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Functional relationships reveal differences 
in the water cycle representation of global 
water models

Sebastian Gnann    1,2,17 , Robert Reinecke    1,3,17, Lina Stein    1, 
Yoshihide Wada4,5, Wim Thiery6, Hannes Müller Schmied    7,8, Yusuke Satoh    9, 
Yadu Pokhrel    10, Sebastian Ostberg    11, Aristeidis Koutroulis    12, 
Naota Hanasaki    13, Manolis Grillakis    12, Simon N. Gosling    14, Peter Burek    5, 
Marc F. P. Bierkens    15,16 & Thorsten Wagener    1

Global water models are increasingly used to understand past, present and 
future water cycles, but disagreements between simulated variables make 
model-based inferences uncertain. Although there is empirical evidence of 
different large-scale relationships in hydrology, these relationships are rarely 
considered in model evaluation. Here we evaluate global water models using 
functional relationships that capture the spatial co-variability of forcing 
variables (precipitation, net radiation) and key response variables ( ac tu al  
e va potranspiration, groundwater recharge, total runoff). Results show strong  
disagreement in both shape and strength of model-based functional relation-
ships, especially for groundwater recharge. Empirical and theory-derived 
functional relationships show varying agreements with models, indicating that  
our process understanding is particularly uncertain for energy balance processes,  
groundwater recharge processes and in dry and/or cold regions. Functional 
relationships offer great potential for model evaluation and an opportunity for  
fundamental advances in global hydrology and Earth system research in general.

Global water models—including hydrological, land surface and dynamic 
vegetation models1—have become increasingly relevant for policy-
making and in scientific studies. The Sixth Assessment Report2 of the 
Intergovernmental Panel on Climate Change draws heavily on results 
from global water models, which provide information about climate 

change impacts on hydrological variables including soil moisture3, 
streamflow4, terrestrial water storage5 and groundwater recharge6. 
Some of these models are already embedded in global water informa-
tion services to provide information to a wide array of stakeholders, 
such as the Global Groundwater Information System7 or the African 
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streamflow21,22. A third example are empirical relationships between 
annual rainfall and runoff, which can be affected differently by pro-
longed drought; in Australia, some catchments have shown similar 
rainfall–runoff relationships before and after the Millennium Drought, 
while other catchments have transitioned to a new stable state23. The 
search for robust relationships that characterize the functioning of 
hydrological systems is in itself a great scientific challenge19, but such 
functional relationships also provide an excellent yet poorly explored 
opportunity for the evaluation of global water models.

We define the term function as the actions of (hydrological) sys-
tems on the inputs that enter them, such as partition, storage and 
release of water and energy24,25. Accordingly, we define functional 
relationships as relationships between two or more variables that 
characterize these functions. Such relationships often focus on forcing, 
state and response variables that are expected to be causally related 
(for example, precipitation and runoff), and they can focus on both 
temporal variability at a single location and (as used here) spatial 
variability across multiple locations. Functional relationships need 
not be uniquely defined and are typically characterized by substantial 
scatter due to other (secondary) controlling variables, local variability 
or uncertainty.

Whereas functional relationships have been used before to evalu-
ate land surface, forest and Earth system models—for example, by 
analysing relationships between soil moisture and evaporation and 
runoff26–29 or between precipitation and other atmospheric drivers 
and vegetation productivity30–32—their potential for evaluating global 
water models has not yet been sufficiently explored. The use of func-
tional relationships is currently scattered among the hydrological 
literature (for example, refs. 33–35) and has not been formalized into 
an evaluation framework. There is a pressing need to develop a ‘theory 
of evaluation’36 that does justice to the nature of global models, the 
purposes for which they are used and their growing relevance for 
society37. Functional relationships have the potential to be a central 
building block of such a theory of evaluation, and below we show how 
they can help shed new light on model behaviour.

Here we focus on functional relationships that capture the spatial 
co-variability of forcing and response variables. Rather than focus-
ing on a process-by-process comparison that can quickly become 
unmanageable28, functional relationships can capture emergent 
patterns and shift the focus to identifying the dominant controls on 
the variables of interest. Especially the relationships between water 
and energy availability and the major water fluxes leaving the land 
surface—evaporation and runoff—have been frequently studied20,38, 
providing an excellent starting point for model evaluation. In addi-
tion, functional relationships that focus on spatial patterns offer 
several advantages. First, such relationships are well suited for the 
analysis of global models due to their spatially distributed nature, 
which means that these relationships can be readily obtained from 
comparing values from multiple grid cells. Second, spatial relation-
ships can be calculated based on long-term averages, which for some 
variables are often the only observations available (for example, for 
groundwater recharge39,40). And third, such relationships can capture 
how hydrological variables co-vary across large scales and thus offer 
the potential for model improvement over large areas, including 
locations that lack observations.

In this analysis, we investigate how long-term averages of two forc-
ing and three response variables co-vary spatially, leading to six variable 
pairs overall. The forcing variables are precipitation P and net radiation 
N (the available water and energy, respectively), and the response vari-
ables are actual evapotranspiration Ea, groundwater recharge R and 
total runoff Q (three key water fluxes). We analyse forcing–response 
relationships based on 30-year (climatological) averages (1975–2004; 
all in mm per year) from eight global water models (CLM4.5, CWatM, 
H08, JULES-W1, LPJmL, MATSIRO, PCR-GLOBWB and WaterGAP2) from 
phase 2b of the Inter-Sectoral Impact Model Intercomparison Project 

Flood and Drought Monitor8. Because measurements of many hydro-
logical variables are very sparse and insufficient for large-scale analyses, 
global water models are regularly used in scientific studies to provide 
globally coherent estimates of variables such as groundwater recharge 
and groundwater storage change9,10. Global water models are also an 
integral part of Earth system models, and a realistic representation of 
the water cycle is essential for simulating the role of water within and 
across the different components of the Earth system11.

The Intergovernmental Panel on Climate Change’s Sixth Assess-
ment Report2 concludes from an analysis of currently available global 
water model projections that ‘uncertainty in future water availability 
contributes to the policy challenges for adaptation, for example, for 
managing risks of water scarcity’. Whereas some of this uncertainty 
stems from projected and observed climatic forcing, considerable 
uncertainty stems from global water models themselves4,6,12–14. For 
instance, Beck et al.13 found distinct inter-model performance dif-
ferences when comparing simulated and observed streamflow for 
ten global water models driven by the same forcing. To illustrate 
this uncertainty, we show how 30-year (climatological) averages of 
actual evapotranspiration, groundwater recharge and total runoff 
vary globally on the basis of outputs from eight models driven by 
the same forcing (Fig. 1a–c; Methods). We find substantial disagree-
ment among models, as indicated by high coefficients of variation, 
particularly for groundwater recharge and total runoff. We further 
show which model deviates most from the ensemble mean and find 
that there is not one model that consistently deviates the most  
(Fig. 1d–f). Whereas this analysis cannot tell us which models perform 
better or worse, it suggests that it is not straightforward to single out 
a model for a certain flux or a certain region, which warrants a more 
in-depth evaluation.

Most evaluation strategies compare model outputs to historical 
observations over the area for which the observation is representa-
tive. This can be at the plot (for example, flux towers), catchment 
(for example, gauging stations) or grid cell (for example, gridded 
remote sensing products) scale. Such approaches are necessary 
but not sufficient to robustly evaluate global models15. First, these 
approaches compare simulated and observed values location by 
location and are therefore limited to potentially improving a model 
for that location; however, given that large fractions of the global land 
area are ungauged, we require methods that can extract and transfer 
information from gauged to ungauged locations16. Second, relevant 
information for model evaluation might not just lie in comparing the 
magnitudes of simulated and observed values in a single location but 
rather in how a variable varies along a spatial gradient17. And third, 
comparison with historical observations does not guarantee that 
a model reliably predicts system behaviour under changing condi-
tions18. Rather than evaluating global models in essentially the same 
way as catchment-scale models, evidence of different large-scale 
hydrological relationships presents us with an opportunity for a 
different evaluation strategy that is inherently large-scale but so far 
rarely exploited.

Towards evaluation using functional 
relationships
Reviewing the hydrological literature reveals a range of relationships19 
that, if they appear in empirical data, should also appear in models 
(and vice versa). Such relationships often capture behaviour that is not 
prescribed by small-scale processes but rather emerges through the 
interaction of these processes (or model components) at large scales. 
The perhaps most prominent example is the Budyko framework20, 
which describes the long-term partitioning of precipitation into evapo-
transpiration and streamflow solely as a function of the aridity index. 
Another example are so-called elasticities of streamflow to changing 
climatic drivers (for example, precipitation or temperature), which 
provide an observation-based constraint on climate change effects on 
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(ISIMIP 2b41). In addition, we use observational datasets, observation-
driven machine learning products and the semi-empirical equation 
introduced by Budyko20 to calculate functional relationships between 
the same variables as for the models as benchmarks (Table 1). To explore 
regional variability in functional relationships38, we divide the world 
into four climatic regions: wet–warm (18% of modelled area), wet–cold 
(15%), dry–cold (24%) and dry–warm (43%), shown in Fig. 2d. Details 
can be found in the Methods section.

Disagreement in functional relationships 
between models
We can visually assess relationships between forcing (P, N) and response 
variables (Ea, R, Q) by inspecting scatter plots where each point rep-
resents one grid cell (or observation); this is shown for precipitation 
and groundwater recharge in Fig. 2a. We first take a closer look at the 
shapes of the functional relationships, indicated by the coloured lines 
in Fig. 2a. Later we will also quantify the strength of the relationships 
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Fig. 1 | Disagreement between global water models for three key water fluxes. 
a–c, Left: maps showing the coefficient of variation, calculated per grid cell as the 
ensemble standard deviation divided by the ensemble mean of eight global water 
models for different water fluxes: actual evapotranspiration (a), groundwater 
recharge (b) and total runoff (c). Lighter areas (‘blank spaces’) indicate high 
coefficients of variation (CoV) values and thus show where models disagree 
most. d–f, Right: maps showing which model deviates most from the ensemble 

mean for each grid cell for different water fluxes: actual evapotranspiration (d), 
groundwater recharge (e) and total runoff (f). Dark grey areas in d–f indicate 
that multiple models deviate similarly strongly from the ensemble mean. Empty, 
blank areas in d–f indicate that no model deviates strongly from the ensemble 
mean. The percentages shown in d–f refer to the fraction of grid cells (not land 
area) covered by each model. Greenland is masked out for the analysis.
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using Spearman rank correlations ρs. We limit ourselves to a quali-
tative discussion, given that fitting an equation would mean that we 
would have to assume a functional form. We report mean values and 
slopes (obtained via linear regression) for each region in Supplemen-
tary Tables 4–7, which quantitatively support our visual assessment. 
Figure 3 shows connected binned median values for precipitation and 
the three water fluxes for all models and observational datasets (Table 
1), separated by climate region. A similar plot for net radiation and the 
three water fluxes is shown in Extended Data Fig. 1.

While the P–Ea relationships look similar in shape, they can differ 
greatly in magnitude (Fig. 3). They increase rather linearly in dry (water-
limited) regions and increase initially in wet (energy-limited) regions 
and then level off as they reach an energy limit that bounds actual 
evapotranspiration. The limit differs greatly between models, varying 
up to about 400 mm per year in wet–warm regions. Because all models 
are forced with the same total radiation, this difference is related to the 
way the models translate total radiation into net radiation and how they 
then use net radiation to calculate actual evapotranspiration. There 
is no obvious connection between this difference and the different 
potential evapotranspiration schemes used42, potentially because the 
models, while forced with the same climate inputs, differ in the way 
they parameterize the land surface (for example, land use, soils). In 
dry regions, actual evapotranspiration is mostly limited by precipita-
tion, a forcing dataset that is the same for all models, resulting in less 
variability. The Budyko equation and the FLUXCOM43 dataset suggest, 
in line with literature estimates44, that most models underestimate 
actual evapotranspiration, often greatly so (Supplementary Tables 4  
and 5). However, we note that FLUXCOM probably overestimates actual 
evapotranspiration, especially in dry–warm regions, because it consid-
ers only vegetated areas43. Overall, the disagreement in modelled actual 
evapotranspiration, particularly visible in energy-limited regions, 
suggests substantial differences in the way models estimate the energy 
available for evapotranspiration.

Most P–R relationships increase monotonically, but the shape, the 
slope and the threshold at which some models start to produce ground-
water recharge are very different (Fig. 3). For instance, in dry–warm 
regions, some models produce essentially no groundwater recharge 
even if precipitation is above 1,000 mm per year, while others produce 
over 200 mm per year. In dry–warm regions, we have by far the most 
extensive database on groundwater recharge39,40, and the observa-
tions fall (apart from those at very high precipitation values) within 
the range of the models. In wet–warm regions, we find the largest 

disagreement between models and observations, which suggest lower 
(higher) groundwater recharge rates for higher (lower) precipitation. 
Whereas this shows the benefit of using an ensemble rather than a sin-
gle model, even a large ensemble spread does not always capture the 
observed relationships. The large spread further suggests that many 
models greatly over- or underestimate groundwater recharge rates and 
consequently greatly over- or underestimate how much groundwater 
contributes to evapotranspiration and streamflow45. These differences 
in slope, visible for all climate regions, reflect very different spatial 
sensitivities to changes in precipitation. Whether temporal sensitivities 
are similar can only be hypothesized given that no global observational 
dataset with groundwater recharge time series is available but would 
imply very different responses to projected changes in precipitation.

The P–Q relationships look similar in shape and mostly increase 
monotonically, especially for wet regions (Fig. 3). The relative differ-
ences are larger for dry places, commonly perceived as regions where 
runoff is more difficult to model46. The model and benchmark relation-
ships disagree particularly strongly in dry–cold regions. There, the 
GSIM47,48 dataset shows a variable relationship between total runoff and 
precipitation, whereas the GRUN49 dataset shows almost no increase 
with increasing precipitation. Overall, GSIM, GRUN and the Budyko 
equation indicate, in line with an earlier evaluation50, that most models 
produce too much total runoff. This parallels recent findings that Earth 
system models predict higher runoff increases due to climate change 
than observations suggest22. The overestimation in total runoff is com-
plementary to the underestimation of actual evapotranspiration and 
shows that most models partition too much precipitation into runoff 
rather than evapotranspiration.

Diverging dominance of forcing on response 
variables
To quantitatively compare the strength of the forcing–response rela-
tionships, we use Spearman rank correlations ρs. A rank correlation 
close to 1 (or −1) indicates that the spatial variability in the forcing vari-
able almost completely explains the spatial variability in the response 
variable, as can be seen in Fig. 2a for WaterGAP2. A rank correlation 
closer to 0 indicates that other factors control the response (for exam-
ple, other input or model parameters describing the land surface), 
as can be seen in Fig. 2a for PCR-GLOBWB. We stress that a high cor-
relation is not a measure of goodness of fit. Considerable scatter and 
correspondingly low correlations might indeed be characteristic for 
many relationships, and if models overestimate how strongly a forcing 

Table 1 | Spearman rank correlations among forcing variables and water fluxes and number of observations based on 
different observational or observation-driven datasets and the Budyko equation

Flux Forcing Source Nr Wet–warm (15%) Wet–cold (23%) Dry–cold (28%) Dry–warm (34%)

ρs Count ρs Count ρs Count ρs Count

Ea P Budyko*20 1 0.84 m.e. 0.83 m.e. 0.98 m.e. 1.00 m.e.

Ea P FLUXCOM43 2 0.57 m.e. 0.76 m.e. 0.71 m.e. 0.88 m.e.

Ea N Budyko*20 1 0.95 m.e. 0.99 m.e. 0.59 m.e. 0.79 m.e.

Ea N FLUXCOM43 2 0.93 m.e. 0.94 m.e. 0.79 m.e. 0.91 m.e.

R P MacDonald40 3 (0.0) 4 - 0 - 0 0.84 130

R P Moeck39 4 -0.06 234 0.66 83 0.29 100 0.74 4790

Q P Budyko*20 1 0.94 m.e. 0.87 m.e. 0.90 m.e. 0.99 m.e.

Q P GSIM47,48 5 0.62 1259 0.71 1211 0.32 517 0.80 900

Q P GRUN49 6 0.86 m.e. 0.74 m.e. 0.27 m.e. 0.94 m.e.

Q N Budyko*20 1 0.45 m.e. 0.42 m.e. 0.11 m.e. 0.69 m.e.

The percentage of grid cells per climate region is given in brackets. The Budyko equation was forced per grid cell with the same forcing as the models (indicated by *) and thus covers 
approximately the same extent (except for cells with negative net radiation). The gridded datasets (FLUXCOM, GRUN) are available at the same resolution as the models and thus also cover 
approximately the same extent (except for non-vegetated areas in the case of FLUXCOM). This is indicated by m.e. for model extent. For datasets without matching precipitation data, we used 
GSWP3 reanalysis data. Nr corresponds to the numbers used in Fig. 4. The MacDonald rank correlation for the wet–warm region is shown in brackets because of the very small sample size; it is 
not shown in Fig. 4. Dashes (-) indicate that correlations could not be calculated because no observations were available. ρs denotes Spearman rank correlations.

http://www.nature.com/natwater


Nature Water | Volume 1 | December 2023 | 1079–1090 1083

Analysis https://doi.org/10.1038/s44221-023-00160-y

variable controls a model output, this also indicates unrealistic behav-
iour. Calculating rank correlations for all variable pairs, we find that 
the models differ substantially among each other and in comparison to 
observations (Fig. 4; rank correlations for all benchmark datasets and 
models are listed in Table 1 and Supplementary Table 3, respectively).

For precipitation and actual evapotranspiration (Fig. 4a), the mod-
els show the same ranking between climate regions and rather small 
differences in magnitude, indicating that actual evapotranspiration is 
strongly constrained by the available water in all models. The model-
based correlations are higher in dry regions (ρs = 0.74–0.98) than in wet 
regions (0.57–0.83), reflecting water and energy limitations. The Budyko 
equation assumes complete dependence on aridity (here defined as N/P). 
It thus predicts higher correlations overall and mainly distinguishes 
between wet (0.83–0.84) and dry (0.98–1.00) regions but, unlike models 
and FLUXCOM, not between cold and warm regions. The Budyko equa-
tion should thus be seen as a useful comparison but not as the ‘correct’ 
model, given that different studies have shown that snow51, climate 
seasonality52, vegetation type53, inter-catchment groundwater flow54 and 
human impacts55 can affect the long-term water balance beyond aridity.

We find much variability for net radiation and actual evapotran-
spiration (Fig. 4b). There is no obvious correspondence between the 
potential evapotranspiration schemes used42 (for example, Priestley–
Taylor for LPJmL and WaterGAP2 or Penman–Monteith for JULES-W1 
and CWatM) and the rank correlations, implying that other factors play 
a more important role (also, refs. 14,56). Both the Budyko equation and 
FLUXCOM show very high correlations for all wet places (0.93–0.99), 
indicating a strong energy limitation57, underestimated by many mod-
els (especially CWatM and MATSIRO). FLUXCOM shows a stronger N–Ea 
relationship (Fig. 4b) in dry–cold places than all models and the Budyko 
equation, while it shows a weaker P–Ea relationship (Fig. 4a) there. 
This could be due to an uncertain representation of energy balance 
processes in cold regions, possibly related to interactions between 
snow-affected albedo and evapotranspiration58,59, sublimation60 or the 
aerodynamic component of potential evapotranspiration61.

For precipitation and groundwater recharge (Fig. 4c), some mod-
els (CLM4.5, MATSIRO, WaterGAP2 and H08) show high to very high 
correlations (0.71–0.95) for all climate regions, suggesting that pre-
cipitation is the dominant control on groundwater recharge across 
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Fig. 2 | Examples of functional relationships. a, Scatter plots between 
precipitation and groundwater recharge for PCR-GLOBWB and WaterGAP2. 
Owing to space constraints, we focus on a few examples with differing 
relationships. Scatter plots for all variable pairs are shown in Supplementary  
Figs. 15–20. Each dot represents one grid cell and is based on the 30-year 
average of each flux. Spearman rank correlations ρs measure the strength of the 

relationship between forcing and response variables and are calculated for all 
grid cells within a climate region. The lines connect binned medians (ten bins 
along the x axis with equal amount of points per bin) for each region. b, The 
climate regions are shown. The grey dashed line shows the 1:1 line, indicating the 
water limit assuming all water is supplied by precipitation.
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all climate regions in these models. Other models (CWatM, JULES-W1, 
LPJmL, PCR-GLOBWB) show much lower and more variable correlations 
(0.35–0.85), suggesting different controls on groundwater recharge 
(for example, model structural decisions and parameterizations). 
H08 and WaterGAP2 use the same approach to calculate groundwater 
recharge42 and they show almost identical rank correlations, indicat-
ing that the functional relationships might be relatable to the model 
structure in this case. Recent studies have shown a strong influence 
of precipitation and aridity on groundwater recharge39,40,45, and using 
the same datasets, we also find high to very high correlations in dry–
warm regions (0.74–0.84). In these often highly water-limited regions, 
precipitation appears to be the dominant control on groundwater 
recharge. Besides climate, perceptual models of groundwater recharge 
generation usually include soil characteristics, topography, land use 
and geology62,63. This might explain why observations show a more 
scattered P–R relationship, particularly in wet–warm regions (−0.06).

For precipitation and total runoff (Fig. 4e), WaterGAP2 and PCR-
GLOBWB both show lower correlations (0.52–0.75) than the other 
models (0.58–0.95). WaterGAP2 is the only model here that is cali-
brated against streamflow observations42, which might explain why it 
shows the lowest rank correlations for total runoff. The Budyko frame-
work assumes that long-term runoff only depends on aridity and thus 
shows higher correlations (0.87–0.99) than the benchmark datasets 
(0.27–0.94) and most models (0.52–0.95). Because factors other than 
aridity can influence total runoff51–54 and given that GSIM tends to show 
lower correlations overall (0.32–0.80), models that show correlations 
as high as the Budyko equation probably overestimate how strongly 
precipitation controls total runoff. Similar to the shapes of the func-
tional relationships (Fig. 3),we generally find the largest differences in 
both models and datasets in dry–cold regions, where GRUN and GSIM 
show particularly low correlations (0.27 and 0.32).

For net radiation and both groundwater recharge and total runoff 
(Fig. 4d,f), we find high variability and mostly positive correlations. 
The models probably produce more groundwater recharge and total 
runoff in regions with higher net radiation because precipitation is 

also higher in these regions (Supplementary Fig. 1). Whereas it is dif-
ficult to interpret these correlations, the large variability still suggests 
considerable differences between models.

Discussion
Focus areas for model improvement
Our analysis has revealed substantial disagreement between models 
and between models and observations, questioning the robustness 
of model-based studies and impact assessments, especially if only a 
single model is used. The energy balance, from total radiation to actual 
evapotranspiration, appears to be poorly represented, indicated by 
a different energy limit (Fig. 3), a general underestimation of actual 
evapotranspiration and widely varying N–Ea relationships (Fig. 4). This 
warrants a closer look in future studies, as a realistic depiction of energy 
balance and evaporation processes is critical for climate change stud-
ies57,58. We find the largest disagreement for groundwater recharge, 
which is arguably the least understood process and poorly constrained 
by sparse observations39,40. The inter-model differences in groundwater 
recharge can be much larger than the differences in actual evapotran-
spiration and must therefore have other reasons. To better constrain 
the large variability between models, we need to improve our under-
standing of the dominant controls on groundwater recharge at large 
scales64. This knowledge is important for assessments of sustainable 
use of groundwater resources9,10, for groundwater modelling studies 
that use groundwater recharge from global water models as input65 and 
for understanding the sensitivity of groundwater recharge to changing 
climatic drivers6. Most models overestimate total runoff and we find 
the largest disagreement for total runoff in dry–cold regions. This 
echoes existing literature1,12,22,50 and highlights the need for model 
refinement in dry and/or cold regions, which are under-researched and 
strongly affected by climate change46. To explore more in-depth how 
snow processes affect the water balance, future studies could focus 
on functional relationships in snow-dominated regions by specifically 
delineating these regions using the fraction of precipitation falling as 
snow or snow cover extents.
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Fig. 3 | Average functional relationships among precipitation and three key 
water fluxes. Average functional relationships based on models and benchmark 
datasets among precipitation P and actual evapotranspiration Ea, groundwater 
recharge R and total runoff Q, respectively. The coloured lines represent one 
model each, the grey-black lines represent different observational datasets, 
labelled on the outer-right panels. The MacDonald groundwater recharge dataset 

contains only enough data values for the dry–warm region and is thus only shown 
there. The lines connect binned medians (ten bins along the x axis with equal 
amount of points per bin) for each climate region. The grey dashed line shows the 
1:1 line, indicating the water limit assuming all water is supplied by precipitation. 
Note that the graphs do not show the full range for some curves to better 
illustrate the model differences.
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Towards an inventory of robust functional relationships
We have used different observational datasets, observation-driven 
machine learning products and the Budyko equation20 to derive empiri-
cal and theory-based functional relationships, but challenges remain. 
Observation-driven machine learning products43,49 are not raw observa-
tions and may reflect their upscaling methods rather than the underly-
ing natural distribution but serve as useful benchmarks in the absence 
of direct observations (for example, because of limited numbers of 
FLUXNET sites66). The Budyko equation20 is a climate-only model and 
thus provides a useful benchmark but neglects other influences on 
the long-term water balance. The observations themselves and the 
forcing data paired with them are also associated with uncertainty, 
even though most of the relationships used here appear to be relatively 
robust (Methods includes an extended discussion). Yet especially for 
variables with small numbers of observations, it is challenging to pro-
vide robust observation-based constraints for certain regions (Table 1).  
For example, groundwater recharge measurements have almost 
entirely been made in dry–warm regions (97% of MacDonald data40 and 

92% of Moeck data39), leaving groundwater recharge in other regions 
poorly constrained. On the other hand, most streamflow measurements 
have been taken in wet regions (60% of GSIM data used here), and glob-
ally there is a placement bias of stream gauges towards wet regions67, 
even though—according to our classification—short of two-thirds of the 
global land area are defined as dry. Instead of taking new measurements 
to understand a specific place, new measurements would have much 
more leverage if they would help us to also understand other places, for 
example, by filling an observational gap along a climatic gradient (that 
is, in functional space). In addition, more quality-controlled datasets 
with uncertainty estimates40 are critical to obtain realistic uncertainty 
estimates for functional relationships. This would ultimately allow us 
to obtain robust ranges of functional behaviour that we can benchmark 
our models against.

The functional relationships studied here appear to be robust with 
respect to modelled human impacts, probably because we investigated 
long-term averages over large regions where climatic controls on the 
selected hydrological variables dominate (Supplementary Figs. 26–30). 
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the dots are only there as a visual aid. The numbered triangles show rank 
correlations based on benchmark datasets (grey background) and the Budyko 
equation, with numbers indicating the corresponding data source (Table 1). 
Observation-based rank correlations are shown only if they are based on more 
than 50 data points.
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Yet for different variables, especially when studied at shorter temporal 
and smaller spatial scales, human impacts might have a considerable 
effect on functional relationships. The effects of human impacts might 
be investigated by studying strongly managed and near-natural regions 
separately68. Indeed, comparing functional relationships between 
human impacted and natural regions would be an excellent strategy 
to assess the degree of human alteration of the natural water cycle. In 
addition, relationships that specifically focus on human impacts, such 
as relationships between irrigated areas and irrigation water withdraw-
als69, might be used to better understand the representation of human 
impacts in models.

Whereas visual comparison (focusing on the shape of the rela-
tionships) and rank correlations (focusing on the strength of the 
relationships) have exposed clear differences between models and 
observations, our approach here should be seen as a first step. There 
are other ways to describe the relationships analysed here, for example, 
by characterizing thresholds or nonlinearities (visible in Fig. 3). Met-
rics such as rank correlations also require careful interpretation. For 
example, positive correlations between net radiation and groundwater 
recharge probably arise because precipitation and net radiation are 
positively correlated and thus do not imply a causal relationship. The 
interpretation of empirical relationships should therefore be backed up 
by process knowledge or extended by methods that allow for discovery 
of causal relationships70. Physics-aware machine learning might be 
powerful in that respect, as it combines domain knowledge with versa-
tile pattern recognition71. Beyond the relationships investigated here, 
we anticipate that exploring temporal relationships (for example, using 
elasticities21,22 or shifts in P–Q relationships23), dividing the landscape 
into additional categories (for example, hydrobelts72) and including 
other variables, such as state variables or stores (for example, soil 
moisture, terrestrial water storage), will provide additional insights.

Conclusions
As our models grow in complexity, encompassing more processes 
and covering larger spatial and temporal scales, we need a concurrent 
development of model evaluation strategies: an evaluation frame-
work for large-scale models. Central to such an evaluation framework 
should be functional relationships, which shift the focus away from 
matching historical records in specific locations to a more diagnostic 
and process-oriented evaluation of model behaviour36. Functional 
relationships allow us to focus on larger-scale assessments, to relate 
places to each other and to explore if dominant controls in models are 
consistent with observations, theory and expectations (that is, our 
perceptual model73). This understanding is critical for ensuring that 
models faithfully represent real-world systems, ultimately leading to 
more credible projections of environmental change impacts. Eventu-
ally, expanding our range of functional relationships in hydrology, 
constrained by various observational datasets and expert knowledge, 
would give us a knowledge base of realistic system behaviour that could 
be used to evaluate models, diagnose model deficiencies and weight 
model ensembles, comparable to the use of emergent constraints in 
climate modelling37.

Both our approach and our findings have implications beyond 
hydrology. First, the terrestrial water cycle plays a central role in the 
Earth system and is often strongly coupled to other components, such 
as the biosphere, lithosphere and atmosphere and human activities (for 
example, refs. 74–76). More realistic simulations of the global water 
cycle therefore also enable us to better clarify how it influences and 
is influenced by other Earth system components. Methodologically, 
functional relationships are not limited to applications in hydrol-
ogy. In fact, land surface, forest and Earth system models26–32 have 
already been studied in similar fashions, though a broader applica-
tion of this approach has so far been missing. As indicated by recent 
studies76,77, functional relationships provide an excellent opportu-
nity to study the interactions between hydrology and, for example, 

terrestrial ecosystems, and thus represent a tool that can be used 
across disciplines.

Beyond model evaluation, functional relationships invite us 
to think about how the global water cycle functions, what we know, 
what we do not know and what that means for a future under climate 
change73. Our results suggest that improved process understanding will 
be particularly important for energy balance processes, groundwater 
recharge processes and generally in dry and/or cold regions. So how 
can we improve our process understanding? In 1986, Eagleson78 stated 
that ‘science advances on two legs, analysis and experimentation, and 
at any moment one is ahead of the other. At the present time advances 
in hydrology appear to be data limited’. For some processes, this still 
seems to be the case. But clearly, we have a wealth of data available 
and might ask ourselves: are we extracting all of the information from 
the observations we have? On the basis of the data we have, what and 
where should we measure next? And are there functional relationships 
in hydrology yet to be found19? Even if the search for such relationships 
is challenging, it will be a fruitful and exciting endeavour for global 
hydrology.

Methods
Model data retrieval and processing
We analysed 30-year (climatological) averages (1975–2004) from eight 
global water models41: CLM4.579, CWatM80, H0881, JULES-W182, LPJmL83, 
MATSIRO84, PCR-GLOBWB85 and WaterGAP286. The model simulations 
were carried out following the ISIMIP 2b protocol and here we used 
model outputs forced with the Earth system model HadGEM2-ES under 
historical conditions (historical climate and CO2 concentrations). We 
note that the specific forcing chosen does not appear to influence 
model-based functional relationships (see below). We used precipita-
tion P (ISIMIP variable name pr), net radiation N (not an official ISIMIP 
output), actual evapotranspiration Ea (ISIMIP variable name evap), 
groundwater recharge R (ISIMIP variable name qr) and total runoff Q 
(ISIMIP variable name qtot). Note that Q here refers to runoff generated 
on the land fractions (and not surface water bodies) of each grid cell and 
does not include upstream inflows, which allows for comparison to grid 
cell P. P, Ea, R, and Q were downloaded from https://data.isimip.org/.  
Net radiation N is not an official ISIMIP output and was provided by 
the individual modelling groups. It is not available for all models, so 
we used the ensemble median per grid cell for models without N data. 
We converted all fluxes to mm per year and removed Ea values larger 
than 10,000 mm per year and set R values smaller than 0 to 0. Note 
that our analysis excludes Greenland and Antarctica. A more detailed 
description is given in the Supplementary Information.

CoV and most deviating model maps
For each grid cell, we used the 30-year averages of the eight models 
(that is, the model ensemble) and calculated the ensemble standard 
deviation divided by the ensemble mean. Maps of the standard devia-
tion are shown in the Supplementary Information (Supplementary 
Figs. 8–10). To see which model dominates the ensemble spread, we 
checked for each grid cell which model shows the largest absolute dif-
ference (denoted by d1) from the ensemble mean (denoted by μ). To see 
if multiple models dominate the ensemble spread, we also checked for 
each grid cell which model shows the second-largest absolute differ-
ence (denoted by d2) from the ensemble mean. If the relative difference 
between the largest and the second-largest difference is less than 20%, 
that is (d1 − d2)/d1 < 0.2, the grid cell falls into the category ‘multiple’. 
If the relative difference between the most deviating model and the 
ensemble mean is less than 20%, that is d1/μ < 0.2, the grid cell is counted 
as having no most deviating model (empty areas on Fig. 1d–f).

Functional relationships
To visualize the shape of the functional relationships, we binned the 
data in each climate region into ten bins (along the x axis) with an 
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equal amount of points, calculated the median per bin and connected 
the obtained median value. For groundwater recharge, we used only 
five bins because there are so few values. Note that the non-gridded 
observational datasets do not have the same spatial distribution as 
the gridded datasets and the models and thus do not have the same 
distribution of forcing variables. Their bins can therefore span differ-
ent ranges of the forcing variables. As a metric for the strength of the 
functional relationships, we calculate Spearman rank correlations 
ρs between model inputs and outputs per climate region, a measure 
of the monotonicity between two variables that is robust to outliers. 
We use the following categories for correlations: negative correlation 
(<0), no to low correlation (0 to 0.25), medium correlation (0.25–0.5), 
high correlation (0.5–0.75), very high correlation (0.75–1.0). We also 
show mean fluxes and slopes obtained through linear regression in 
Supplementary Tables 4–7.

Climate regions
On the basis of the aridity index (here defined as N/P; where N is model 
ensemble median), a place is categorized as either wet (N/P < 1) or dry 
(N/P > 1). On the basis of how many days per year fall below a 1 °C tem-
perature threshold, a place is categorized as either cold (more than 
one month below 1 °C) or warm (less than one month below 1 °C). This 
results in four categories: wet–warm (15% of model grid cells/18% of 
modelled area), wet–cold (23%/15%), dry–cold (28%/24%) and dry–
warm (34%/43%). To test how different decisions affect our climate 
region classification, we also used the ensemble median of potential 
evapotranspiration Ep (partially downloaded, partially provided by the 
modelling groups) to calculate the aridity index (Ep/P), and we used a 
different threshold for our warm/cold distinction. This resulted in little 
differences overall, as can be seen in the Supplementary Information 
(Supplementary Fig. 14).

Benchmark datasets and theory
To benchmark model performance, we used different observational 
datasets, observation-driven machine learning products and the Bud-
yko equation20. If the datasets provide their own forcing data, we used 
these data. If not, we paired them with GSWP3 P data87 to have one con-
sistent forcing product. For Ea, we used FLUXCOM data43 (RS monthly 
0.5° from 2001–2015) paired with GSWP3 P data87 (downloaded from 
https://data.isimip.org/). For R, we used data from MacDonald et al.40, 
which include matching P data, and data from Moeck et al.39 paired 
with GSWP3 P data87. For Q, we used GRUN data49 from 1985–2004 
paired with GSWP3 P data87 (the dataset used in the creation of GRUN) 
and GSIM data47,48 paired with GSWP3 P data87. For GSIM, we only used 
catchments with areas ranging from 250 to 25,000 km2 with a minimum 
of ten years of data between 1985 and 2004 to ensure a sufficient num-
ber of catchments that do not differ too much in size from the model 
grid cells. To obtain theory-based estimates for Ea and Q, we forced the 
Budyko20 equation (equation (1)) with HadGEM2-ES P (the same forc-
ing as used for the models) and ensemble median N from the ISIMIP 2b 
models analysed here.

Ea
P =

√
N
P tanh ( PN ) (1 − exp (−N

P )) (1)

More details on data processing and quality checks can be found in the 
Supplementary Information.

Extended discussion on model forcing and scenario 
uncertainty
The choice of forcing product and differences in the treatment of 
human influences (for example, water use and dams) might affect 
the functional relationships exhibited by the models. To get an idea 
how much uncertainty this introduces, we compared our results to 
model runs using WATCH-WFDEI forcing with either variable historical 

conditions (varsoc) or no human influences (nosoc) for WaterGAP2 
and PCR-GLOBWB, carried out following the ISIMIP 2a protocol. The 
results, shown in the Supplementary Information (Supplementary 
Figs. 26–30), stay essentially the same, showing that the model-based 
correlations are robust signatures of model behaviour.

Extended discussion on benchmark dataset uncertainty
Because not all datasets come with matching P data, we sometimes 
paired the observations with GSWP3 reanalysis data87. To get an idea 
how much uncertainty this introduces, we investigated how different 
P data sources affect the functional relationships. Correlations calcu-
lated using the MacDonald et al.40R data with either GSWP3 P data or the 
accompanying P data are very similar for dry–warm places (0.83 and 
0.84; Supplementary Information). Using HadGEM2-ES P (the model 
forcing) data instead of GSWP3 P data to calculate correlations with 
FLUXCOM Ea

43, Moeck R39, GRUN Q49 and GSIM47,48, respectively, results 
in no notable differences. Because most datasets only contain a limited 
number of years of data, sometimes only one average value39,40, we used 
all available years in our analysis. The only observation-driven dataset 
that contains a long enough time series to analyse functional relation-
ships for two independent 30-year periods is GRUN49. Using GRUN data 
from 1945–1974 instead of 1975–2004 results in virtually no differences. 
While we cannot rule out that other datasets would lead to different rela-
tionships, this analysis indicates that the functional relationships and 
the rank correlations are relatively robust (Supplementary Figs. 31–42).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The long-term averages created and used in this study are deposited at 
https://zenodo.org/record/7714885. Correlations and other statistics 
are available in the Supporting Information. Data used in this study can 
be downloaded from the following links. ISIMIP 2b data (model outputs 
and GSWP3 precipitation data) are available from https://www.isimip.
org/. FLUXCOM data are available from http://www.fluxcom.org/. 
MacDonald et al. recharge data are available from https://www2.bgs.
ac.uk/nationalgeosciencedatacentre/citedData/catalogue/45d2b71c-
d413-44d4-8b4b-6190527912ff.html (contains data supplied by per-
mission of the Natural Environment Research Council (2022)). Moeck 
et al. recharge data are available from https://opendata.eawag.ch/
dataset/globalscale_groundwater_moeck. GSIM data are available 
from https://doi.pangaea.de/10.1594/PANGAEA.887477 and https://doi.
pangaea.de/10.1594/PANGAEA.887470. MSWEP data can be requested 
for research purposes from http://www.gloh2o.org/mswep/.

Code availability
Python and R codes used to perform the analyses are available at https://
github.com/HydroSysPotsdam/GHM_Comparison.
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Extended Data Fig. 1 | Average functional relationships between net radiation 
and three key water fluxes. Average functional relationships based on models 
and benchmark datasets between net radiation N and actual evapotranspiration 
Ea, groundwater recharge R and total runoff Q, respectively. The colored lines 
represent one model each, the grey-black lines represent different observational 

datasets, labeled on the outer-right panels. The lines connect binned medians (10 
bins along the x-axis with equal amount of points per bin) for each climate region. 
The grey dashed line shows the 1:1 line, indicating the water limit assuming all 
water is supplied by precipitation. Note that the graphs do not show the full range 
for some curves to better illustrate the model differences.
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