Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solar steam-driven membrane filtration for high flux water purification

Abstract

In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic and the theoretical water production rate of the SSD-RO/NF system.
Fig. 2: The design and setup of the SSD-RO/NF device.
Fig. 3: Designs and characterizations of the solar evaporator of the SSD-RO/NF device.
Fig. 4: Performance of the SSD-RO/NF device.
Fig. 5: Analysis and simulation of the SSD-RO device performance.

Similar content being viewed by others

Data availability

The data generated or analysed during this study are included in this published article and its supporting information files. Source data are provided in this paper. Supplementary figure source data are also available on Figshare at https://doi.org/10.6084/m9.figshare.22188103.v1.

References

  1. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016).

    Article  CAS  Google Scholar 

  5. Wang, X. et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem. Int. Ed. 131, 12182–12186 (2019).

    Article  Google Scholar 

  6. Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu, X. et al. Tailoring graphene oxide‐based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017).

    Article  Google Scholar 

  9. Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).

    Article  CAS  Google Scholar 

  10. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. He, S. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12, 1558–1567 (2019).

    Article  CAS  Google Scholar 

  12. Xu, W. et al. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930–7938 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, P., Li, J., Lv, L., Zhao, Y. & Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y. et al. 3D‐printed, all‐in‐one evaporator for high‐efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017).

  15. Li, J. et al. Interfacial solar steam generation enables fast‐responsive, energy‐efficient, and low‐cost off‐grid sterilization. Adv. Mater. 30, 1805159 (2018).

    Article  Google Scholar 

  16. Li, X., Cooper, T., Xie, W. & Hsu, P.-C. Design and utilization of infrared light for interfacial solar water purification. ACS Energy Lett. 6, 2645–2657 (2021).

    Article  CAS  Google Scholar 

  17. Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, N. et al. Synergistic tandem solar electricity-water generators. Joule 4, 347–358 (2020).

    Article  Google Scholar 

  20. Xia, Y. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019).

    Article  CAS  Google Scholar 

  21. Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao, L. et al. A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020).

    Article  CAS  Google Scholar 

  23. Yang, P. et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation. Energy Environ. Sci. 13, 4891–4902 (2020).

    Article  CAS  Google Scholar 

  25. Li, J. et al. Over 10 kg m−2 h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 4, 928–937 (2020).

    Article  CAS  Google Scholar 

  26. Xu, N. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl Sci. Rev. 8, nwab065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu, N. et al. Mushrooms as efficient solar steam‐generation devices. Adv. Mater. 29, 1606762 (2017).

    Article  Google Scholar 

  28. Li, X. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018).

    Article  CAS  Google Scholar 

  29. Singh, S. C. et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 3, 938–946 (2020).

    Article  Google Scholar 

  30. Shi, Y., Ilic, O., Atwater, H. A. & Greer, J. R. All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, L. et al. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat. Commun. 13, 849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, L., Li, X., Ni, G. W., Zhu, S. & Zhu, J. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci. Rev. 6, 562–578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X. et al. Storage and recycling of interfacial solar steam enthalpy. Joule 2, 2477–2484 (2018).

    Article  Google Scholar 

  34. Menon, A. K., Haechler, I., Kaur, S., Lubner, S. & Prasher, R. S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat. Sustain. 3, 144–151 (2020).

    Article  Google Scholar 

  35. Ni, G. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018).

    Article  CAS  Google Scholar 

  36. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Article  Google Scholar 

  37. Xu, Z. et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 13, 830–839 (2020).

    Article  CAS  Google Scholar 

  38. Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    Article  CAS  Google Scholar 

  39. Brogioli, D., La Mantia, F. & Yip, N. Y. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination 428, 29–39 (2018).

    Article  CAS  Google Scholar 

  40. Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    Article  Google Scholar 

  41. Hu, Y. et al. A reconfigurable and magnetically responsive assembly for dynamic solar steam generation. Nat. Commun. 13, 4335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mu, X. et al. A robust starch-polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity-freshwater cogeneration. Energy Environ. Sci. 15, 3388–3399 (2022).

    Article  CAS  Google Scholar 

  43. Wang, F. et al. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 5, 1602–1612 (2021).

    Article  CAS  Google Scholar 

  44. Xu, N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 5, eaaw7013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, W. et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10, 3012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Geng, H. et al. Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat. Commun. 10, 1512 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Spiegler, K. & El-Sayed, Y. The energetics of desalination processes. Desalination 134, 109–128 (2001).

    Article  CAS  Google Scholar 

  48. Stoughton, R. & Lietzke, M. Calculation of some thermodynamic properties of sea salt solutions at elevated temperatures from data on NaCl solutions. J. Chem. Eng. Data 10, 254–260 (1965).

    Article  CAS  Google Scholar 

  49. Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Kwon, J.-S., Jang, C. H., Jung, H. & Song, T.-H. Effective thermal conductivity of various filling materials for vacuum insulation panels. Int. J. Heat Mass Transf. 52, 5525–5532 (2009).

    Article  CAS  Google Scholar 

  52. Wakili, K. G., Stahl, T. & Brunner, S. Effective thermal conductivity of a staggered double layer of vacuum insulation panels. Energy Build. 43, 1241–1246 (2011).

    Article  Google Scholar 

  53. Organ, A. J. Thermodynamics and Gas Dynamics of the Stirling Cycle Machine (Cambridge Univ. Press, 1992).

  54. Formosa, F. & Despesse, G. Analytical model for Stirling cycle machine design. Energy Convers. Manag. 51, 1855–1863 (2010).

    Article  Google Scholar 

  55. Bao, J. & Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sust. Energ. Rev. 24, 325–342 (2013).

    Article  CAS  Google Scholar 

  56. DeRosa, R. L., Schader, P. A. & Shelby, J. E. Hydrophilic nature of silicate glass surfaces as a function of exposure condition. J. Non-cryst. Solids 331, 32–40 (2003).

    Article  CAS  Google Scholar 

  57. Xiong, Z. C., Zhu, Y. J., Qin, D. D., Chen, F. F. & Yang, R. L. Flexible fire‐resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy‐driven water purification. Small 14, 1803387 (2018).

    Article  Google Scholar 

  58. Zhang, Q., Xu, W. & Wang, X. Carbon nanocomposites with high photothermal conversion efficiency. Sci. China Mater. 61, 905–914 (2018).

    Article  CAS  Google Scholar 

  59. Henke, S., Kadlec, P. & Bubník, Z. Physico-chemical properties of ethanol—compilation of existing data. J. Food Eng. 99, 497–504 (2010).

    Article  CAS  Google Scholar 

  60. Edition, F. Guidelines for drinking-water quality. WHO Chronicle 38, 104–108 (2011).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the micro-fabrication centre of the National Laboratory of Solid State Microstructures (NLSSM) for technique support. J.Z. acknowledges support from the XPLORER PRIZE. This work was jointly supported by the National Natural Science Foundation of China (nos. 51925204, 52102262, 52003116 and 92262305), Natural Science Foundation of Jiangsu Province (nos. BK20220035 and BK20200340), National Key Research and Development Program of China (no. 2022YFA1404704), Program for Innovative Talents and Entrepreneur in Jiangsu Province and Jiangsu Planned Projects for Postdoctoral Research Funds (no. 2020Z018) and Nanjing University of Aeronautics and Astronautics Startup Fund (4017-YQR22012).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., X.L. and X.W. conceived and planned this research. X.W., Y.S., W.Z. and S.W. did the experiments. X.W., Z.L., J.G., Z.X., N.X., J.L. and H.F. contributed to the thermal model and theoretical calculation analysis. X.W., Z.L., N.X., J.L., B.Z., X.L., R.W. and J.Z. organized the data and wrote the paper. All authors discussed the results and approved the final version of the paper.

Corresponding authors

Correspondence to Xiuqiang Li or Jia Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper.

Peer review

Peer review information

Nature Water thanks Jianhua Zhou and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–21, Tables 1–7 and refs. 1–47.

Source Data Supplementary Fig. 2

Statistical source data.

Source Data Supplementary Fig. 5

Statistical source data.

Source Data Supplementary Fig. 6

Statistical source data.

Source Data Supplementary Fig. 9

Statistical source data.

Source Data Supplementary Fig. 12

Statistical source data.

Source Data Supplementary Fig. 13

Statistical source data

Source Data Supplementary Fig. 15

Statistical source data.

Source Data Supplementary Fig. 16

Statistical source data.

Source Data Supplementary Fig. 19

Statistical source data.

Source Data Supplementary Fig. 20

Statistical source data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lin, Z., Gao, J. et al. Solar steam-driven membrane filtration for high flux water purification. Nat Water 1, 391–398 (2023). https://doi.org/10.1038/s44221-023-00059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00059-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing