Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomimetic surface engineering for sustainable water harvesting systems

Abstract

Freshwater scarcity is becoming a global issue due to changing climatic conditions, which has stimulated the development of all-weather water harvesting technologies. Recent advances in regulating surface properties to tailor water capture/release behaviours have attracted increasing attention for water harvesting applications such as fog/dew harvesting, moisture harvesting, and solar evaporation. This Review provides an overview of the design of surfaces and the manipulation of active components to tune the behaviour of water droplets in different water harvesting systems. Taking inspiration from nature, we present a critical survey of the surface wettability, structures, and compositions used by various insects and plants to manage their water demands. We summarize the latest progress in developing desired surface properties and strategies to advance key processes in water harvesting such as droplet nucleation, growth and removal, vapour sorption–desorption, and evaporation. The challenges and opportunities to further develop a sustainable water harvesting system, encompassing both fundamental research and practical implementation, are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nature-inspired water harvesting technologies.
Fig. 2: Water management mechanisms for fog and dew harvesting.
Fig. 3: Water management mechanisms and design theory for moisture harvesting and solar technologies.
Fig. 4: Hierarchical structures of creatures and plants that have inspired water harvesting devices.
Fig. 5: Strategies for the design of fog and dew harvesting surfaces.
Fig. 6: Energy management and materials optimization in fog and dew harvesting systems.
Fig. 7: Design strategies for moisture harvesting systems.
Fig. 8: Design strategies for solar evaporation systems.

Similar content being viewed by others

References

  1. Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).

    Google Scholar 

  2. Huang, X., Mandal, J., Xu, J. & Raman, A. P. Passive freezing desalination driven by radiative cooling. Joule 6, 2762–2775 (2022).

    CAS  Google Scholar 

  3. Mauter, M. S. & Fiske, P. S. Desalination for a circular water economy. Energy Environ. Sci. 13, 3180–3184 (2020).

    CAS  Google Scholar 

  4. Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    CAS  PubMed  Google Scholar 

  5. Yu, Z. et al. Fog harvesting devices inspired from single to multiple creatures: current progress and future perspective. Adv. Funct. Mater. 32, 2200359 (2022).

    CAS  Google Scholar 

  6. Yue, H., Zeng, Q., Huang, J., Guo, Z. & Liu, W. Fog collection behavior of bionic surface and large fog collector: a review. Adv. Colloid Interf. Sci. 300, 102583 (2022).

    CAS  Google Scholar 

  7. Liu, X., Beysens, D. & Bourouina, T. Water harvesting from air: current passive approaches and outlook. ACS Mater. Lett. 4, 1003–1024 (2022).

    CAS  Google Scholar 

  8. Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Tu, Y., Wang, R., Zhang, Y. & Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018).

    CAS  Google Scholar 

  10. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Google Scholar 

  11. Pang, Y. et al. Solar–thermal water evaporation: a review. ACS Energy Lett. 5, 437–456 (2020).

    CAS  Google Scholar 

  12. Zhang, W., Jin, Y., Yang, S., Zhang, H. & Wang, Z. Bioinspired topological surfaces for mitigating water, thermal and energy crises. Acc. Chem. Res. 3, 199–212 (2022).

    CAS  Google Scholar 

  13. Li, J., Li, J., Sun, J., Feng, S. & Wang, Z. Biological and engineered topological droplet rectifiers. Adv. Mater. 31, 1806501 (2019).

    Google Scholar 

  14. Arzt, E., Quan, H., McMeeking, R. M. & Hensel, R. Functional surface microstructures inspired by nature – from adhesion and wetting principles to sustainable new devices. Prog. Mater Sci. 120, 100823 (2021).

    Google Scholar 

  15. Lu, W., Ong, W. L. & Ho, G. W. Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A 11, 12456–12481 (2023).

    CAS  Google Scholar 

  16. Zhang, W., Wang, D., Sun, Z., Song, J. & Deng, X. Robust superhydrophobicity: mechanisms and strategies. Chem. Soc. Rev. 50, 4031–4061 (2021).

    CAS  PubMed  Google Scholar 

  17. Chen, F. et al. Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 51, 8476–8583 (2022).

    CAS  PubMed  Google Scholar 

  18. Chen, L., Huang, S., Ras, R. H. A. & Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 7, 123–137 (2023).

    CAS  PubMed  Google Scholar 

  19. Cho, H. J., Preston, D. J., Zhu, Y. & Wang, E. N. Nanoengineered materials for liquid–vapour phase-change heat transfer. Nat. Rev. Mater. 2, 16092 (2016).

    Google Scholar 

  20. Ma, J., Sett, S., Cha, H., Yan, X. & Miljkovic, N. Recent developments, challenges, and pathways to stable dropwise condensation: a perspective. Appl. Phys. Lett. 116, 260501 (2020).

    CAS  Google Scholar 

  21. Zhou, W.-l et al. Efficient fabrication of desert beetle-inspired micro/nano-structures on polypropylene/graphene surface with hybrid wettability, chemical tolerance, and passive anti-icing for quantitative fog harvesting. Chem. Eng. J. 453, 139784 (2023).

    CAS  Google Scholar 

  22. Zhang, M. et al. Combinational biomimetic microfibers for high-efficiency water collection. Chem. Eng. J. 433, 134495 (2022).

    CAS  Google Scholar 

  23. Jiang, J. et al. Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl Acad. Sci. USA 116, 2482–2487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boylan, D., Monga, D., Shan, L., Guo, Z. & Dai, X. Pushing the limit of beetle-inspired condensation on biphilic quasi-liquid surfaces. Adv. Funct. Mater. 33, 2211113 (2023).

    CAS  Google Scholar 

  25. Ejeian, M. & Wang, R. Z. Adsorption-based atmospheric water harvesting. Joule 5, 1678–1703 (2021).

    Google Scholar 

  26. Zhou, X., Lu, H., Zhao, F. & Yu, G. Atmospheric water harvesting: a review of material and structural designs. ACS Mater. Lett. 2, 671–684 (2020).

    CAS  Google Scholar 

  27. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Google Scholar 

  28. Liu, S., Li, S. & Lin, M. Understanding interfacial properties for enhanced solar evaporation devices: from geometrical to physical interfaces. ACS Energy Lett. 8, 1680–1687 (2023).

    CAS  Google Scholar 

  29. Roth-Nebelsick, A. et al. Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J. R. Soc. Interface 9, 1965–1974 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    CAS  PubMed  Google Scholar 

  31. Chen, H. et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17, 935–942 (2018).

    CAS  PubMed  Google Scholar 

  32. Gurera, D. & Bhushan, B. Passive water harvesting by desert plants and animals: lessons from nature. Phil. Trans. R. Soc. A 378, 20190444 (2020).

    PubMed  Google Scholar 

  33. Elbaum, R., Gorb, S. & Fratzl, P. Structures in the cell wall that enable hygroscopic movement of wheat awns. J. Struct. Biol. 164, 101–107 (2008).

    CAS  PubMed  Google Scholar 

  34. Dawson, C., Vincent, J. F. V. & Rocca, A.-M. How pine cones open. Nature 390, 668–668 (1997).

    CAS  Google Scholar 

  35. Chen, C., Kuang, Y. & Hu, L. Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019).

    CAS  Google Scholar 

  36. Xu, N. et al. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).

    Google Scholar 

  37. Feng, S. et al. Three-dimensional capillary ratchet-induced liquid directional steering. Science 373, 1344–1348 (2021).

    CAS  PubMed  Google Scholar 

  38. Xu, N. et al. A water lily–inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 5, eaaw7013 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung, Y. et al. Spherical micro/nano hierarchical structures for energy and water harvesting devices. Small Methods 6, 2200248 (2022).

    CAS  Google Scholar 

  40. Venkatesan, H., Chen, J., Liu, H., Liu, W. & Hu, J. A spider-capture-silk-like fiber with extremely high-volume directional water collection. Adv. Funct. Mater. 30, 2002437 (2020).

    CAS  Google Scholar 

  41. Liu, Y. et al. High efficient fog-water harvesting via spontaneous swallowing mechanism. Nano Energy 96, 107076 (2022).

    CAS  Google Scholar 

  42. Bai, H. et al. Cactus kirigami for efficient fog harvesting: simplifying a 3D cactus into 2D paper art. J. Mater. Chem. A 8, 13452–13458 (2020).

    CAS  Google Scholar 

  43. Li, C., Yu, C., Zhou, S., Dong, Z. & Jiang, L. Liquid harvesting and transport on multiscaled curvatures. Proc. Natl Acad. Sci. USA 117, 23436–23442 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dai, X. et al. Hydrophilic directional slippery rough surfaces for water harvesting. Sci. Adv. 4, eaaq0919 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Feng, R., Song, F., Xu, C., Wang, X.-L. & Wang, Y.-Z. A quadruple-biomimetic surface for spontaneous and efficient fog harvesting. Chem. Eng. J. 422, 130119 (2021).

    CAS  Google Scholar 

  46. Yu, Z. et al. Bio-inspired copper kirigami motifs leading to a 2D–3D switchable structure for programmable fog harvesting and water retention. Adv. Funct. Mater. 33, 2210730 (2023).

    CAS  Google Scholar 

  47. Wang, Y. et al. Sustainable superhydrophobic surface with tunable nanoscale hydrophilicity for water harvesting applications. Angew. Chem. Int. Ed. 61, e202115238 (2022).

    CAS  Google Scholar 

  48. Song, J. et al. Inhibition of condensation-induced droplet wetting by nano-hierarchical surfaces. Chem. Eng. J. 460, 141761 (2023).

    CAS  Google Scholar 

  49. Wilke, K. L. et al. Polymer infused porous surfaces for robust, thermally conductive, self-healing coatings for dropwise condensation. ACS Nano 14, 14878–14886 (2020).

    CAS  PubMed  Google Scholar 

  50. Wang, D. et al. Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020).

    CAS  PubMed  Google Scholar 

  51. Yamauchi, Y., Tenjimbayashi, M., Samitsu, S. & Naito, M. Durable and flexible superhydrophobic materials: abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant composite with porcupinefish-like structure. ACS Appl. Mater. Interfaces 11, 32381–32389 (2019).

    CAS  PubMed  Google Scholar 

  52. Adera, S. et al. Depletion of lubricant from nanostructured oil-infused surfaces by pendant condensate droplets. ACS Nano 14, 8024–8035 (2020).

    CAS  PubMed  Google Scholar 

  53. Laney, S. K. et al. Delayed lubricant depletion of slippery liquid infused porous surfaces using precision nanostructures. Langmuir 37, 10071–10078 (2021).

    CAS  PubMed  Google Scholar 

  54. Peppou-Chapman, S., Hong, J. K., Waterhouse, A. & Neto, C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem. Soc. Rev. 49, 3688–3715 (2020).

    CAS  PubMed  Google Scholar 

  55. Fazle Rabbi, K. et al. Polydimethylsiloxane-silane synergy enables dropwise condensation of low surface tension liquids. Adv. Funct. Mater. 32, 2112837 (2022).

    CAS  Google Scholar 

  56. Huang, S., Li, J., Liu, L., Zhou, L. & Tian, X. Lossless fast drop self-transport on anisotropic omniphobic surfaces: origin and elimination of microscopic liquid residue. Adv. Mater. 31, 1901417 (2019).

    Google Scholar 

  57. Zhang, L., Guo, Z., Sarma, J. & Dai, X. Passive removal of highly wetting liquids and ice on quasi-liquid surfaces. ACS Appl. Mater. Interfaces 12, 20084–20095 (2020).

    CAS  PubMed  Google Scholar 

  58. Monga, D. et al. Quasi-liquid surfaces for sustainable high-performance steam condensation. ACS Appl. Mater. Interf. 14, 13932–13941 (2022).

    CAS  Google Scholar 

  59. Shi, Y., Ilic, O., Atwater, H. A. & Greer, J. R. All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7, eabf3978 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ho, J. Y. et al. Ultrascalable surface structuring strategy of metal additively manufactured materials for enhanced condensation. Adv. Sci. 9, 2104454 (2022).

    Google Scholar 

  62. Liu, L., Liu, S., Schelp, M. & Chen, X. Rapid 3D printing of bioinspired hybrid structures for high-efficiency fog collection and water transportation. ACS Appl. Mater. Interf. 13, 29122–29129 (2021).

    CAS  Google Scholar 

  63. Zhang, L. et al. Wettability-patterned meshes for efficient fog collection enabled by polymer-assisted laser sintering. ACS Appl. Polym. Mater. 5, 614–624 (2023).

    CAS  Google Scholar 

  64. Buddingh, J. V., Hozumi, A. & Liu, G. Liquid and liquid-like surfaces/coatings that readily slide fluids. Prog. Polym. Sci. 123, 101468 (2021).

    CAS  Google Scholar 

  65. Wang, L. & McCarthy, T. J. Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency. Angew. Chem. Int. Ed. 55, 244–248 (2016).

    CAS  Google Scholar 

  66. Ma, J. et al. A lipid-inspired highly adhesive interface for durable superhydrophobicity in wet environments and stable jumping droplet condensation. ACS Nano 16, 4251–4262 (2022).

    CAS  PubMed  Google Scholar 

  67. Zhang, L., Guo, Z., Sarma, J., Zhao, W. & Dai, X. Gradient quasi-Liquid surface enabled self-propulsion of highly wetting liquids. Adv. Funct. Mater. 31, 2008614 (2021).

    CAS  Google Scholar 

  68. Suh, Y. et al. A deep learning perspective on dropwise condensation. Adv. Sci. 8, 2101794 (2021).

    Google Scholar 

  69. Ma, Z., Ai, J., Shi, Y., Wang, K. & Su, B. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Adv. Mater. 32, 2006839 (2020).

    CAS  Google Scholar 

  70. Ren, J. et al. Bioinspired energy storage and harvesting devices. Adv. Mater. Technol. 6, 2001301 (2021).

    CAS  Google Scholar 

  71. Shi, W., Guan, W., Lei, C. & Yu, G. Sorbents for atmospheric water harvesting: from design principles to applications. Angew. Chem. Int. Ed. 61, e202211267 (2022).

    CAS  Google Scholar 

  72. Wang, M. et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy 80, 105569 (2021).

    CAS  Google Scholar 

  73. Song, Y. et al. High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 17, 857–863 (2022).

    CAS  PubMed  Google Scholar 

  74. Hanikel, N. et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

    CAS  PubMed  Google Scholar 

  75. Yilmaz, G. et al. Autonomous atmospheric water seeping MOF matrix. Sci. Adv. 6, eabc8605 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ni, F. et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 59, 19237–19246 (2020).

    CAS  Google Scholar 

  77. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy 67, 104255 (2020).

    CAS  Google Scholar 

  78. Zhang, Y., Wu, L., Wang, X., Yu, J. & Ding, B. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat. Commun. 11, 3302 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma, D., Huang, X., Zhang, Y., Wang, L. & Wang, B. Metal-organic frameworks: synthetic methods for industrial production. Nano Res. 16, 7906–7925 (2023).

    CAS  Google Scholar 

  80. Zheng, Z. et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136–156 (2023).

    CAS  PubMed  Google Scholar 

  81. Lyu, T. et al. Macroporous hydrogel for high-performance atmospheric water harvesting. ACS Appl. Mater. Interf. 14, 32433–32443 (2022).

    Google Scholar 

  82. Lu, H. et al. Materials engineering for atmospheric water harvesting: progress and perspectives. Adv. Mater. 34, 2110079 (2022).

    CAS  Google Scholar 

  83. Lei, C. et al. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 61, e202200271 (2022).

    CAS  Google Scholar 

  84. Guo, Y. et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 13, 2761 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hanikel, N. et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).

    CAS  Google Scholar 

  87. Xu, J. et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14, 5979–5994 (2021).

    CAS  Google Scholar 

  88. Yang, J. et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture. Adv. Mater. 32, 2002936 (2020).

    CAS  Google Scholar 

  89. Zhang, C., Liang, H.-Q., Xu, Z.-K. & Wang, Z. Harnessing solar-driven photothermal effect toward the water–energy nexus. Adv. Sci. 6, 1900883 (2019).

    CAS  Google Scholar 

  90. Kuang, Y. et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, 1900498 (2019).

    Google Scholar 

  91. Lei, Z. et al. A multiscale porous 3D-fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 32, 2205790 (2022).

    CAS  Google Scholar 

  92. Tian, C. et al. Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 16, 2000573 (2020).

    CAS  Google Scholar 

  93. Fan, X. et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv. Funct. Mater. 30, 2007110 (2020).

    CAS  Google Scholar 

  94. Li, C. et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation. J. Am. Chem. Soc. 144, 3083–3090 (2022).

    CAS  PubMed  Google Scholar 

  95. Zhang, L. et al. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat. Commun. 13, 849 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, K., Pan, T., Dang, S., Gan, Q. & Han, Y. Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nat. Commun. 13, 6653 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Xia, Y. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019).

    CAS  Google Scholar 

  98. Zeng, J., Wang, Q., Shi, Y., Liu, P. & Chen, R. Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 9, 1900552 (2019).

    CAS  Google Scholar 

  99. Xu, K., Wang, C., Li, Z., Wu, S. & Wang, J. Salt mitigation strategies of solar-driven interfacial desalination. Adv. Funct. Mater. 31, 2007855 (2021).

    CAS  Google Scholar 

  100. Zou, M. et al. 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications. Adv. Mater. 33, 2102443 (2021).

    CAS  Google Scholar 

  101. Ma, W., Lu, T., Cao, W., Xiong, R. & Huang, C. Bioinspired nanofibrous aerogel with vertically aligned channels for efficient water purification and salt-rejecting solar desalination. Adv. Funct. Mater. 33, 2214157 (2023).

    CAS  Google Scholar 

  102. Singh, S. C. et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 3, 938–946 (2020).

    Google Scholar 

  103. Xu, C. et al. Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15, 64 (2023).

    CAS  Google Scholar 

  104. Li, H. et al. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation. Adv. Mater. 33, 2102258 (2021).

    CAS  Google Scholar 

  105. Xing, H. et al. A magneto-heated silk fibroin scaffold for anti-biofouling solar steam generation. Small 19, e2206189 (2023).

    PubMed  Google Scholar 

  106. Chen, C. et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 51, 451–456 (2018).

    CAS  Google Scholar 

  107. Li, T. et al. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting. Nat. Commun. 13, 6771 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, F. et al. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 5, 1602–1612 (2021).

    CAS  Google Scholar 

  109. Deng, W., Fan, T. & Li, Y. Water wave vibration-promoted solar evaporation with super high productivity. Nano Energy 92, 106745 (2022).

    CAS  Google Scholar 

  110. Xu, Z. et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 13, 830–839 (2020).

    CAS  Google Scholar 

  111. Wang, W. et al. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 5, 1873–1887 (2021).

    Google Scholar 

  112. Atlas of the Biosphere (Nelson Institute Center for Sustainability and the Global Environment, Univ. Wisconsin-Madison); https://sage.nelson.wisc.edu/data-and-models/atlas-of-the-biosphere.

  113. Masrahi, Y. S. Glochids microstructure and dew harvesting ability in Opuntia stricta (Cactaceae). J. King Saud Univ. Sci. 32, 3307–3312 (2020).

    Google Scholar 

  114. Koch, K., Bhushan, B. & Barthlott, W. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4, 1943–1963 (2008).

    CAS  Google Scholar 

  115. Yang, H. et al. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity. ACS Nano 16, 2511–2520 (2022).

    CAS  PubMed  Google Scholar 

  116. Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.C.T acknowledges financial support from NSERC and CFI Canada. Y.W. is grateful for the support of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam Chiu Tam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Yuekun Lai and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary information describing the principles of wetting and sorption-based mechanisms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, W., Han, M. et al. Biomimetic surface engineering for sustainable water harvesting systems. Nat Water 1, 587–601 (2023). https://doi.org/10.1038/s44221-023-00109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00109-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing