Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apparent surface conductance sensitivity to vapour pressure deficit in the absence of plants

Abstract

A growing literature argues that ecosystem-scale evapotranspiration is more sensitive to drying of the atmosphere because of stomatal regulation by plants than to reductions in surface soil moisture. Past studies analysed observations, for which it is difficult to conclusively control for potential relations among plant physiology, measurable state variables such as vapour pressure deficit (VPD) or soil moisture, and ecosystem-scale water flux. Here we analyse natural mechanism-denial experiments at non-vegetated but hydrologically active salt flats. At these sites, any apparent sensitivity of the ecosystem-scale surface conductance (gs, a bulk measure of how the land surface influences evapotranspiration) to VPD cannot be due to stomatal closure. Over the salt flats we find a VPD–gs relation similar to that commonly attributed to stomatal closure, and reproduce similar relations using a parsimonious boundary layer model that excludes plants. We conclude that observational studies probably overstate the sensitivity of ecosystem-scale surface conductance to atmospheric drying and understate the importance of variations in surface soil moisture. This finding has broad implications for future ecosystems, because anthropogenic trends in soil moisture are uncertain and spatially heterogeneous whereas ubiquitous atmospheric drying is expected due to global warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Bonneville salt flats.
Fig. 2: Surface conductance on the salt flats.
Fig. 3: Surface conductance in the equilibrium model.
Fig. 4: Surface conductance sensitivity to soil moisture and VPD.
Fig. 5: Synthetic measurement errors.
Fig. 6: Surface conductance equation bias.

Similar content being viewed by others

Data availability

The Bonneville dataset analysed in the current study is available at https://github.com/Lvargaszeppetello/Surface_Conductance. The Dixie Valley salt flat data are available online at https://waterdata.usgs.gov/monitoring-location/394508118025505/#parameterCode=62968&startDT=2009-05-01&endDT=2010-05-01 and https://waterdata.usgs.gov/monitoring-location/394559118013705/#parameterCode=62968&startDT=2009-05-01&endDT=2010-05-01.

Code availability

All analysis code is available at https://github.com/Lvargaszeppetello/Surface_Conductance.

References

  1. Stephens, G. L. et al. An update on earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691–696 (2012).

    CAS  Google Scholar 

  2. Penman, H. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A Math. Phys. Sci. 193, 120–145 (1948).

    CAS  PubMed  Google Scholar 

  3. Monteith, J. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 107, 1–27 (1981).

    Google Scholar 

  4. Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics (Springer Science & Business Media, 2000).

  5. Penman, H. The dependence of transpiration on weather and soil conditions. J. Soil Sci. 1, 74–89 (1950).

    Google Scholar 

  6. Thom, A. & Oliver, H. R. On Penman’s equation for estimating regional evaporation. Q. J. R. Meteorol. Soc. 103, 345–357 (1977).

    Google Scholar 

  7. Darwin, F. Ix. Observations on stomata. Philos. Trans. R. Soc. Lond. B Biol. Sci. 63, 589–600 (1898).

  8. Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).

    CAS  PubMed  Google Scholar 

  9. Ball, J. T., Woodrow, I. E. & Berry, J. A. in Progress in Photosynthesis Research (ed. Biggins, J.) 221–224 (Springer, 1987).

  10. Turner, N. C., Schulze, E.-D. & Gollan, T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content: I. Species comparisons at high soil water contents. Oecologia 63, 338–342 (1984).

    PubMed  Google Scholar 

  11. Franks, P., Cowan, I. & Farquhar, G. The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20, 142–145 (1997).

    Google Scholar 

  12. Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 17, 2134–2144 (2011).

    Google Scholar 

  13. Novick, K. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    CAS  Google Scholar 

  14. Kimm, H. et al. Redefining droughts for the U.S. corn belt: the dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of maize and soybean. Agric. For. Meteorol. 287, 107930 (2020).

  15. Roby, M. C., Scott, R. L. & Moore, D. J. High vapor pressure deficit decreases the productivity and water use efficiency of rain-induced pulses in semiarid ecosystems. J. Geophys. Res. Biogeosci. 125, e2020JG005665 (2020).

    Google Scholar 

  16. Flo, V., Martínez-Vilalta, J., Granda, V., Mencuccini, M. & Poyatos, R. Vapor pressure deficit is the main driver of tree canopy conductance across biomes. Agric. For. Meteorol. 322, 109029 (2022).

  17. Fu, Z. et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 13, 989 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Mott, K. A. & Parkhurst, D. F. Stomatal responses to humidity in air and helox. Plant Cell Environ. 14, 509–515 (1991).

    Google Scholar 

  19. Buckley, T. N. How do stomata respond to water status? New Phytol. 224, 21–36 (2019).

    PubMed  Google Scholar 

  20. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    PubMed  Google Scholar 

  21. Berg, A., Sheffield, J. & Milly, P. C. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    Google Scholar 

  22. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).

    Google Scholar 

  23. Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    CAS  Google Scholar 

  24. Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Berg, A. & McColl, K. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).

    Google Scholar 

  26. Wythers, K., Lauenroth, W. & Paruelo, J. Bare-soil evaporation under semiarid field conditions. Soil Sci. Soc. Am. J. 63, 1341–1349 (1999).

    CAS  Google Scholar 

  27. Garcia, C. A. et al. Groundwater discharge by evapotranspiration, Dixie Valley, Westcentral Nevada, March 2009–September 2011. US Geological Survey Professional Paper (USGS, 2015); https://doi.org/10.3133/pp1805

  28. Bowen, B. B., Kipnis, E. L. & Raming, L. W. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville salt flats, Utah. Geomorphology 299, 1–11 (2017).

    Google Scholar 

  29. Oren, R. et al. Survery and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).

  30. Lin, C. et al. Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture. Agric. For. Meteorol. 250–251, 24–34 (2018).

    Google Scholar 

  31. Kannenberg, S. A. et al. Quantifying the drivers of ecosystem fluxes and water potential across the soil-plant-atmosphere continuum in an arid woodland. Agric. For. Meteorol. 329, 109269 (2022).

    Google Scholar 

  32. McColl, K. A., Salvucci, G. D. & Gentine, P. Surface flux equilibrium theory explains an empirical estimate of water-limited daily evapotranspiration. J. Adv. Model. Earth Syst. 11, 2036–2049 (2019).

    Google Scholar 

  33. Brubaker, K. L. & Entekhabi, D. An analytic approach to modeling land-atmosphere interaction: 1. Construct and equilibrium behavior. Water Resour. Res. 31, 619–632 (1995).

    Google Scholar 

  34. Kim, C. & Entekhabi, D. Feedbacks in the land-surface and mixed-layer energy budgets. Boundary Layer Meteorol. 88, 1–21 (1998).

    Google Scholar 

  35. Raupach, M. R. Equilibrium evaporation and the convective boundary layer. Boundary Layer Meteorol. 96, 107–142 (2000).

    Google Scholar 

  36. Betts, A. K. Idealized model for equilibrium boundary layer over land. J. Hydrometeorol. 1, 507–523 (2000).

    Google Scholar 

  37. Manabe, S. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Weather Rev. 97, 739–774 (1969).

    Google Scholar 

  38. Vargas Zeppetello, L., Battisti, D. & Baker, M. The physics of heat waves: what causes extremely high summertime temperatures? J. Clim. 35, 2231–2251 (2022).

    Google Scholar 

  39. Tarin, T., Nolan, R. H., Medlyn, B. E., Cleverly, J. & Eamus, D. Water-use efficiency in a semi-arid woodland with high rainfall variability. Glob. Chang. Biol. 26, 496–508 (2020).

    PubMed  Google Scholar 

  40. Sulman, B. N. et al. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 43, 9686–9695 (2016).

    CAS  Google Scholar 

  41. Western, A. W., Grayson, R. B. & Blöschl, G. Scaling of soil moisture: a hydrologic perspective. Annu. Rev. Earth Planet. Sci. 30, 149–180 (2002).

    CAS  Google Scholar 

  42. Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M. & Jackson, T. J. Field observations of soil moisture variability across scales. Water Resour. Res. 44, W01423 (2008).

    Google Scholar 

  43. Gruber, A. et al. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 45, Part B, 200–211 (2016).

    Google Scholar 

  44. Trugman, A. T., Medvigy, D., Mankin, J. & Anderegg, W. R. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).

    Google Scholar 

  45. Feldman, A. F. et al. Remotely sensed soil moisture can capture dynamics relevant to plant water uptake. Water Resour. Res. 59, e2022WR033814 (2023).

    Google Scholar 

  46. McColl, K. A. Practical and theoretical benefits of an alternative to the penman-monteith evapotranspiration equation. Water Resour. Res. 56, e2020WR027106 (2020).

    Google Scholar 

  47. Chen, S., McColl, K. A., Berg, A. & Huang, Y. Surface flux equilibrium estimates of evapotranspiration at large spatial scales. J. Hydrometeorol. 22, 765–779 (2021).

    Google Scholar 

  48. Koster, R. D. et al. On the nature of soil moisture in land surface models. J. Clim. 22, 4322–4335 (2009).

    Google Scholar 

  49. Teuling, A. J., Uijlenhoet, R., Hupet, F., van Loon, E. E. & Troch, P. A. Estimating spatial mean root-zone soil moisture from point-scale observations. Hydrol. Earth Syst. Sci. 10, 755–767 (2006).

    Google Scholar 

  50. Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).

    CAS  PubMed  Google Scholar 

  51. Lloyd, J., Bloomfield, K., Domingues, T. F. & Farquhar, G. D. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol. 199, 311–321 (2013).

    CAS  PubMed  Google Scholar 

  52. Raupach, M. Vegetation-atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agric. For. Meteorol. 73, 151–179 (1995).

    Google Scholar 

  53. Paulson, C. A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. Climatol. 9, 857–861 (1970).

    Google Scholar 

  54. Holtslag, A. & De Bruin, H. Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteorol. Climatol. 27, 689–704 (1988).

    Google Scholar 

  55. Culf, A. D. Equilibrium evaporation beneath a growing convective boundary layer. Boundary Layer Meteorol. 70, 37–49 (1994).

    Google Scholar 

  56. Raupach, M. Combination theory and equilibrium evaporation. Q. J. R. Meteorol. Soc. 127, 1149–1181 (2001).

    Google Scholar 

Download references

Acknowledgements

L.R.V.Z. thanks the James S. McDonnell Foundation and the Harvard Center for the Environment for support. K.A.M. acknowledges funding from NSF grant no. AGS-2129576, a Sloan Research Fellowship and the Dean’s Competitive Fund for Promising Scholarship from Harvard University. This work used samples from the traditional lands of the Newe (Western Shoshone) and Goshute peoples. A. Perelet and E. Kipnis provided laboratory assistance for this research. We thank E. Pardyjak and A. Perelet for their analytical assistance. We thank D. Bowling and H. Holmes for sharing their equipment with us. We thank C. A. Garcia for providing the data from the Nevada salt flats. This work was made possible with the support of former BLM West Desert District office staff, including K. Oliver, M. Preston, M. Nelson, C. Johnson, S. Allen, R. Draper, B. White and R. Tea. An NSF Coupled Natural Human Systems Award (no. 1617473) to B.B.B. and a University of Utah Global Change and Sustainability Center Graduate Student Research Grant funded this research. We thank E. Weeks and J. Henry for performing preliminary analyses.

Author information

Authors and Affiliations

Authors

Contributions

K.A.M. proposed using salt flat data to address the study’s main question. L.R.V.Z. and K.A.M. designed the research. L.R.V.Z. led the analysis, with contributions from K.A.M. and L.I.T. L.R.V.Z. wrote the first draft, with contributions from K.A.M. J.A.B. and B.B.B. provided the data for the Bonneville salt flats and aided observational analysis. L.R.V.Z., K.A.M., J.A.B., B.B.B., L.I.T., N.M.H., P.G. and P.H. contributed to writing and editing the manuscript.

Corresponding authors

Correspondence to Lucas R. Vargas Zeppetello or Kaighin A. McColl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Lucas Cernusak, Russell Scott and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1–3 and discussion.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas Zeppetello, L.R., McColl, K.A., Bernau, J.A. et al. Apparent surface conductance sensitivity to vapour pressure deficit in the absence of plants. Nat Water 1, 941–951 (2023). https://doi.org/10.1038/s44221-023-00147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00147-9

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene