groundwater, they are connected, either 
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directly or indirectly, to major anthropogenic modifications of the 
freshwater cycle and associated Earth system functions (Methods and 
Supplementary Text).

The upper end (95th percentile) of pre-industrial variability in 
global land area with local streamflow (blue water) and soil moisture 
(green water) deviations are now the two components of the PB for 
freshwater change33. This definition represents global conditions 
occurring expectedly once in 20 years in the pre-industrial reference 
state and corresponds to 10.2% of the global land area for blue water 
(Fig. 2a) and 11.1% for green water (Fig. 2b). While these limits should 
not be considered global tipping points33, their persistent exceedance 
marks a departure from known, safe pre-industrial conditions (repre-
senting longer-term Holocene-like conditions; Supplementary Text), 
which we consider to pose elevated risks to freshwater’s Earth system 
functions. According to our results, the freshwater change PB has been 
transgressed for a long time—the current status is 18.2% of global land 
area for the blue and 15.8% for the green water component (Fig. 2). This 
is in stark contrast with the first and second PB framework assessments, 
which considered the freshwater use PB’s status safe34,35. Our current 
assessment, however, agrees with other, more nuanced studies (that 
better consider environmental flows and green water, for example) 
on the freshwater use PB23,53,54, which considered the boundary to  
be transgressed.

It should be noted that major uncertainties are associated with 
setting the freshwater change PB (Methods and Supplementary Text). 
While data-related uncertainties have been mitigated by using a large 
ensemble of state-of-the-art GHMs that have been validated against 
observations55–59, perhaps the most important uncertainty stems from 
the lack of robust quantifications of Earth system-wide responses to 
water cycle modifications that surpass pre-industrial variability. These 
responses may be too complex to be quantified with our current knowl-
edge, and it is also possible that the level of freshwater modifications 
that drives state changes and increases risks in the Earth system can 
only be determined in retrospect.

Nevertheless, because the freshwater cycle upkeeps many life-
supporting Earth system functions, risks of environmental degrada-
tion can be assumed to elevate along with change away from a stable, 
Holocene-like state1—a change that has occurred in streamflow and soil 
moisture conditions within the last century (Fig. 2). While it is possible 
that buffers or stabilizing feedbacks in the Earth system (such as CO2 
fertilization) allow for increased variability in the water cycle without 
increasing risks, there is also evidence that self-reinforcing feedbacks 
(such as moisture recycling60 and methane61 feedbacks) may amplify 
the impacts of freshwater change on Earth system functioning. Thus, 
considering our limited capabilities to model complex, interacting 
Earth system processes (and even the different aspects of the water 
cycle), and freshwater’s central role in mediating Earth system interac-
tions25,26, the precautionary principle of the PB framework33–35 moti-
vates a conservative placement of the new PB for freshwater change at 
the lower level of scientific uncertainty. Here and in the recent third PB 
assessment33, this is considered to be the upper end of pre-industrial 
variability. The major transgression and remaining uncertainties of 
this boundary placement, however, warrant continued research on 
the role of freshwater in the Earth system.

Concluding remarks
We have presented here the trajectory of anthropogenically driven 
change in streamflow and soil moisture since the pre-industrial 
period and shown that this change has been pervasive across spatial 
and temporal scales. Globally, land area in which streamflow and soil 
moisture deviates from local pre-industrial reference conditions has 
increased by 78–94% and 42–61%, respectively, within the 145-year 
industrial period. The patterns we observe in these two key freshwater 
cycle elements are in accordance with the few other studies reporting 
long-term (>100 years) changes in other water cycle elements, such as 

groundwater depletion contributing to 4–9% of total sea-level rise18,21,62, 
and at least a 21% loss of wetlands since the year 1700 (refs. 17,19). Our 
results align well also with studies reporting decadal changes and 
trends in increasing hydrological extremes6,8. Evidence of freshwater-
triggered ecological and climatic shifts has been mounting while key 
components of the freshwater cycle have moved further away from their 
pre-industrial variability at an alarming rate63–65. Our findings indicate 
a transgression of the PB for freshwater change already around the mid-
twentieth century, while climate change66, deforestation67 and many 
other human pressures on the water cycle continue to pose a major 
risk of further change. Decreasing these pressures by, for example, 
committing to ambitious climate action, halting deforestation and 
respecting environmental flows in water use and management is thus 
imperative to safeguard the life-supporting functions of freshwater.

Methods
Data selection
Our main data source was the Inter-Sectoral Impact Model Intercom-
parison Project (ISIMIP) data repository (available at https://data. 
isimip.org, last accessed 30 March 2023), from which we used data 
of the ISIMIP 2b simulation round experiments68 (Supplementary 
Table 1). We used root-zone soil moisture (hereinafter soil moisture; 
ISIMIP output variable ‘rootmoist’) to represent green water, and river 
discharge (hereinafter streamflow; ISIMIP output variable ‘dis’) to rep-
resent blue water as two key components of the freshwater cycle (for 
further elaboration on variable selection, see Supplementary Text). 
The models in ISIMIP 2b have been validated against observations, 
showing adequate performance especially when estimates from indi-
vidual models are combined in an ensemble modelling approach55–59. 
By constructing ensembles as large as possible, given the availability of 
different simulation scenarios, we can tackle the uncertainty to which 
global modelling is always subject to, to a certain degree69.

Two simulation scenarios were required to first determine the pre-
industrial reference state (Fig. 1a–d) and then to compare the industrial 
streamflow and soil moisture conditions against it (Fig. 1e,f). For the 
pre-industrial period (1661–1860), we used model outputs forced 
with ‘picontrol’ climate and ‘1860soc’ land use and socio-economic 
conditions, which described our pre-industrial reference state with a 
constant 286 ppm CO2 concentration and fixed pre-industrial land use 
and socio-economic conditions68. The pre-industrial simulation years 
are, however, nominal, as the CMIP5 data used to force ISIMIP 2b models 
represent 200 control years with climate variability at pre-industrial 
levels (with no correspondence to the actual weather of individual 
years)68. Therefore, while the pre-industrial simulations can be consid-
ered to describe an artificially stable state, they adequately correspond 
to long-term pre-industrial conditions before major anthropogenic 
modifications affecting the distribution of freshwater. At the transi-
tion from pre-industrial to industrial time (as defined by the ISIMIP 
protocol) in 1860, we switched to ‘historical’ climate combined with 
‘histsoc’ land use and socio-economic conditions, in which carbon-
induced climate change and human influences (for example, land use 
change, water use and dam operation) were dynamically represented 
in the data68. The ISIMIP 2b industrial period covers years from 1861 to 
2005, the end year owing to estimates of, for example, irrigation extent 
not being available39.

In ISIMIP 2b, streamflow and soil moisture were simulated by 
GHMs, which were forced with bias-adjusted output of modelled cli-
mate from general circulation models (GCMs). The ISIMIP 2b modelling 
groups have bias-adjusted the GCM outputs from CMIP5 models70 with 
EWEMBI, a data product combining climate re-analysis and observa-
tions, covering the years 1979–2013 (ref. 68). We selected all GHM–GCM 
combinations, for which output data were available for both picontrol–
1860soc and historical–histsoc scenarios (Supplementary Table 1). 
For soil moisture, outputs from four GHMs (CLM50 (ref. 71), LPJmL72, 
MPI-HM73 and PCR-GLOBWB74) were available, and for streamflow, 
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outputs from six GHMs (H08 (ref. 75), LPJmL, MATSIRO76, MPI-HM, PCR-
GLOBWB and WaterGAP2 (ref. 77)) were available. For all GHMs, outputs 
of four GCMs were available: GFDL-ESM2M78, HadGEM2-ES79, IPSL-
CM5A-LR80 and MIROC5 (ref. 81), except for MPI-HM, which lacked data 
forced with HadGEM2-ES for both streamflow and soil moisture. Hence, 
our soil moisture data ensemble consisted of 15 members (GHM–GCM 
combinations) and our streamflow data ensemble consisted of 23 
members. For streamflow, we aggregated daily values to monthly 
values by taking the mean of daily streamflow, whereas soil moisture 
data were readily delivered in monthly time resolution, which is the 
highest temporal resolution available in ISIMIP 2b for soil moisture. 
The spatial resolution of all data was 0.5 degrees (ca. 50 × 50 km at the 
Equator). These temporal and spatial resolutions are standard practice 
in global hydrological modelling, partially stemming from model input 
data resolutions68,82, while the development of hyper-resolution global 
hydrological modelling is in its early stages (see, for example, ref. 83).

Data preparation and intercalibration between periods
Because the ISIMIP scenario simulations can be run independently 
of each other, the end state of the pre-industrial simulation does not 
necessarily equal the initial state of the industrial simulation at the 
grid cell scale. Two kinds of discontinuities may thus result: (1) traces 
of model spinup, that is, GHMs reach a water storage equilibrium with 
a delay after the beginning of the simulation, and (2) abrupt shifts in 
value distribution around the transition point at the end of year 1860. 
Therefore, we performed an intercalibration between the pre-industrial 
and industrial periods with a two-step approach applied separately for 
each grid cell, month and ensemble member. Supplementary Fig. 2 
shows an example of traces of model spinup, whereas Supplementary 
Fig. 3 shows our intercalibration approach along with an example of 
a cell in which the value distribution shifts. This intercalibration is 
additional to and separate from the GCM bias adjustment conducted 
by the ISIMIP modelling groups68.

First, we checked for traces of spinups by detecting the most likely 
changepoint in the mean and variance with function cpt.meanvar in R 
package changepoint84,85 separately for the pre-industrial and indus-
trial periods. As the trace of spinup relates to reaching a hydrological 
equilibrium in a cell, we assumed that a true trace of spinup is located 
between 10 and 30 years after the initiation of each simulation period. 
Outside this period, we considered that detected changepoints were 
true (natural) changes in mean and variance and did not imply a trace 
of spinup. If a changepoint was detected between 10 and 30 years after 
initiation (as in Supplementary Fig. 2, for example), all values before the 
changepoint were excluded from the intercalibration; otherwise (as in 
Supplementary Fig. 3, for example), values from the ten first years of 
the simulation periods were discarded. Depending on the month and 
ensemble member, changepoints indicating traces of spinup were 
detected in 1.4–8.7% (pre-industrial streamflow), 1.6–7.2% (industrial 
streamflow), 0.4–4.6% (pre-industrial soil moisture) and 0.6–5.7% 
(industrial soil moisture) of all cells.

Second, we checked and corrected shifts in value distribution 
around the simulations’ transition point in 1860, using an iterative tech-
nique combining linear extrapolation and quantile mapping. Because 
the simulation periods have no temporal overlap, we extrapolated pre-
industrial data onto the industrial simulation period (that is, extended 
the pre-industrial time series to nominally cover years past 1860). This 
was done by fitting a linear regression model86 to pre-industrial values 
excluding spinup and extrapolating the linear trend (blue lines in Sup-
plementary Fig. 3a). Further, we computed the standard deviation of 
the pre-industrial values to which the linear model was fit (defined 
here as σpreind) and added normally distributed random noise (μ = 0, 
σ = σpreind) around the linear extrapolation line to create extrapolated 
data points (blue circles in Supplementary Fig. 3a).

After extrapolation, we fitted non-parametric quantile mapping 
using robust empirical quantiles implemented in R package qmap87,88 

between industrial simulation values and extrapolated pre-industrial 
values. Four quantiles were used in fitting the quantile mapping. We 
treated the industrial simulation values as ‘observed’ data and the 
extrapolated pre-industrial values as ‘modelled’ data. We chose to fit 
quantile mapping between 30 years of industrial and extrapolated pre-
industrial values, starting from the first year not excluded after spinup 
detection (pink shading in Supplementary Fig. 3a). Hence, quantile 
mapping was mostly fitted using years 1871–1900 as the ‘observed’ 
values but with flexibility of extending the fitting period to 1891–1920 
at maximum. For example, the fitting period for the cell shown in Sup-
plementary Fig. 2 was 1874–1903, whereas for the cell shown in Supple-
mentary Fig. 3, the fitting period was 1871–1900. Although 30 years is 
a relatively short period, and some spinups might end only after 1891, 
we chose to limit the quantile mapping with these years to prevent 
the industrial values being substantially affected by anthropogenic 
impacts, which increases in likelihood during the twentieth century.

Finally, pre-industrial values excluding spinup were corrected 
with the fitted quantile mapping function (Supplementary Fig. 3b). 
However, because distinctive individual values or undetected traces of 
spinup may have distorted the quantile mapping function, we checked 
whether applying quantile mapping succeeded in improving the fit 
between the simulation periods. To do this, we ran our analysis up 
until detecting local deviations (Fig. 1a,b)—first without correction 
and then with correction—and checked whether the number of local 
deviations (Fig. 1b) decreased owing to the correction. Detection of 
local deviations was performed for a period of 50 years, beginning 
from the first year not excluded after spinup detection (hatched fill in 
Supplementary Fig. 3). This was to include data outside the quantile 
mapping fitting period. If the number of local deviations decreased, 
we considered that our intercalibration had improved the fit between 
the simulation periods and the corrected cell values were accepted; 
otherwise we retained the uncorrected data. Globally, depending 
on month and ensemble member, the correction was accepted for 
6–26% of streamflow cells and 10–29% of soil moisture cells. It should 
be noted that no constraints were set to preserve the lateral distribu-
tion of water in the intercalibration, but as soil moisture or streamflow 
changes are expressed in our analysis only relative to values in the 
same grid cell (that is, we do not compare values across cells, nor are 
we routing water), this has a negligible impact on our key results. For 
globally aggregated results, the intercalibration has the most impact 
in the beginning of the industrial period, by decreasing the global land 
area with local deviations, while towards the end of our time series, 
the results with and without intercalibration are nearly in agreement 
(Supplementary Figs. 4 and 5).

Setting the local baseline range and identifying local deviations
In setting the local baseline range (Fig. 1a), identifying local deviations 
(Fig. 1b) and computing the percentage of land area with local devia-
tions (Fig. 1c), we followed the general approach of Wang-Erlandsson 
et al.32 with some modifications. Like them, we set the 5th and 95th 
percentiles of pre-industrial streamflow and soil moisture to bound the 
local baseline range (separately for each grid cell, month and ensemble 
member), but we drew these bounds from the considered grid cell’s 
values only, whereas Wang-Erlandsson et al.32 drew their local baseline 
range from the values in the considered grid cell and its neighbour-
hood. We chose a stricter definition of the local baseline range because 
including neighbourhood values in determining the local baseline 
range can potentially set it unrealistically wide—especially in the case 
of streamflow, in which neighbourhood values strongly depend on 
flow directions.

Spinups were excluded from setting the local baseline range, which 
means that for most cells, dry and wet bounds (Fig. 1a) were drawn 
from 190 values covering years 1671–1860, though allowing flexibility 
up until 1691 (for example, for the grid cell shown in Supplementary 
Fig. 2, the bounds were drawn from values in 1690–1860). We also 
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evaluated the sensitivity of our results to the definition of the local 
baseline range by repeating our main global analysis (Fig. 2) using the 
2.5th and 97.5th and the 1st and 99th percentiles as the dry and wet 
bounds (Extended Data Fig. 2).

Then, again for each grid cell, ensemble member and pre-industrial 
month, we checked whether streamflow or soil moisture fell within 
the local baseline range, to identify local deviations (Fig. 1b). In case 
a monthly value was lower than the dry bound (5th percentile of pre-
industrial values), this month was marked as a dry local deviation. 
Contrarily, in cases of the monthly value surpassing the wet bound (95th 
percentile of pre-industrial values), the month was marked as a wet 
local deviation. Local deviations were evaluated for all months includ-
ing spinups, and all deviations were determined in a binary fashion, as 
‘deviated’ or ‘not deviated’, with no regard to deviation magnitude.

Computing the percentage of land area with local deviations 
and defining pre-industrial variability
After identifying local deviations (Fig. 1b), we summed up the land areas 
of grid cells with dry and wet local deviations, separately for each month 
and ensemble member. We excluded Antarctica and other permanent 
land ice areas using HYDE 3.2.1 anthromes89 and divided the land area 
with local deviations by total ice-free land area to yield the percentage 
of land area with local deviations (Fig. 1c). We transformed monthly 
percentages into annual percentages by taking annual means. This 
differs from Wang-Erlandsson et al.32 who marked an individual grid 
cell as deviating during a given year if a local deviation occurred in any 
month of that year, and computed the global percentage of land area 
with local deviations only annually. We chose to do this at a monthly 
timestep to enable seasonal analysis (Extended Data Fig. 6) and to 
distinguish between cases in which local deviations occur in only one 
month or many months within a year. Thus, local deviations that spread 
out over multiple months of the year have a higher impact on the annual 
percentage of land area with local deviations.

As approximately 5% of all pre-industrial values in each grid cell 
were marked as dry and wet local deviations by the definition of the 
local baseline range (5th–95th percentiles), the expected global per-
centage of land area with local deviations was also approximately 5%, 
for dry and wet deviations separately (under conditions with little 
interannual variance, that is, not during spinups). Hence, summing the 
percentages of land area with dry and wet local deviations together, the 
expected value for the global percentage of land area with local devia-
tions was approximately 10%. As spinups were prevalent especially in 
some GHMs (Extended Data Figs. 3 and 4), global percentages of land 
area with local deviations before 1691 were excluded from further 
analysis. Therefore, we ended up with a time series of n = 170 for the 
annual pre-industrial percentage of land area with local deviations.

The pre-industrial percentage of land area with local deviations 
(Fig. 1c) was further used to define pre-industrial variability (Fig. 1d). 
We took the ensemble median (n = 15 or n = 23) of the percentage of land 
area with local deviations to define two main metrics: the median of 
pre-industrial variability and the upper end of pre-industrial variability 
(Fig. 1d). The median of pre-industrial variability was defined as the 
50th percentile of the percentage of land area with local deviations, 
while the upper end of pre-industrial variability was defined as the 
95th percentile of the percentage of land area with local deviations. 
Hence, the median describes the typical percentage of land area with 
local deviations in the pre-industrial (presumably Holocene-like; see 
Supplementary Text) reference state, whereas the upper end describes 
conditions that occurred expectedly once every 20 years.

For the industrial period (1861–2005), we identified local devia-
tions (Fig. 1b), computed the percentage of land area with local 
deviations (Fig. 1c) and compared that with pre-industrial variability  
(Fig. 1d). We included all years in identifying local deviations but  
chose to shade years 1861–1890 in the presented results, owing to 
spinups being prevalent in some GHMs (Extended Data Figs. 3 and 4).  

Finally, we took the ensemble median of the global percentage of 
 land area with local deviations and applied a moving (trailing) 10-year 
mean over this ensemble median time series, with the latest 10-year 
mean (for year 2005, computed as a mean of values from 1996–2005) 
being defined as the current status.

Limitations and uncertainties
GHMs are known to be sensitive to their implementation of anthropo-
genic drivers and impacts57,69, of which especially water use, including 
irrigation, directly affects streamflow and soil moisture but with 
considerable uncertainty90. ISIMIP 2b simulations attempt to mini-
mize uncertainties stemming from this by using state-of-the-art 
input data and consistent scenario definitions68. Nevertheless, the 
different process descriptions of GHMs lead to a considerable spread 
in our results (Extended Data Figs. 3 and 4), which means that our 
global—and especially local—results are subject to noteworthy uncer-
tainty. However, we chose not to perform an explicit validation for our 
hydrological data because ISIMIP 2b data have shown adequate55–59 
(though variable91) performance against observations, observed 
data to validate pre-industrial values are unavailable, and the ISIMIP 
2b hydrological data used here are forced by GCM outputs instead 
of observed climate.

Due to multiple compounding uncertainties, we use a maximally 
large data ensemble to capture the range of possible outcomes. We 
report the ensemble median as our best estimate as more sophisticated 
ensemble construction methods are unavailable in the absence of 
observations and the ensemble median is often an adequate choice55,58. 
Moreover, our estimate of the ‘current’ status ends in 2005, due to the 
ISIMIP 2b simulation protocol68. Since the end of our study period, 
global trends in many of the key drivers of freshwater change, such 
as irrigated area92, water use93, dam construction94 and forest loss95, 
have increased, and therefore, the results presented here are probably 
conservative.

As our scenario setup of using dynamic histsoc socio-economic 
conditions against static 1860soc (Supplementary Table 1) already 
implies a change in anthropogenic drivers of water cycle change, it 
is not an unexpected result that aggregate streamflow and soil mois-
ture changes were manifested in the early twentieth century (Figs. 2 
and 4, and Extended Data Fig. 7). Repeating the analysis using data 
that are absent of anthropogenic forcing (ISIMIP 'nosoc' scenarios68) 
would potentially aid in estimating how large proportions of the 
change shown here are due to direct (for example, water use) or indi-
rect (for example, climate change) anthropogenic factors. However, 
model outputs of both picontrol–1860soc (or picontrol–nosoc) and  
historical–nosoc scenarios, using the same GHMs and GCM forcing, 
were not available in ISIMIP 2b. Therefore, analytical attribution of 
drivers of the detected change is left for future studies. Future model-
ling efforts, including the ISIMIP3a simulation round82 (which is forced 
with more advanced CMIP6 climate data), should provide an excellent 
starting point for these attribution analyses.

Despite the related uncertainties, our approach is as coherent as 
current knowledge and modelling capacities allow for a global study. 
Moreover, the magnitude and rate of change in streamflow and soil 
moisture conditions in the industrial period and the presumably con-
servative estimation of the freshwater change PB’s current status sug-
gest that our conclusion of streamflow and soil moisture substantially 
transgressing their pre-industrial variability ranges is valid.

Data availability
Output data produced by our analysis are deposited in a public data-
base available at https://doi.org/10.5281/zenodo.10531807.

Code availability
The code used in producing the results shown in this study is publicly 
available at https://github.com/vvirkki/freshwater-pb.
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Extended Data Fig. 1 | Percentage of global ice-free land area with local 
deviations, separately for summed, wet and dry deviations. Panels show 
the percentage of land area with local streamflow (a–c) and soil moisture (d–f) 
deviations, dry and wet local deviations summed (a, d), and for wet (b, e) and 
dry (c, f) local deviations separately. Shown is the annual percentage, which is 
computed as an average of monthly percentages. The annotated years mark the 
10-year moving (trailing) mean transgressing the upper end of pre-industrial 
variability (95th percentile of the pre-industrial percentage of land area with local 
deviations; Fig. 1d). The ensemble median and interquartile range are computed 

from n = 23 (streamflow) and n = 15 (soil moisture) ensemble members. Values 
prior to 1691 are excluded and the ensemble median line for 1861–1890 is 
shaded and dashed due to traces of model spinups being common during these 
years (Methods). It should be noted that the ensemble median percentages for 
summed deviations (a, d) do not correspond to the sum of ensemble median 
percentages for dry and wet deviations (b–c, e–f). This is because ensemble 
medians are taken individually for each panel, that is, for panels a and d, land 
areas with dry and wet local deviations are first summed for each ensemble 
member and then the ensemble median is taken.
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Extended Data Fig. 2 | Percentage of global ice-free land area with local 
deviations, using variable bounds of the local baseline range. Panels show 
the percentage of land area with local deviations (Fig. 1c) when the local baseline 
range (Fig. 1a) is defined as the 5th–95th (a, b), 2.5th–97.5th (c, d) or 1st–99th  
(e, f) percentile range. Panels a–b correspond to Fig. 2a, b and Extended Data  
Fig. 1a, d. Shown is the annual percentage, which is computed as an average  
of monthly percentages. The ensemble median (solid black line) and 
interquartile range (grey shading) are computed from n = 23 (streamflow) and 

n = 15 (soil moisture) ensemble members. The horizontal dashed lines drawn 
in each panel denote the median and the upper end of pre-industrial variability 
(Fig. 1d), and the current (mean of 1996–2005) percentage of land area with local 
deviations is annotated at the end of the red 10-year moving (trailing) mean line. 
Values prior to 1691 are excluded and the ensemble median line for 1861–1890 is 
shaded and dashed due to traces of model spinups being common during these 
years (Methods).
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Extended Data Fig. 3 | Percentage of global ice-free land area with local 
streamflow deviations, separately for global hydrological models (GHMs) 
included in this study. Panels show the percentage of land area with local 
deviations (Fig. 1c) for H08 (a), LPJmL (b), MATSIRO (c), MPI-HM (d), PCR-
GLOBWB (e), and WaterGAP2 (f). Shown is the annual percentage, which is 
computed as an average of monthly percentages. The ensemble median (solid 
black line) and interquartile range (grey shading) are computed from n = 3–4 

ensemble members (number of GCMs), as data forced with HadGEM2 were not 
available for MPI-HM. The horizontal dashed lines drawn in each panel denote the 
median and the upper end of pre-industrial variability (Fig. 1d), and the current 
(mean of 1996–2005) percentage of land area with local deviations is annotated 
at the end of the red 10-year moving (trailing) mean line. The ensemble median 
line for 1861–1890 is shaded and dashed due to traces of model spinups being 
common during these years (Methods).
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Extended Data Fig. 4 | Percentage of global ice-free land area with local soil 
moisture deviations, separately for global hydrological models (GHMs) 
included in this study. Panels show the percentage of land area with local 
deviations (Fig. 1c) for CLM50 (a), LPJmL (b), MPI-HM (c), and PCR-GLOBWB (d). 
Shown is the annual percentage, which is computed as an average of monthly 
percentages. The ensemble median (solid black line) and interquartile range 
(grey shading) are computed from n = 3–4 ensemble members (number of 

GCMs), as data forced with HadGEM2 were not available for MPI-HM. The 
horizontal dashed lines drawn in each panel denote the median and the upper 
end of pre-industrial variability (Fig. 1d), and the current (mean of 1996–2005) 
percentage of land area with local deviations is annotated at the end of the red 
10-year moving (trailing) mean line. The ensemble median line for 1861–1890 is 
shaded and dashed due to traces of model spinups being common during these 
years (Methods).
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Extended Data Fig. 5 | Statistically significant increases and decreases in 
dry and wet local deviation frequency. Panels show increases and decreases in 
dry and wet local deviation frequency for streamflow (a) and soil moisture (b). 
Changes in the frequency of local deviations are computed by comparing  
the ensemble median frequency of local deviations during 1976–2005 against 

1691–1860, and significance of change is tested at a 95% confidence level 
(P = 0.05) with R package stats function prop.test96 (one-sided test). The changes 
are classified according to the direction of change (decreasing or increasing 
frequency of deviations) but with no regards to magnitude. Percentage shares of 
ice-free land area covered by each class are represented in the bivariate legend.
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Extended Data Fig. 6 | Statistically significant increases in dry and wet 
local deviation frequency, separately for DJF and JJA months. Panels show 
increases in dry and wet local deviation frequency for streamflow (a, b) and for 
soil moisture (c, d), during DJF months (a, c) and JJA months (b, d). Changes in the 
frequency of local deviations are computed by comparing the ensemble median 
frequency of local deviations during the DJF/JJA months in 1976–2005 against 
the DJF/JJA months in 1691–1860, and significance of change is tested at a 95% 
confidence level (P = 0.05) with R package stats function prop.test96 (one-sided 
test). Colours denoted with + indicate statistically significant increases with 

magnitude ≤5 pp (minor), whereas colours denoted with ++ indicate statistically 
significant increases with magnitude >5 pp (major). Colours denoted with +(+) 
pool together any statistically significant increase (minor or major). It should 
be noted that because the sample size for testing statistical significance of local 
deviation frequency here is smaller (510 pre-industrial months & 90 industrial 
months) than in analyses with all months (Fig. 3, Extended Data Figs. 5, 7; 2040 
& 360 months), significant changes classified as minor are rare. However, for 
consistency, we retain the same categorisation for minor and major increases.
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Extended Data Fig. 7 | Statistically significant increases in dry and wet local 
deviation frequency, comparing 1931–1960 against 1691–1860. Panels show 
increases in dry and wet local deviation frequency for streamflow (a), for soil 
moisture (b), and combined for streamflow and soil moisture (c). Changes in 
the frequency of local deviations are computed by comparing the ensemble 
median frequency of local deviations during 1931–1960 against 1691–1860, 

and significance of change is tested at a 95% confidence level (P = 0.05) with 
R package stats function prop.test96 (one-sided test). Colours denoted with + 
indicate statistically significant increases with magnitude less than 5 pp (minor), 
whereas colours denoted with ++ indicate statistically significant increases with 
magnitude greater than 5 pp (major). Colours denoted with +(+) pool together 
any statistically significant increase (minor or major).
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