Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Roll-to-roll fabrication of large-area metal–organic framework-based membranes for high-performance aqueous separations

Abstract

Metal–organic framework (MOF) membranes have emerged as promising candidates for efficient water purification. However, challenges related to limited spatio-temporal control over metal–ligand interactions and inherent film fragility hinder the scale-up and widespread adoption of MOF-based membranes. Here we report a nanoreactor-confined crystallization strategy that enables rapid and roll-to-roll fabrication of high-performance ultra-thin (25 nm) MOF hybrid membranes (0.33 m × 35 m) at mild conditions. This strategy leverages metal-chelated polydopamine nanoparticles as reactors to grow membranes with hierarchical polymer–MOF interconnected structures that promote remarkable stability against chlorine and varying pH levels, precise solute–solute selectivity and high water permeance. The robustness of the resulting membranes facilitates their assembly into spiral-wound membrane modules (0.4 m2) showing excellent and stable (>30-day testing) separation performance in relevant solute–solute separations such as the purification of pharmaceuticals and dye desalination. The nanoreactor-confined crystallization strategy is compatible with a diverse range of MOFs, paving the way for the scalable manufacturing and applications of their membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication and characterizations of ZIF-8-PDPM.
Fig. 2: Mechanism for the ZIF-8-PDPM formation.
Fig. 3: Separation performance of ZIF-8-PDPM.
Fig. 4: Scalable fabrication of ZIF-8-PDPM and modules.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Xu, W. T. et al. Anisotropic reticular chemistry. Nat. Rev. Mater. 5, 764–779 (2020).

    Article  ADS  CAS  Google Scholar 

  2. Song, W., Zheng, Z. L., Alawadhi, A. H. & Yaghi, O. M. MOF water harvester produces water from Death Valley desert air in ambient sunlight. Nat Water 1, 626–634 (2023).

    Article  Google Scholar 

  3. Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Shen, K. et al. Ordered macro-microporous metal–organic framework single crystals. Science 359, 206–210 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hou, J., Zhang, H. C., Simon, G. P. & Wang, H. T. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Adv. Mater. 32, 1902009 (2019).

    Article  Google Scholar 

  6. DuChanois, R. M. et al. Prospects of metal recovery from wastewater and brine. Nat. Water 1, 37–46 (2023).

    Article  Google Scholar 

  7. Jiang, Z. W. et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 609, 58–64 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng, Y. D. et al. Advances in metal–organic framework-based membranes. Chem. Soc. Rev. 51, 8300–8350 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, G. P. V. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhou, S. et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706–712 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Datta, S. J. et al. Rational design of mixed-matrix metal–organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Lee, M. J., Kwon, H. T. & Jeong, H. K. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angew. Chem. Int. Ed. 57, 156–161 (2018).

    Article  CAS  Google Scholar 

  15. Grape, E. S. et al. Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nat. Water 1, 433–442 (2023).

    Article  Google Scholar 

  16. Brown, A. J. et al. Interfacial microfluidic processing of metal–organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Cong, S. Z. et al. Highly water-permeable metal–organic framework MOF-303 membranes for desalination. J. Am. Chem. Soc. 143, 20055–20058 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, G. N. et al. Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separation. Science 381, 1350–1356 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 1137 (2017).

    Article  CAS  Google Scholar 

  20. Qiao, Z. H. et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat. Mater. 18, 163–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Hamid, M. R. A. et al. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: engineering prospects and challenges. J. Membr. Sci. 640, 119802 (2021).

    Article  Google Scholar 

  22. Jian, M. P. et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6, eaay3998 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, X. L. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y. C. et al. Hetero-lattice intergrown and robust MOF membranes for polyol upgrading. Angew. Chem. Int. Ed. 61, e202114479 (2022).

    Article  CAS  Google Scholar 

  25. Kim, J. H. et al. Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano 15, 8860–8869 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, K., Wang, B., Guo, S. & Li, K. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property. Angew. Chem. Int. Ed. 57, 13892–13896 (2018).

    Article  CAS  Google Scholar 

  27. Sorribas, S., Gorgojo, P., Tellez, C., Coronas, J. & Livingston, A. G. High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135, 15201–15208 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Kalaj, M. et al. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem. Rev. 120, 8267–8302 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Knebel, A. et al. Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhang, C. et al. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J. 60, 2625–2635 (2014).

    Article  ADS  CAS  Google Scholar 

  31. Zhang, R. et al. Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes. Angew. Chem. Int. Ed. 53, 9775–9779 (2014).

    Article  ADS  CAS  Google Scholar 

  32. Yao, J. F. et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 47, 2559–2561 (2011).

    Article  CAS  Google Scholar 

  33. Ma, X. L. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zhang, X. et al. Electrochemically assisted interfacial growth of MOF membranes. Matter 1, 1285–1292 (2019).

    Article  Google Scholar 

  35. Knebel, A. & Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Lee, D. T., Corkery, P., Park, S., Jeong, H. K. & Tsapatsis, M. Zeolitic imidazolate framework membranes: novel synthesis methods and progress toward industrial use. Annu. Rev. Chem. Biomol. Eng. 13, 529–555 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Yuan, H. Y. et al. Large-area fabrication of ultrathin metal-organic framework membranes. Adv. Mater. 35, 2211859 (2023).

    Article  CAS  Google Scholar 

  38. Xu, L. H. et al. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol–water separation. Science 378, 308–312 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Ryu, J. H., Messersmith, P. B. & Lee, H. Polydopamine surface chemistry: a decade of discovery. ACS Appl. Mater. Interfaces 10, 7523–7540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, S. L. et al. A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chem. Sci. 10, 4542–4549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, H. F., Liu, D. F., Yao, Y., Zhang, B. Q. & Lin, Y. S. Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J. Membr. Sci. 485, 103–111 (2015).

    Article  CAS  Google Scholar 

  42. Qi, Q. Q. et al. Anthocyanins and proanthocyanidins: chemical structures, food sources, bioactivities, and product development. Food Rev. Int. 39, 1–29 (2022).

  43. Rozek, A., Achaerandio, I., Guell, C., Lopez, F. & Ferrando, M. Direct formulation of a solid foodstuff with phenolic-rich multicomponent solutions from grape seed: effects on composition and antioxidant properties. J. Agric. Food Chem. 56, 4564–4576 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Bai, Y. X. et al. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration. Sci. Adv. 9, eadg6134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  ADS  CAS  Google Scholar 

  47. Verploegh, R. J. et al. Screening diffusion of small molecules in flexible zeolitic imidazolate frameworks Using a DFT-parameterized force field. J. Phys. Chem. C 123, 9153–91675 (2019).

    Article  CAS  Google Scholar 

  48. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Zhang, K., Zhang, L. L. & Jiang, J. W. Adsorption of C1−C4 alcohols in zeolitic imidazolate framework-8: effects of force fields, atomic charges, and framework flexibility. J. Phys. Chem. C 117, 25628–25635 (2013).

    Article  CAS  Google Scholar 

  50. Bandyopadhyay, D., Mohan, S., Ghosh, S. K. & Choudhury, N. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water. J. Phys. Chem. B 117, 8831–8843 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support of the National Key R&D Program of China (2022YFB3805103), National Natural Science Foundation of China (numbers 21975221, 22125801, 21908198, 22178139, 21776252). We are grateful for the help of W. Kuang (Beijing Origin Water Membrane Technology Co.) and B. Xia in the preparation of this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.-L.J., Q.Z., M.E. and Q.-F.A. conceived the project. Y.-L.J., B.-X.G., H.-Q.H., H.P., W.-H.Z., M.-J.Y., B.X., H.L., L.F.V. and C.-J.G. performed experiments and analysis. S.-J.X. performed density functional theory simulation. All the authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Qiang Zhao, Menachem Elimelech or Quan-Fu An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Dan Zhao and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Materials and Methods, Text, Figs. 1–59, Tables 1–3 and References.

Supplementary Video 1

Preparation of the ZIF-8-PDPM (1.0 m × 1.5 m).

Supplementary Video 2

Scale-up of ZIF-8-PDPM and module fabrication.

Supplementary Video 3

ZIF-8-PDPM module-separation performance test.

Supplementary Video 4

Automatic preparation of ZIF-8-PDPM module.

Supplementary Data 1

Source data for Supplementary Fig. 37.

Supplementary Data 2

Source data for Supplementary Fig 42.

Supplementary Data 3

Source data for Supplementary Fig. 43.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, YL., Gu, BX., Huo, HQ. et al. Roll-to-roll fabrication of large-area metal–organic framework-based membranes for high-performance aqueous separations. Nat Water 2, 183–192 (2024). https://doi.org/10.1038/s44221-023-00184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00184-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing