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Remotely sensed evapotranspiration (ET) data offer strong potential 
to support data-driven approaches for sustainable water management. 
However, practitioners require robust and rigorous accuracy assessments 
of such data. The OpenET system, which includes an ensemble of six remote 
sensing models, was developed to increase access to field-scale (30 m) ET 
data for the contiguous United States. Here we compare OpenET outputs 
against data from 152 in situ stations, primarily eddy covariance flux towers, 
deployed across the contiguous United States. Mean absolute error at 
cropland sites for the OpenET ensemble value is 15.8 mm per month (17% of 
mean observed ET), mean bias error is −5.3 mm per month (6%) and r2 is 0.9. 
Results for shrublands and forested sites show higher inter-model variability 
and lower accuracy relative to croplands. High accuracy and multi-model 
convergence across croplands demonstrate the utility of a model ensemble 
approach, and enhance confidence among ET data practitioners, including 
the agricultural water resource management community.

Accurate evapotranspiration (ET) data are essential for assessing the 
surface energy and water balance, the carbon cycle and the manage-
ment of water resources1. ET is the sum of the flux of water vapour 
from soil (evaporation) and through vegetation (transpiration) to the 
atmosphere. ET constitutes the second largest component of the ter-
restrial water balance, after precipitation. The usefulness of spatially 
contiguous mapping of ET, particularly over irrigated agricultural 
lands, has been amplified by drought, climate change, and high rates 
of human water withdrawal and agricultural consumption, leaving 

many aquifers and water reservoirs in the western United States at all-
time-low levels2–4. Satellite-based remote sensing of ET (RSET) offers 
a powerful approach for mapping ET over large geographic regions at 
semi-continuous timescales1,5,6. Until recently, the availability of RSET 
data at spatial scales relevant for water resources management has 
been limited by cost and computational requirements.

OpenET5 employs six state-of-the-art satellite based RSET models, 
that is, ALEXI/DisALEXI7, eeMETRIC8, geeSEBAL9, PT-JPL10, SIMS11,12 and 
SSEBop13, that have been widely applied and evaluated in the United 
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deviation (MAD) approach23,24. The generation of an ensemble value is 
a widely used technique to combine outputs from diverse models, each 
having their own behaviour5 and random error25–27. It also facilitates 
applications such as irrigation scheduling and water rights administra-
tion, where practitioners require a single value for use in management 
of water resources5. The publicly archived in situ flux dataset allows for 
reproducibility and benchmarking of future OpenET model versions 
or other RSET data.

ET data computed from micrometeorological measurements at 
EC sites were obtained from a variety of sources, primarily AmeriFlux28. 
Supplementary Table 1 provides a full list of stations used in the study 
including land cover type, site principal investigators, Digital Object 
Identifiers (DOIs) and other metadata. Flux data were carefully post-
processed, including gap-filling, screening for energy balance closure 
error and data completeness, and visual data quality assessments. 
Flux data that passed quality control and showed limited energy bal-
ance closure error were included in the study and underwent closure 
correction following the FLUXNET2015/ONEFlux approach for daily 
averaged fluxes19,29. We refer to EC data as ‘ECET’ throughout the arti-
cle. Closed ECET data were considered to be most representative of 
actual ET30. To sample RSET pixels for comparison with ECET, flux 
footprints were developed for each station. Flux footprints are two-
dimensional mappings of the areal extent of a station’s source area, 
that is, the area on the ground that contributes to fluxes measured 
by the tower instrumentation. Refer to Methods and Volk et al.19,20 
for details on flux data processing and footprint mapping methods 
used. Additional discussion of uncertainty in EC data and steps taken 
to limit that uncertainty are provided in Supplementary Discussion 1. 
An overview of the satellite-driven ET models in the OpenET ensemble 
is provided in Methods.

The discussion of statistical results that follows focuses on com-
parisons between monthly aggregated ECET and RSET. Although 
accuracy assessments were conducted using daily (date of overpass) 
data and monthly total ET aggregated to growing season and annual 
periods, our discussion focuses on monthly results for several reasons: 
monthly ET has utility for longer-term water accounting and planning; 
uncertainties in EC data due to closure and other factors are reduced 

States for a range of water management and agricultural applications. 
The models are applied on the Google Earth Engine cloud-based plat-
form14 to provide historical and near real-time ET data at subfield scales 
(30-m pixels) over the western United States5. Five of the RSET models 
constrain components of the surface energy balance (SEB) using land 
surface temperature (LST) primarily derived from Landsat Collection 
2, along with gridded weather data, and land cover datasets. The sixth 
model, SIMS, assumes well-watered conditions and computes crop 
coefficients based on vegetation density, derived from satellite surface 
reflectance values, along with a gridded soil water balance model. The 
models composing OpenET have been used by water managers, farm-
ers and governmental organizations for irrigation scheduling, water 
accounting and allocation, and water rights administration15–17. The 
OpenET platform provides an unprecedented level of accessibility to 
RSET data through its public online data explorer interface—including 
querying satellite ET within individually vectorized field bounda-
ries. All six RSET models in OpenET operate automatically, including 
any required calibrations, which permits rapid calculations for the 
more than 100,000 Landsat images processed so far across the 23 
western-most states in the contiguous United States. As the number 
of applications of RSET data for sustainable land and water resources 
management grow, it is important for practitioners to have information 
on the accuracy of RSET data across land cover types, climatic zones 
and agricultural production practices18.

In this Analysis, we present a large-scale benchmark assessment 
of the accuracy of OpenET data using a well-curated publicly archived 
dataset of in situ ET measurements from 152 stations (141 eddy covari-
ance (EC) systems, 7 Bowen ratio systems and 4 lysimeters), over a 
variety of regions, climates and land cover types19,20, collectively com-
prising ~45 years of paired model–measurement ET data (Fig. 1). The EC 
technique is generally viewed as the best available method for continu-
ous measurement of in situ energy and heat flux at spatial scales that 
approach satellite-based retrievals21,22, although we acknowledge the 
associated data uncertainties and made efforts to reduce them19. In 
addition to evaluation of individual model accuracies, we evaluated the 
OpenET ensemble ET value, computed as the mean of all models after 
flagging and removal of up to two outliers using the median absolute 
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Fig. 1 | Map of in situ ET measurement sites. Map of the locations of in situ 
ET stations used to evaluate OpenET, including their general land cover type 
and Köppen–Geiger (KG) climate zones34. White areas represent climate zones 
that did not contain any cropland sites and were excluded from the analysis. 

Climate zone abbreviations are defined as follows: cold and hot semi-arid steppe 
(Bsk + Bsh); hot and cold desert (Bwh + Bwk); humid subtropical (Cfa); hot- and 
warm-summer Mediterranean (Csa + Csb); and hot- and warm-summer humid 
continental (Dfa + Dfb).
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at the monthly (compared with daily) timescale, and OpenET directly 
provides daily and monthly ET, along with data services that allow 
users to compute ET at other aggregation periods. Accuracy results 
are provided for daily, monthly, seasonal and annual timesteps in Sup-
plementary Tables 2–6, and accuracy metrics for daily timesteps should 
be consulted for applications of ET data at timesteps of 1–15 days. Five 
well-known statistical metrics were used to evaluate OpenET accu-
racy (for equations, see Methods): the linear regression slope forced 
through the origin which measures bias (Slope), mean bias error (MBE), 
mean absolute error (MAE), root-mean-square error (RMSE) and the 
coefficient of determination (r2). Regression results with a non-zero 
intercept for monthly data are provided in Supplementary Table 7.

Performance over all agricultural flux sites
Of all the general land cover types sampled, OpenET models showed 
the strongest agreement with ECET collected in agricultural settings. 
For 44 agricultural sites combined, eeMETRIC, SIMS and PT-JPL showed 
the least bias in terms of MBE, all less than −4.5 mm per month or 5% 
of the mean ECET (Table 1). The ensemble value had a slightly higher 
magnitude bias of −5.3 mm per month, or 5.8% of the mean ECET. 
The ensemble value outperformed each individual model in terms 
of MAE 15.9 mm per month (17.3% of the mean ECET), RMSE 20.4 mm 
per month (22.4%) and r2 (0.90). In comparison, MAE from individual 
models ranged from 17.9 to 22.7 mm, RMSE from 23.1 to 29.1 mm per 
month and r2 from 0.83 to 0.87 with smallest errors from PT-JPL, SIMS 
and DisALEXI.

ET data from the individual RSET models were generally linearly 
related to ECET, with PT-JPL and SIMS exhibiting some curvature due 
to seasonally varying biases (Fig. 2). Many of the models underesti-
mated ET during the cold season relative to the ECET, leading to the 
slightly low bias in the ensemble ET value (Table 2). To investigate 
seasonal variability in model accuracy, we pooled all monthly paired 

(model–measured) ET to generate monthly climatologies for major 
land cover classifications (Fig. 3 and Extended Data Figs. 1–5). The 
range between unclosed and closed ECET provides one measure of the 
uncertainty in the in situ data31.

For most months, the multi-model ensemble ET value was well 
bounded between the closed and unclosed mean ECET for cropland 
sites, while individual ensemble members showed more seasonal bias. 
In spring, SSEBop and eeMETRIC underestimated unclosed ET, whereas 
SIMS overestimated closed ET, probably due to the assumption of 
well-watered conditions. In peak summer months, most models were 
in good agreement with closed ECET, with geeSEBAL and PT-JPL biased 
low. In September and October, when actual ET rates decline quickly, 
several models were biased high, except DisALEXI and geeSEBAL, which 
tracked closer to the unclosed values. The higher agreement of RSET 
with ECET during the peak summer period is encouraging, as this is the 
period of intensive irrigation and consumptive use of water through 
ET. A post hoc test showed that DisALEXI, geeSEBAL and SSEBop had 
mean monthly ET values that were statistically different (as underes-
timation) from the mean closed ECET. The mean aggregated growing 
season ET for all models were no different from the mean closed ECET 
(Supplementary Tables 8 and 9).

The monthly climatologies derived at flux sites were upscaled 
using data from all cropland pixels over the full OpenET domain 
(Extended Data Fig. 6). We found similar seasonal patterns and relative 
model biases to those identified at the flux sites—giving confidence in 
the representativeness of the ECET comparisons.

Impact of sampling interval on model 
performance
Model accuracy often improves with temporal aggregation interval 
due to cancellation of errors8. In croplands, the accuracy metrics for 
the OpenET ensemble improved as the aggregation period increased 

Table 1 | Smmary statistics between modelled and observed monthly ET for cropland sites

Land cover type Statistic Ensemble DisALEXI eeMETRIC geeSEBAL PT-JPL SIMS SSEBop N sites N data 
points

All crops, mean 
station ET of  
91 (mm per month)

Slope 0.92 0.92 0.95 0.85 0.91 0.99 0.95 53 1,652

MBE (mm) −5.27 (−5.8%) −7.72 (−8.4%) −2.44 (−2.7%) −12.18 (−13.3%) −2.9 (−3.2%) 4.32 (4.7%) −6.08 (−6.7%) 44 1,638

MAE (mm) 15.84 (17.3%) 19.91 (21.8%) 21.23 (23.2%) 22.69 (24.8%) 18.12 (19.8%) 17.93 (19.6%) 22.4 (24.5%) 44 1,638

RMSE (mm) 20.44 (22.4%) 25.35 (27.7%) 26.97 (29.5%) 29.05 (31.8%) 23.67 (25.9%) 23.1 (25.3%) 27.72 (30.3%) 44 1,638

r2 0.9 0.86 0.83 0.83 0.87 0.86 0.85 53 1,652

Annual crops,  
mean station ET of 
85 (mm per month)

Slope 0.93 0.92 0.98 0.85 0.9 1.01 0.92 42 1,446

MBE (mm) −5.11 (−6.0%) −8.18 (−9.6%) 0.23 (0.3%) −12.38 (−14.6%) −3.77 (−4.4%) 6.27 (7.4%) −9.13 (−10.7%) 36 1,436

MAE (mm) 15.26 (17.9%) 20.09 (23.6%) 20.44 (24.0%) 22.52 (26.5%) 17.0 (20.0%) 17.48 (20.5%) 21.93 (25.8%) 36 1,436

RMSE (mm) 19.71 (23.2%) 25.68 (30.2%) 26.17 (30.8%) 28.67 (33.7%) 22.31 (26.2%) 22.49 (26.4%) 27.14 (31.9%) 36 1,436

r2 0.9 0.84 0.83 0.82 0.87 0.85 0.84 42 1,446

Orchards, mean 
station ET of  
126 (mm per month)

Slope 0.87 0.88 0.81 0.84 0.88 0.93 0.97 5 141

MBE (mm) −11.9 (−9.4%) −11.02 (−8.7%) −20.66 (−16.4%) −15.11 (−12.0%) −7.39 (−5.8%) −3.47 (−2.7%) −3.69 (−2.9%) 5 141

MAE (mm) 21.18 (16.8%) 22.2 (17.6%) 28.19 (22.3%) 24.9 (19.7%) 24.43 (19.3%) 22.95 (18.2%) 20.18 (16.0%) 5 141

RMSE (mm) 27.89 (22.1%) 27.86 (22.1%) 35.26 (27.9%) 32.77 (25.9%) 31.67 (25.1%) 30.49 (24.1%) 27.26 (21.6%) 5 141

r2 0.91 0.89 0.89 0.88 0.88 0.86 0.89 5 141

Vineyards, mean 
station ET of  
112 (mm per month)

Slope 1.02 1.02 0.95 0.95 1.09 0.92 1.25 3 61

MBE (mm) 5.27 (4.7%) 4.99 (4.5%) −4.62 (−4.1%) −3.76 (−3.4%) 17.95 (16.0%) −7.71 (−6.9%) 31.88 (28.5%) 3 61

MAE (mm) 13.66 (12.2%) 13.01 (11.6%) 18.73 (16.7%) 20.72 (18.5%) 21.53 (19.2%) 14.43 (12.9%) 33.22 (29.7%) 3 61

RMSE (mm) 16.23 (14.5%) 15.87 (14.2%) 22.1 (19.7%) 27.2 (24.3%) 27.19 (24.3%) 17.34 (15.5%) 36.56 (32.6%) 3 61

r2 0.9 0.9 0.81 0.73 0.83 0.88 0.84 3 61

Mean monthly summary statistics for comparisons between OpenET5 ensemble members’ ET and closed flux tower monthly ET19,20, grouped by three major crop types: annual crops; vineyards 
and orchards. Slope is calculated as the linear regression slope forced through the origin. Measures of MBE, MAE and RMSE include the error in mm per month and normalized as a percentage 
of the weighted mean closed flux tower ET. Note, there were three additional vegetable crop sites included in the combined crop group, which alone did not meet our data requirements for 
statistical analyses19.

http://www.nature.com/natwater


Nature Water | Volume 2 | February 2024 | 193–205 196

Analysis https://doi.org/10.1038/s44221-023-00181-7

from daily (overpass dates) to monthly to growing season to annual 
periods (Supplementary Tables 2–6). Daily ensemble results for the 
combined cropland sites showed a MAE of 23.6%, and RMSE of 31.1% 
of the mean ECET. At this timescale there is increased uncertainty both 
in the ECET data due to variability in micrometeorological conditions 
and energy balance closure, and remotely sensed ET due to potential 
cloud contamination and errors in footprint representation. These 
ensemble uncertainties are reduced when integrating to monthly (MAE 
of 17.3% and RMSE of 22.4% of ECET), growing season (MAE of 12.9% and 

RMSE of 15.5% of ECET) and water year (MAE of 11.3% and RMSE of 12.3% 
of ECET) timescales. Fortunately, during growing season periods we 
found lower energy balance closure error in EC data19 and there is less 
cloud cover in satellite data in the western United States as compared 
with the non-growing period. During the summer, the daily ensemble 
normalized MAE (NMAE) on overpass dates was typically between 5% 
and 25% (Supplementary Fig. 1), and monthly 7% and 20% (Fig. 4). We 
expect custom aggregation periods between 2 and 15 days to have 
similar or slightly improved accuracy to daily results that vary season-
ally; subweekly to bi-weekly RSET may be of greatest use for irrigation 
scheduling32.

Performance among annual and perennial crops
Annual crops, including wheat, corn, soy, rice and others, make up the 
majority (80%) of cropland sites in the OpenET ECET dataset (Supple-
mentary Table 1). Compared with perennial crops, annual crops tend 
to have shorter canopies and more homogeneous cover at peak growth 
stage. The annual crop sites in the OpenET flux dataset are predomi-
nantly irrigated, and are distributed across a range of climatic zones, 
with higher density in regions such as Mediterranean and semi-arid 
Central Valley, California, and humid continental regions in the High 
Plains and the Mississippi Alluvial Plain (Fig. 1).

For annual crops, each of the RSET models in the OpenET ensem-
ble exhibited small bias and high levels of accuracy and precision  
(Table 1). Similar to all crop types combined, the ensemble value 
for annual crops outperformed individual models in terms of MAE 
(15.3 mm per month or 17.9% of mean ECET), RMSE (19.7 mm per month 
or 23.2% of mean ECET) and r2 (0.9). Of the RSET models, eeMETRIC and 
PT-JPL exhibited the lowest magnitude of MBE, with PT-JPL and SIMS 
yielding the highest accuracy in terms of MAE and RMSE.

Dividing annual crops into C3 and C4 subclasses, we find the 
seasonal patterns and magnitudes of ensemble MAE are similar 
throughout the year (Fig. 4). NMAE in general reflects the inverse of the 
characteristic water use curve for each class, with C3 crops exhibiting 
a broader seasonal curve than C4 and therefore lower NMAE early and 
late in the season. While the higher NMAE values observed outside the 
growing season for all crop types (Fig. 4) are more indicative of low ET 
rates than of meaningful modelling error characteristics, cool-season 
errors may be generally inflated by higher cloud cover, increasing the 
time interval between cloud-free satellite retrievals. Improving satel-
lite imaging frequency, as well as ET time integration and gap-filling 
techniques, should help to increase OpenET accuracy during the non-
growing season (Discussion).

Another class of interest is woody perennials, which are high-value 
crops and pose distinct modelling challenges. High-quality eddy flux 
ET data were available for three vineyards, three nut tree orchards and 
one fruit orchard, all located in California19,33. Vineyards and orchards 
have taller and more highly structured canopies, often with inter-row 
cover crops, and vineyards are often deficit irrigated. These quali-
ties lead to shadowing and mixed pixel effects in remote sensing at 
the 30-m level, and the need for sensitivity to small changes in vine 
stress to inform deficit irrigation applications is a unique modelling 
requirement.

RSET model performance in the vineyard sites sampled was strong 
and consistent across models. The ensemble accuracy exceeded that 
for annual crops (Table 1 and Fig. 4), with lower bias (slope of 1.02 and 
MBE of 5.3 mm per month) and lower MAE and RMSE (13.7 and 16.2 mm 
per month, respectively, or 12.2% and 14.5% of the mean monthly ECET) 
and r2 of 0.90. DisALEXI performed similarly or better than the ensem-
ble at the vineyard flux sites, perhaps due to its two-source approach 
towards partitioning temperature fluxes between the substrate  
(inter-row) and canopy.

Performance was more varied across ensemble members for the 
orchards than for other broad crop types, and biases were more nega-
tive. This could be related to shadowing effects in the taller and more 
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strongly clumped canopies, particularly for models that are strongly 
dependent on LST inputs. The ensemble value had a negative bias with 
mean slope of 0.87, MBE −11.9 mm per month, MAE 21.2 mm per month 
(16.8% of ECET) and RMSE 27.9 mm per month (22.1% of ECET), and an r2 
of 0.91. SSEBop and SIMS had the least bias in terms of slope and MBE, 
and SSEBop and DisALEXI had the lowest error in terms of MAE and 
RMSE (Table 1). While MAE in orchards is high mid-season, the normal-
ized values are similar to those of annual crops (Fig. 4).

Variation of model performance across climate 
regions
To investigate variations in OpenET performance over different cli-
mates, cropland accuracy metrics were grouped by the Köppen–Geiger 
climate zones of the flux sites34 (Fig. 1). Zones with fewer than five flux 
stations were omitted as a conservative measure, and some zones were 
lumped on the basis of secondary climate classifications (for example, 
hot- and warm-summer Mediterranean zones). Each resulting group 
had 7–13 flux stations used for calculation of accuracy statistics.

Overall, the OpenET ensemble had better agreement with ECET at 
crop sites in water-scarce, semi-arid to arid regions (Mediterranean and 
desert zones in the Southwest) as compared with humid zones (Table 2 
and Supplementary Fig. 2). Irrigation is more prevalent in semi-arid to 
arid regions, and crop ET tends to be closer to potential ET rates and is 
more accurately modelled in some RSET modelling frameworks. High 
accuracy of models in semi-arid and arid regions is advantageous, given 
the high priority of water resource sustainability and management 
challenges in these regions.

Among the zones considered, the OpenET ensemble value was 
most accurate for crop sites in Mediterranean zones, with MAE of 
13.3 and RMSE of 16.5 mm per month (14.2% and 17.6% of the mean 
ECET), with the ensemble outperforming individual members. Of 
the individual models, SIMS showed the best agreement with ECET 
in these regions, suggesting well-watered conditions for most sites 
or possible influence of adjacent non-irrigated areas on SEB models. 
Similarly, in arid sites (hot and cold desert), SIMS had the lowest MAE 
and RMSE (Table 2). During the growing season periods when the 
majority of irrigation is applied, the ensemble’s monthly NMAE was 
consistently below 10% for cropland sites in Mediterranean climates 
(Supplementary Fig. 2).

Model performance in the subhumid and humid continental 
regions of the Midwest and Central Plains was similar to that in the 
Mediterranean climate zone, again with the ensemble outperforming 
individual models in terms of collective statistics (Table 2 and Supple-
mentary Fig. 2). Errors were higher at the humid subtropical sites, with 
SIMS tending to overestimate ET with a slope of 1.15 and normalized 
MBE of 19.9%, indicating ET is less well correlated with vegetation den-
sity in this region, and that irrigation practices may result in intermit-
tent vegetation water stress. Hypotheses for increased RSET error in 
humid regions and paths for improvement are proposed in Discussion.

Performance in natural ecosystems
Most of the flux stations (61%) used in the intercomparison were in 
non-agricultural sites, including shrublands, grasslands, mixed forests, 
conifer forests, and wetlands or riparian areas (Fig. 1)19. The SIMS model 

Table 2 | Summary statistics between modelled and observed monthly ET for cropland sites grouped by climate zone

Land cover type Statistic Ensemble DisALEXI eeMETRIC geeSEBAL PT-JPL SIMS SSEBop N sites N data 
points

Bsk + Bsh (cold 
and hot semi-arid 
steppe), mean 
station ET of  
133 (mm per month)

Slope 0.9 0.85 0.91 0.82 0.88 0.97 1 11 246

MBE (mm) −6.94 (−5.2%) −15.17 (−11.4%) −4.65 (−3.5%) −18.09 (−13.6%) −7.55 (−5.7%) 2.71 (2.0%) 2.89 (2.2%) 11 246

MAE (mm) 20.74 (15.6%) 26.93 (20.3%) 26.94 (20.3%) 30.31 (22.8%) 25.7 (19.3%) 22.99 (17.3%) 24.23 (18.2%) 11 246

RMSE (mm) 26.38 (19.8%) 34.55 (26.0%) 33.4 (25.1%) 38.0 (28.6%) 32.49 (24.4%) 28.97 (21.8%) 30.99 (23.3%) 11 246

r2 0.89 0.81 0.8 0.8 0.84 0.84 0.84 11 246

Bwh + Bwk (hot and 
cold desert),  
mean station ET of  
110 (mm per month)

Slope 0.91 0.85 1.02 0.92 0.86 0.92 0.88 10 53

MBE (mm) −6.78 (−6.1%) −15.63 (−14.2%) 9.63 (8.7%) −8.19 (−7.4%) −7.77 (−7.0%) −3.2 (−2.9%) −12.34 (−11.2%) 7 49

MAE (mm) 13.24 (12.0%) 21.21 (19.2%) 18.92 (17.1%) 19.13 (17.3%) 19.21 (17.4%) 13.62 (12.3%) 19.59 (17.8%) 7 49

RMSE (mm) 17.02 (15.4%) 25.78 (23.4%) 23.92 (21.7%) 23.51 (21.3%) 23.81 (21.6%) 16.07 (14.6%) 22.95 (20.8%) 7 49

r2 0.91 0.85 0.88 0.87 0.83 0.94 0.89 10 53

Cfa (humid 
subtropical),  
mean station ET of  
75 (mm per month)

Slope 1 1.03 1.03 0.99 0.93 1.15 0.91 11 232

MBE (mm) 2.15 (2.9%) 4.49 (6.0%) 3.65 (4.9%) 0.97 (1.3%) −0.88 (−1.2%) 14.98 (19.9%) −3.84 (−5.1%) 8 228

MAE (mm) 17.51 (23.3%) 20.17 (26.8%) 24.01 (31.9%) 20.06 (26.7%) 17.79 (23.6%) 22.71 (30.2%) 21.97 (29.2%) 8 228

RMSE (mm) 23.76 (31.6%) 26.18 (34.8%) 31.88 (42.4%) 28.39 (37.7%) 23.62 (31.4%) 30.23 (40.2%) 28.76 (38.2%) 8 228

r2 0.75 0.72 0.62 0.69 0.76 0.72 0.64 11 232

Csa + Csb (hot- and 
warm-summer 
Mediterranean),  
mean station ET of 
94 (mm per month)

Slope 0.95 0.96 0.99 0.81 1.01 0.93 0.99 8 292

MBE (mm) −4.37 (−4.7%) −6.32 (−6.7%) −1.72 (−1.8%) −20.92 (−22.3%) 7.37 (7.9%) −1.34 (−1.4%) −2.9 (−3.1%) 8 292

MAE (mm) 13.32 (14.2%) 18.65 (19.9%) 17.14 (18.3%) 25.9 (27.6%) 17.17 (18.3%) 14.04 (15.0%) 23.94 (25.6%) 8 292

RMSE (mm) 16.52 (17.6%) 22.75 (24.3%) 21.48 (22.9%) 31.31 (33.4%) 21.97 (23.5%) 18.27 (19.5%) 27.92 (29.8%) 8 292

r2 0.93 0.87 0.88 0.85 0.87 0.88 0.84 8 292

Dfa + Dfb (hot- and 
warm-summer 
humid continental), 
mean station ET of  
67 (mm per month)

Slope 0.9 0.93 0.94 0.86 0.87 1.02 0.9 13 829

MBE (mm) −8.0 (−11.9%) −8.07 (−12.0%) −6.74 (−10.0%) −10.55 (−15.7%) −5.72 (−8.5%) 4.88 (7.3%) −13.58 (−20.2%) 10 823

MAE (mm) 13.8 (20.5%) 15.68 (23.3%) 18.93 (28.2%) 17.88 (26.6%) 13.67 (20.3%) 15.35 (22.8%) 21.09 (31.4%) 10 823

RMSE (mm) 17.85 (26.6%) 20.36 (30.3%) 24.1 (35.8%) 23.36 (34.7%) 18.89 (28.1%) 19.94 (29.7%) 25.9 (38.5%) 10 823

r2 0.91 0.9 0.83 0.86 0.89 0.86 0.86 13 829

Mean monthly summary statistics for comparisons between OpenET5 ensemble members ET and closed flux tower monthly ET19,20 for agricultural sites grouped by Köppen–Geiger climate 
zones34. Slope is calculated as the linear regression slope forced through the origin. Measures of MBE, MAE and RMSE include the error in mm per month and normalized as a percentage of the 
weighted mean closed flux tower ET.
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is currently not designed for and implemented in non-agricultural 
land-cover types; for these pixels, the ensemble consists of five models 
with the possibility of removing a single outlier (Methods). Systematic 
model error and variability for non-agricultural sites was higher than 
cropland sites (Fig. 5).

Most models exhibited a high bias in wetland/riparian sites, domi-
nated by overprediction of ET during the spring (Extended Data Fig. 5). 
SSEBop had higher accuracy in these sites than other models and the 
ensemble value (Supplementary Tables 2–4). For models that estimate 
all components of the SEB (DisALEXI, eeMETRIC and geeSEBAL), this 
bias could result from an underestimation of the substrate (water) heat 
storage term in the spring before the vegetation canopy develops7. 
These errors can potentially be mitigated in the future through accurate 
classification of inundated land areas.

Natural ecosystems under high water stress, such as shrublands 
and grasslands in desert and semi-arid steppe climates in the western 
United States, showed the highest variability and error with respect to 
ECET (Fig. 5 and Supplementary Tables 2–4). In these systems, ET can 
be a small fraction of available energy, and difficult to both measure on 
the ground and model using RSET approaches. Shrublands also tend 
to be more heterogeneous than cropland sites, and this can introduce 
additional uncertainty into model–measurement comparisons5. Nev-
ertheless, it is important to provide an evaluation of accuracy, both to 
benefit ET monitoring and land health assessments within shrub and 
grassland ecosystems, and to identify key areas for future research in 
RSET to reduce model error.

The Landsat-scale ET from OpenET also has applications in for-
ested landscapes, as a predictor of forest health and mortality35 and as 
a metric of water yield response to forest management36. In forested 
locations, most OpenET models overestimated ET, particularly at 
the evergreen flux sites sampled, yielding a slope for the ensemble 
value of 1.24 and MBE of 16.8 mm per month (27.3%). At these sites, 
eeMETRIC showed the least bias with a slope of 1.17 and an MBE of 
10.8 mm per month (17.5%), while for MAE and RMSE, the ensemble 
value outperformed each individual model. At mixed forest sites, 
however, eeMETRIC and DisALEXI were in better agreement with ECET 
than was the ensemble.

Ensemble outlier removal and spatial inter-model 
variability
See Supplementary Discussion 2 for analysis and discussion of the 
MAD outlier removal approach that is used for computing the ensem-
ble value, including spatial analysis of the occurrence of outliers and 
the long-term differences between each model’s seasonal ET and the 
ensemble value (Extended Data Figs. 7 and 8, Supplementary Figs. 3–9 
and Supplementary Tables 9 and 10). Evidence suggests that the MAD 
approach showed accuracy metrics similar to other simple methods. 
Over 2016–2022, typically no model was identified as an outlier in crop-
land pixels; however, SIMS was about 10% more likely to be identified as 
an ensemble outlier, and it often gave the highest ET value, particularly 
in the Central Plains.

Discussion
ET is a critical driver and metric of ecosystem function, weather and cli-
mate, agricultural practices and water resource management. However, 
field-scale ET has previously been difficult to estimate at scale; there-
fore, ready access to high-resolution (spatially and temporally) ET data 
offers societal benefits to a variety of stakeholders1,5. Using monthly 
ET data, water managers can develop more accurate water budgets in 
support of incentive-driven conservation programmes and innovative 
management and trading strategies. For policymakers, such data can 
improve water supply tracking, simplify regulatory compliance and 
promote the co-development of solutions with local communities. Crop 
producers may be able to improve the efficiency of irrigation practices 
in some instances, resulting in enhanced sustainability and reduced 

costs for water, fertilizer and energy. Supplementary Discussion 3 
continues the conversation on incentives towards improving irrigation 
efficiency and how OpenET data can provide value in an RSET-based 
irrigation scheduling framework.

In addition to informing water management, OpenET has multiple 
research and modelling applications. Carbon and climate modelling 
can benefit from 30-m RSET data as a diagnostic indicator of ecosystem 
health and function response under a changing climate1. RSET is being 
used to reduce summertime warm-dry bias in weather forecasting and 
climate models by improving the representation of ET from irrigated 
land37, ET–soil moisture coupling38 and transpiration–evaporation 
partitioning39. Hydrologic and land surface models at multiple scales 
can also benefit from high-resolution ET data, for example, as valida-
tion or forcing data in basins where streamflow measurements are not 
available to constrain the water budget13,40,41.

Realizing the full potential benefits of RSET data for water resource 
and land management applications requires rigorous and reproducible 
accuracy assessment to inform practitioners on best use practices18. 
The accuracy results we present here provide valuable constraints 
on model uncertainty based on broad crop type, climate region  
and timescale.

Average error in the OpenET ensemble value with respect to 
mean ECET in cropland sites for monthly, growing season and annual 
aggregated ET, ranged from 10% to 17% for MAE and 11% to 22% for 
RMSE. These errors are within accuracy levels of 10–20% reported 
for supervised remote sensing techniques42. They are also consistent 
with accuracy targets set by the OpenET user groups: 10–20% at a 
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monthly timestep, and 15–25% for daily ET data5. These errors include 
uncertainties in ECET data, which are estimated to range from 10% to 
30% depending on site characteristics and instrumentation design 
and maintenance42.

These accuracy results may support advancements in water man-
agement applications that incorporate OpenET data. For croplands, 
all models except for SIMS had negative bias errors at the monthly 
timestep (−2.7% to −13.3%), with an MBE of −5.8% for the ensemble 
ET value (SIMS MBE is +4.7%). Awareness of these bias errors when 
using these data for irrigation management applications may prevent 
unintentional deficit irrigation that can suppress crop yields and farm 
revenue43. Cross-comparisons between the primarily reflectance-
based SIMS and PT-JPL models and the LST-driven models may be 
useful for identifying periods of intentional or unintentional crop 
water stress and deficit irrigation. Reducing errors in the OpenET 
daily data is a high priority for advancing their utility for on-farm 
water management.

At local to regional scales, the reported uncertainties at monthly 
to annual timesteps should inform applications related to water bal-
ance, water accounting and water rights administration. Comparison 
of OpenET data aggregated at the scale of irrigation districts or water-
sheds against carefully constrained water balances offers one path to 
assessment of biases at larger scales. Particularly in administration of 
water rights, the current uncertainty in the OpenET data (for exam-
ple, growing season ensemble NMAE of 12.9% for croplands) must be 
recognized in evaluating consumptive water use, and OpenET data 
should only be used for this purpose in combination with other sources 
of information.

This study provides insights into potential pathways towards 
improving the accuracy of the individual models within the OpenET 
ensemble. Across both agricultural and some natural landscapes, most 
models underestimated cropland ET during the winter and spring, 
particularly the models that rely upon TIR measurements to compute 
ET. This underestimation may be related to loss of thermal contrast 
over an image, where differences between the hottest and coolest 
pixels are reduced relative to midsummer values, adding uncertainty 
to within-scene scaling approaches. It may also be related to misrepre-
sentation of soil evaporation during extended wet periods, extended 
periods of cloudiness, and error in shared model inputs. In addition, 
treatment of effects of senesced standing vegetation and crop residue 
on SEB can impact model performance outside of the growing season. 
In terms of observational errors, the energy balance closure error and 
uncertainty in EC data are also amplified during periods outside of the 
growing season19.

We found increased model error in croplands in humid climates 
as compared with drier regions. Again, lower temperature contrasts 
across humid landscapes may contribute to errors in TIR-based within-
scene scaling models. A primary driver, however, is probably the rela-
tive paucity of clear-sky satellite retrievals and potential for error in 
LST due to undetected clouds. Improving temporal sampling of RSET 
model inputs will be a major focus of on-going development in OpenET, 
through future use of imagery from additional Landsat-like optical 
(Sentinel-2) and thermal (ECOSTRESS, VIIRS) sensors44, and integra-
tion of future TIR observations from satellite missions currently in 
development by NASA, USGS and the European Space Agency. Methods 
for computing ET values between cloud-free satellite observations, 
currently based on linear interpolation of the ratio of ET to a reference 
flux, can also be improved. Approaches used in mapping and predict-
ing vegetation phenology45 and dynamic time warping46 algorithms 
developed for signal processing applications offer promise for reduc-
ing large errors during periods of rapid vegetation change or extended 
cloud cover, which would contribute to reduced RMSE values across 
the model ensemble.

Examining results for specific crop classes, we found strong results 
for DisALEXI and SIMS over vineyards, and DisALEXI, SIMS and SSEBop 
over fruit and nut orchard sites—key targets for irrigation manage-
ment in the Central Valley. Increasing the number of validation sites in 
orchards would help to address remaining modelling issues associated 
with this challenging canopy architecture. The USDA ARS-led Tree-crop 
Remote sensing of Evapotranspiration eXperiment (T-REX) is aimed at 
addressing this observational gap47.

All models, to varying degrees, have room for notable improve-
ment in computation of ET in natural ecosystems. For example, most 
models systematically underestimate ET in drier ecosystems such as 
grasslands and shrublands and overestimate ET in evergreen forests. 
Incorporation of high-frequency and high-resolution visible and near-
infrared data into the remote sensing models may improve their ability 
to capture phenological shifts particularly in arid/semi-arid regions, 
and agricultural systems in general48,49. Improvement of gridded mete-
orological model inputs50,51, land cover classification data and soils 
data52 may also lead to improved model performance in both natural 
ecosystems and in croplands. In particular, datasets compiled from 
agricultural weather stations and used to compute bias correction 
surfaces for reference ET could be re-evaluated to ensure reference 
surface compliance with the assumptions of the American Society of 
Civil Engineers Penman–Monteith equation53.

Future OpenET accuracy evaluations will target primary causes 
of error in ground ET measurements and RSET methods. Specific fac-
tors to consider include local advective impacts on modelled and 
measured ET, EC energy budget closure, local thermal contrast, ET 
reduction in deficit irrigated or rainfed systems, potential biases in 
gridded meteorological inputs to RSET models, and accurate capture 
of ET over sparsely cultivated landscapes. Comparisons with other 
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well-established spatially mapped ET products such as MOD16 or 
FLUXCOM54 may provide further insights for operational global ET 
mapping at field scales (30–100 m). Comparisons against ET data com-
puted from long-term water balance studies13,55 would help fill in gaps 
of spatial coverage in measured in situ ET across the western United 
States in hydrologically important but sparsely cultivated regions such 
as the Upper Colorado River Basin.

Conclusions
The OpenET platform provides spatially continuous ET data at 30-m 
resolution throughout the western United States. An intercomparison 
and accuracy assessment involved six satellite-based RSET models com-
posing the current OpenET version, ensemble ET computed from the six 
models, and a well-documented benchmark eddy flux dataset from 152 
stations located in the contiguous United States. Based on results from 
59 cropland ET stations located in a variety of climatic regions, little 
systematic model bias was observed in croplands, and error metrics 
were within or near the targets set forth by OpenET partners including 
farmers, irrigation managers and water management agencies. The best 
accuracy metrics were associated with seasonal and annual timescales, 
and for crops in arid/semi-arid regions. The OpenET ensemble mean, 
with outlier removal, typically outperformed any individual model in 
terms of error statistics. Generally, no more than one model was identi-
fied as an outlier during growing season months over most agricultural 
regions in the western United States, and frequently no models were 
excluded. This finding highlights the substantial progress achieved so 
far in developing fully automated RSET modelling approaches that can 
be employed to map ET over large areas at field-scale resolution. The 
study identified paths for future targeted research and model improve-
ment, and is intended to support the RSET research community in the 
development of increasingly robust and accurate RSET techniques. We 
are also hopeful that this assessment will provide added confidence 
to water resource managers, farmers, ranchers, scientists and other 

potential users of OpenET due to the high rigour and transparency of 
methods that were employed.

Methods
Flux data processing and footprint sampling
We used a curated benchmark eddy flux-based ET dataset19,20 and tools56 
for use in this and subsequent evaluations of OpenET RSET models5. The 
rationale and decision-making steps for the collection and post-pro-
cessing of flux data, as well as analyses of footprint sampling techniques 
and energy balance closure error within the dataset, are described in 
Volk et al.19,20. Data processing techniques for gap-filling and correction 
for energy balance closure error were conducted using open-source 
Python tools56 that enhance data provenance and reproducibility. 
Data were also subject to qualitative, visual-based data screening and 
filtering19,20. The final post-processed dataset consists of 161 stations, 
is public and includes daily and monthly ET and meteorological data, 
interactive graphics of such data for each station, and site information 
such as land use and Principal Investigator acknowledgements20. We 
note that nine stations in the dataset were not included in the statisti-
cal results presented here because they had data coverage that did 
not overlap with the data that could be developed for all six OpenET 
models. For example, not all models could be implemented from satel-
lite imagery recorded before 2001 (ref. 5). Figure 1 shows a map of the 
152 stations used in this accuracy assessment as well as their land cover 
types and Köppen–Geiger climate zones, and Supplementary Table 1 
provides additional metadata for each station.

Data for the majority (106) of the flux stations in this study were 
downloaded from the AmeriFlux website, last accessed on 27 Octo-
ber 2020, and the remaining stations were retrieved from a variety 
of sources and Principal Investigators from university partners, the 
US Geological Survey, the US Department of Agriculture and oth-
ers19. In addition to EC systems, four precision weighing lysimeters 
measuring cropland ET in Texas57 and seven high-quality Bowen Ratio 

Fig. 5 | Monthly modelled ensemble versus observed ET for sites grouped by land cover type. Monthly comparison of the paired monthly OpenET5 ensemble ET 
versus closed flux tower ET19,20 for each general land cover group. Included for each group is the result of the least square linear regression model and r2.
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instrumented sites, which measure ET in predominantly phreato-
phyte shrublands in Nevada20, were included in the dataset. Gap-
filling of initial half-hourly fluxes of the four main energy balance 
components—latent, sensible and soil heat flux, and net radiation—
was conducted using linear interpolation where gaps up to 2 h during 
the daytime or 4 h during nighttime were interpolated. If a given 24-h 
period still contained gaps then the daily average was not calculated 
and the daily flux value was left as a gap. After this initial gap-filling, 
fluxes were averaged to daily periods and energy balance closure cor-
rection was applied following the daily energy balance ratio approach 
defined by FLUXNET2015/ONEFlux19,29. The corrected daily latent heat 
flux, which is the energy consumed through ET, was used to calculate 
ET with an adjustment to the latent heat of vapourization for air tem-
perature20. This closure-adjusted value is referred to as closed flux ET 
or measured ET in the main text and all statistical measures reported 
for OpenET models were against the energy balance corrected ET 
data. Daily ET gaps were subsequently filled using gridMET fraction 
of reference ET and gridMET grass reference ET19,20,58. To exclude flux 
stations with higher data uncertainty, only stations with mean daily 
energy balance closure of 0.75 or higher during the growing season 
and 0.6 or higher during the non-growing season were chosen for 
this intercomparison. Here, growing season periods were spatially 
mapped on the basis of a cumulative growing-degree-day and killing 
frost approach derived from long-term gridded climate data and are 
specific to each flux site19,58. The final dataset is similar to the recent 
FLUXNET2015 (ref. 29) release consisting of high-quality eddy flux 
station data that were subject to similar processing and correction 
techniques. The largest difference between the two datasets, in terms 
of daily latent heat flux estimates, results from different gap-filling 
procedures, where our approach is considered to be simpler and 
more conservative19,20,29.

Two approaches were used to estimate flux tower footprints or 
source area for tower pixel sampling of RSET imagery: (1) simple square 
‘static’ pixel (Landsat 30 m) grids of 3 × 3, 5 × 5 and 7 × 7 drawn around 
station locations, and (2) two-dimensional, physically based flux source 
area estimations modelled using hourly meteorological data using 
the Kljun et al.59 approach, with hourly footprints converted to daily/
monthly average footprint rasters weighted by reference ET19. The 
placement of the static grids was informed by high-resolution imagery 
to avoid inclusion of pixels of non-representative land cover (struc-
tures, roads and canals), and shifted slightly into the predominant 
wind direction as determined by long-term mean daytime windroses 
(built from data between 6:00 and 20:00 local time). Although the 
physically based and temporally dynamic footprints were preferred 
over the static footprints, only about half of the stations in the dataset 
had sufficient data for their production. Commonly, one or more input 
parameters to the Kljun et al.59 model, such as the standard deviation of 
the crosswind component of wind due to turbulence or friction veloc-
ity, was not available. A detailed description of parameter estimation, 
processing steps and the method used for creating weighted mean 
footprint images (using reference ET from NLDAS2 gridded weather 
data60) can be found in Volk et al.19. We also conducted a rigorous com-
parison of the intersection between source areas from the static grids 
of different sizes and the temporally dynamic footprints. The major 
finding was that the larger 7 × 7 grids tended to include substantially 
more of the dynamically defined footprint area than did the smaller 
grid sizes on average; however, the smaller 3 × 3 grids tended to overlap 
with pixels that were deemed part of the dynamic footprint on a more 
consistent basis. Therefore, we decided to use the 7 × 7 grids for pixel 
sampling at most flux sites where a dynamic footprint could not be 
generated, with exceptions for sites with heterogeneous surroundings 
or with non-representative land cover nearby the station. For these 
sites, we used 5 × 5 or 3 × 3 grids to avoid giving equal weight to pixels 
of potentially different land cover that lie near the perimeter of the 
typical actual footprint area19.

Model data
The majority of the models that make up the OpenET ensemble are 
based on full or simplified implementations of the SEB approach. The 
SEB approach accounts for the energy used to transform liquid water in 
plants and soil into vapour that is released to the atmosphere. The SEB 
approach relies on satellite measurements of surface temperature and 
surface reflectance combined with other key land surface and weather 
variables to calculate components of the energy balance—net radiation, 
sensible heat flux, ground heat flux and latent heat flux. eeMETRIC8, 
geeSEBAL9 and DisALEXI7 compute each component of the energy 
balance using optical (that is, short-wave) and thermal (that is, long-
wave) data, whereas SSEBop13 and PT-JPL10 are simplified approaches 
in which certain components of the energy balance are not calculated, 
or are calculated using a set of simplifying assumptions. SIMS11,12 relies 
on surface reflectance data, crop type information and a gridded soil 
water balance model to compute ET as a function of canopy density 
using a crop coefficient approach for agricultural lands.

The Google Earth Engine14 Python application programming inter-
face was used to develop a workflow for sampling OpenET RSET model 
data at ET flux sites. Sampling of the daily and monthly RSET model data 
was performed at each site using a set of static (3 × 3, 5 × 5 and/or 7 × 7) 
and/or dynamic flux source-area footprints. Conditions for each of the 
extraction methods using static footprints were as follows: (1) daily ET 
from eeMETRIC, SIMS and SSEBop for sites outside of California was 
calculated as the product of the mean daily fraction of grass reference 
ET (EToF) produced by the models and the mean daily bias-corrected 
gridMET grass reference ET (ETo) (repeated for sites within Califor-
nia using daily CIMIS ETo, where CIMIS is more commonly used and 
depended upon in California); (2) daily ET from PT-JPL, geeSEBAL, and 
ALEXI/DisALEXI for all sites was computed as the spatial average of 
daily ET pixels produced by the models; (3) monthly ET from all RSET 
models for sites outside of California were calculated as the product of 
the mean monthly EToF and the mean monthly gridMET ETo (repeated 
for sites within California using the monthly CIMIS ETo). The process 
of extrapolating instantaneous data (time of overpass) to daily ET is 
an internal model calculation and differs for each model, and we refer 
readers to the individual model documentations for details as well as 
Melton et al.5. Daily Landsat image pixels with cloud contamination 
are flagged on the basis of the CFMask derived indicators61 in the pixel 
quality assurance band (QA_PIXEL) and those pixels are not considered. 
When computing monthly ET, all missing or masked daily ET pixels are 
computed by linearly interpolating between the nearest unmasked 
(cloud free) pixels in time within ±32 days.

Conditions for each of the extraction methods using dynamic 
footprints were as follows:

 (1) daily ET from eeMETRIC, SIMS and SSEBop for sites outside of 
California was calculated by first multiplying the sampled daily 
EToF pixels produced by the models in the footprint by each 
daily flux footprint weight to obtain daily weighted EToF pixels, 
and summing all daily weighted EToF pixels to obtain mean 
daily weighted EToF, normalizing the mean daily weighted EToF 
by the sum of weights to account for times when the sum of 
weights did not equal 1 (for example, caused by cloud masking 
of pixels), and then multiplying the mean daily weighted EToF 
by the mean daily bias corrected gridMET ETo (replaced for 
sites within California using the daily CIMIS ETo);

 (2) daily ET from PT-JPL, geeSEBAL and ALEXI/DisALEXI for all sites 
was calculated by multiplying the daily ET pixels by the daily 
flux footprint weights to obtain daily weighted ET pixels, sum-
ming all daily weighted ET pixels to obtain mean daily weighted 
ET, and then normalizing the mean daily weighted ET by the 
sum of weights, and

 (3) monthly ET from all RSET models for sites outside of California 
was calculated by first multiplying the monthly EToF pixels by 
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the monthly flux footprint weights to obtain monthly weighted 
EToF pixels, summing all monthly weighted EToF pixels to 
obtain mean monthly weighted EToF, normalizing the mean 
monthly weighted EToF by the sum of weights, and then multi-
plying the mean monthly weighted EToF by the mean monthly 
bias-corrected gridMET ETo (replaced for sites within California 
using the monthly CIMIS ETo).

Additional processing was required after extracting the daily 
ET when duplicate days of data were extracted at select sites due to 
overlapping Landsat paths. Occasionally a site would lie within the 
footprints of two overlapping Landsat scenes, resulting in more than 
one ET value on a given overpass date. To obtain single daily ET values 
for the site, the daily weighted mean ET for each day was computed 
using the pixel count (that is, number of pixels used when deriving the 
respective spatial mean ET value) as the weight. ET pixel counts were 
occasionally less than the grid/footprint total because of the removal 
of poor-quality pixels (for example, cloud masking).

Ensemble computation
The ensemble mean of the six OpenET models was computed after 
removing up to two outlier models based on the MAD23,24, a robust 
measure of spread that is suitable for small samples. The outlier 
removal occurs at the pixel level for each ET image generated. To iden-
tify outliers for a single scene, first the median value and the MAD from 
the median is computed as

MAD = b ×median (||Xi −median (X )||) ,

where Xi is the ET value for model i and X is the full set of all six model’s ET 
estimates. Here, b is a scalar set to 1.483, and it was derived on the basis of 
the assumption of normality of the sample population62. This approach is 
sometimes referred to as the MADe rule, where e = 1.483. The MAD value 
is typically scaled by 2, 2.5 or 3 on the basis of a subjective assessment of 
the data, which is then used to create a band around the median:

median (X ) ± 2MAD.

Model estimates that fall outside the band are deemed as outliers, 
and up to two outliers (those furthest from the median) are removed 
from the set of model estimates before taking the ensemble mean.

Due to the tendency for some OpenET models to predict zero ET 
or even negative ET rates in some arid regions during dry periods we 
modified the above approach for these scenarios. Specifically, when 
the ensemble median estimate is zero but at least one model predicts 
a positive ET rate, the ensemble mean is taken to include that value 
without any prior outlier removal. In these cases, the outlier removal 
would result in removing the model estimates that are positive and 
although actual ET may be quite negligible, a zero estimate is not con-
sidered to be physically realistic. However, in these scenarios, because 
the majority of models may predict zero, the ensemble mean will also 
be highly skewed towards zero making this a conservative measure to 
prevent zero ensemble estimates.

Statistical analyses
Key summary statistics including the least squares linear regression 
slope forced through the origin (slope) as well as linear regression 
with an intercept (Supplementary Table 7), MBE, MAE, RMSE and the 
coefficient of determination (r2) were computed using paired obser-
vations between OpenET model ET estimates and post-processed 
and corrected flux ET estimates19. Daily accuracy statistics were not 
compared against any gap-filled station ET data, and monthly statis-
tics only used station ET with 5 or fewer gap-filled days per month. 
Growing season and annual evaluations used paired monthly data 
and did not include any periods with monthly gaps. Also, the number 

of paired observations was always the same among models for all 
statistical analyses.

All statistics were calculated on a site-by-site basis using paired 
model–measured ET using the Python Numpy package version 1.17.2 (ref. 
63). For linear regression, the Numpy linalg.lstsq algorithm was used, 
and it applies the least squares approach. We used the modelled ET as the 
dependent variable and the measured ET as the independent variable.

The MBE was calculated as

MBE = 1
n

n
∑
i=1

(Pi −Oi) ,

where Oi is the observed ET, Pi is the model predicted ET and n is the 
total number of paired model–measured ET data points.

The MAE was calculated as

MAE = 1
n

n
∑
i=1
|Pi −Oi|,

and the RMSE was calculated as

RMSE =
√√√
√

n
∑
i=1

(Pi −Oi)
2

n .

Here, r2 values were calculated as the square of the Pearson correla-
tion coefficient, which was calculated from paired model–measurement 
ET data using the Python statsmodels package, version 0.12.1 (ref. 64).

For grouping statistics by land cover or climate zone we used 
two methods: (1) for the computation of linear regression and r2 all 
data from each ground observation in a group (for example, monthly 
paired model–station ET estimates for annual crop stations) were 
pooled together before computing a single statistic per model; and 
(2) MBE, MAE and RMSE were computed separately for each ground 
station, and then a weighted mean was taken. Grouped statistics were 
weighted by the square root of the number of paired observations 
per station (n); the rationale is to avoid giving too much weight to 
stations with excessively long data records while also not giving equal 
weight to stations with short data records65. We also imposed data 
length requirements for in situ ET stations: to be included in daily 
grouped mean statistics we required stations to have a minimum of 
six paired station–model data points, and a minimum of three paired 
observations for inclusion in monthly grouped mean statistics. We 
note that Melton et al.5 presented similar statistical metrics from a 
subset of cropland sites used in this study, and in that study, the linear 
regression slope and r2 metrics did incorporate weighting, which we 
deemed inappropriate or unnecessary in this study. For congruency, 
the statistics computed in the same manner as in Melton et al.5 are 
provided in Supplementary Table 12.

A post hoc Tukey test, also known as the honestly significant differ-
ence test, was used to compare multiple mean ET estimates from each 
model, the ensemble mean, and from the mean of the unclosed and 
closed flux ET data. The test was applied using all paired data from crop-
land stations, including for crop subgroups: annual crops, orchards and 
vineyards, at daily, monthly, growing season and annual timescales. The 
family-wise error rate was set to 0.05 and the test was performed using 
the Python statsmodels package, version 0.12.1 (ref. 64).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The in situ measured ET data analysed during the current study 
are available in the Zenodo repository, with identifier https://doi.
org/10.5281/zenodo.7636781. The OpenET model ET data analysed 
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during the current study are available in the Zenodo repository, with 
identifier https://doi.org/10.5281/zenodo.10119477.

Code availability
The code used to post-process eddy flux tower data for the current 
study is publicly available on GitHub (https://github.com/Open-ET/
flux-data-qaqc). The code used to generate flux footprints for the 
current study is publicly available on GitHub (https://github.com/
Open-ET/flux-data-footprint).
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Extended Data Fig. 1 | Monthly climatology of paired modeled and observed 
ET for evergreen forest sites. Subplot (a) shows monthly climatology of paired 
OpenET5 and flux tower ET19,20 from evergreen forested sites. Subplot (b) shows 
the residual of monthly mean ET (model minus mean closed flux ET). Unclosed 

and closed labels refer to flux tower ET before and after energy balance closure 
correction. Dashed lines represent the closed flux ET mean plus two standard 
errors of the mean and unclosed flux ET mean minus two standard errors of  
the mean.
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Extended Data Fig. 2 | Monthly climatology of paired modeled and observed 
ET for mixed forest sites. Subplot (a) shows monthly climatology of paired 
OpenET5 and flux tower ET19,20 from mixed forested sites. Subplot (b) shows 
the residual of monthly mean ET (model minus mean closed flux ET). Unclosed 

and closed labels refer to flux tower ET before and after energy balance closure 
correction. Dashed lines represent the closed flux ET mean plus two standard 
errors of the mean and unclosed flux ET mean minus two standard errors of  
the mean.

http://www.nature.com/natwater
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Extended Data Fig. 3 | Monthly climatology of paired modeled and observed 
ET for grassland sites. Subplot (a) shows monthly climatology of paired 
OpenET5 and flux tower ET19,20 from grassland sites. Subplot (b) shows the 
residual of monthly mean ET (model minus mean closed flux ET). Unclosed 

and closed labels refer to flux tower ET before and after energy balance closure 
correction. Dashed lines represent the closed flux ET mean plus two standard 
errors of the mean and unclosed flux ET mean minus two standard errors of  
the mean.
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Extended Data Fig. 4 | Monthly climatology of paired modeled and observed 
ET for shrubland sites. Subplot (a) shows monthly climatology of paired 
OpenET5 and flux tower ET19,20 from shrubland sites. Subplot (b) shows the 
residual of monthly mean ET (model minus mean closed flux ET). Unclosed 

and closed labels refer to flux tower ET before and after energy balance closure 
correction. Dashed lines represent the closed flux ET mean plus two standard 
errors of the mean and unclosed flux ET mean minus two standard errors of  
the mean.

http://www.nature.com/natwater
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Extended Data Fig. 5 | Monthly climatology of paired modeled and observed 
ET for wetland and riparian sites. Subplot (a) shows monthly climatology of 
paired OpenET5 and flux tower ET19,20 from wetland and riparian sites. Subplot 
(b) shows the residual of monthly mean ET (model minus mean closed flux ET). 

Unclosed and closed labels refer to flux tower ET before and after energy balance 
closure correction. Dashed lines represent the closed flux ET mean plus two 
standard errors of the mean and unclosed flux ET mean minus two standard 
errors of the mean.

http://www.nature.com/natwater
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Extended Data Fig. 6 | Monthly climatology of modeled ET using all cropland pixels. Monthly climatology of OpenET5 ensemble members and the ensemble mean 
using all monthly ET data for all pixels that were classified as croplands for each year from 2016–2022.

http://www.nature.com/natwater
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Spatial analysis of model ensemble outlier occurrence 
in cropland pixels. Subplot (a) shows the spatial differences between the 
OpenET5 ensemble mean growing season (April through October) ET for 
cropland pixels using the median absolute deviation (MAD) outlier removal 
approach and the simple arithmetic mean (SAM); monthly ET from 2016–2022 

was used to build the map. Subplot (b) shows the average count of models used 
in the ensemble after outlier removal using all growing season monthly data for 
cropland pixels. A value of six indicates that no model was identified as an outlier, 
while four is the lower limit where a maximum of two models were removed as 
outliers before taking the ensemble mean.

http://www.nature.com/natwater
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Extended Data Fig. 8 | Spatial difference between mean growing season 
ET for each model from the ensemble value in cropland pixels. Difference 
between mean growing season (April through October) ET from each OpenET5 

model minus the ensemble mean using all monthly data from all pixels that 
were classified as croplands for each year from 2016–2022. See Supplementary 
Discussion 4 for a discussion of the Landsat striping exhibited by geeSEBAL.

http://www.nature.com/natwater
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The in situ measured evapotranspiration data analysed during the current study were processed using the "flux-data-qaqc" Python package, 
version 0.1.6 (https://github.com/Open-ET/flux-data-qaqc).

Data analysis The "flux-data-footprint" Python package was used to generate temporally dynamic flux footprints for sampling of of daily and monthly model 
ET data (https://github.com/Open-ET/flux-data-footprint). The Numpy (version 1.17.2) and statsmodels (version 0.12.1) Python packages 
were used for data analyses during the current study.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The in situ measured evapotranspiration data analysed during the current study are available in the Zenodo repository, with identifier http://dx.doi.org/10.5281/ 
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zenodo.7636781. The OpenET model ET data analyzed during the current study are available in the Zenodo repository, with identifier http://dx.doi.org/10.5281/
zenodo.10119477.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The current study did not involve human participants, their data, or their biological material.

Population characteristics The current study did not involve human participants, their data, or their biological material.

Recruitment The current study did not involve human participants, their data, or their biological material.

Ethics oversight The current study did not involve human participants, their data, or their biological material.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The current study is focused on one-to-one comparisons between evapotranspiration data as modeled by remote-sensing methods 
and as measured on the ground; well known goodness-of-fit metrics were used to evaluate model data against measured data. 
Modeled and measured data were paired based on temporally overlapping records at multiple measurement stations. Accuracy 
metric results were grouped by different shared characteristics of the stations, using weighted averaging. Spatial long-term model 
data were mapped for individual models and differenced from the model ensemble average.

Research sample The measured daily and monthly evapotranspiration data in the current study came from a public dataset that is available here: 
http://dx.doi.org/10.5281/zenodo.7636781. The measurements used were collected between 1995-2021. OpenET model data were 
generated and paired to the daily and monthly measurements, however model data was not available prior to 2001. The total 
number of stations with paired data was 152, and among them there were 16,444 days and 4,107 months of paired data.

Sampling strategy As a conservative measure, we required a minimum of 3 months of paired data per measurement station to be included in weighted 
average accuracy metrics. In order to avoid skewing grouped average metrics, we weighted each station by the square root of the 
number of paired data.

Data collection Measured ET data was previously curated and publicly archived on Zenodo (http://dx.doi.org/10.5281/zenodo.7636781). Model ET 
data was generated for the study using the current OpenET version.

Timing and spatial scale Measured data was collected primarily from eddy covariance systems and post-processed to daily and monthly aggregated periods. 
Model ET was sampled at daily (the dates of satellite overpass) and monthly intervals at the measurement stations using pixel 
footprints which were determined by either long-term wind direction or from a physically based flux footprint prediction model. Flux 
footprints rarely exceeded the size of a 7x7 (30m resolution) grid. Gaps in measured data exist due to lapses in sensor operation or 
faulty data, and gaps exist in model data due to cloud coverage.

Data exclusions No data available to us were excluded from the analyses during the current study.

Reproducibility Data processing steps for both modeled and measured data used in the current study were made reproducible by our 
use of well-documented open source software. We developed Python code for eddy covariance data processing and 
footprint development. Similarly, the OpenET modeled data was generated using the operational models which are open source and 
their data are also publicly available through various mechanisms including the OpenET API and the Google Earth Engine Data 
Catalog. The statistical methods used in the study were limited to simple techniques, and the results were independently 
tested by multiple members of the OpenET group using different statistical packages such as Python and Microsoft Excel.

Randomization Randomization of data into groups was not applicable as groups were defined by biophysical characteristics such as climate and land 
cover type.

Blinding This study did not employ blinding of data due to the limited amount of high quality measured evapotranspiration data available to 
us. However, additional data that has not yet been compared against OpenET models was held out of this study for a future blind 
intercomparison and accuracy assessment of OpenET.
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Flow cytometry
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