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National hydrologic connectivity 
classification links wetlands with  
stream water quality

Scott G. Leibowitz    1  , Ryan A. Hill    1, Irena F. Creed    2, Jana E. Compton    1, 
Heather E. Golden    3, Marc H. Weber    1, Mark C. Rains    4, Chas E. Jones Jr 5,8, 
E. Henry Lee    1, Jay R. Christensen    3, Rebecca A. Bellmore    6,9 & 
Charles R. Lane    7

Wetland hydrologic connections to downstream waters influence stream 
water quality. However, no systematic approach for characterizing 
this connectivity exists. Here using physical principles, we categorized 
conterminous US freshwater wetlands into four hydrologic connectivity 
classes based on stream contact and flowpath depth to the nearest 
stream: riparian, non-riparian shallow, non-riparian mid-depth and non-
riparian deep. These classes were heterogeneously distributed over the 
conterminous United States; for example, riparian dominated the south-
eastern and Gulf coasts, while non-riparian deep dominated the Upper 
Midwest and High Plains. Analysis of a national stream dataset indicated 
acidification and organic matter brownification increased with connectivity. 
Eutrophication and sedimentation decreased with wetland area but did 
not respond to connectivity. This classification advances our mechanistic 
understanding of wetland influences on water quality nationally and could 
be applied globally.

Freshwater wetlands (hereafter wetlands) are critical watershed com-
ponents contributing valuable ecosystem services to society1. They 
attenuate stormflows, augment baseflows and reduce damages from 
drought and low flows2–4. Wetlands support biodiversity, providing hab-
itat for endemic and endangered species, and contribute to wetland–
upland ecosystem mosaics occupying inland landscapes5–7. However, 
wetlands are perhaps best known for improving water quality. Within 
watersheds, wetlands are sources of ecologically beneficial materials 
(for example, dissolved organic matter) and sinks of detrimental materi-
als, such as excess nutrients (for example, nitrogen and phosphorus), 
sediments and contaminants, including certain metals2,3,8–10. Wetlands 

are integral to watershed resilience through dampening of hydrologi-
cal and biogeochemical variability11. Despite these ecosystem services, 
wetlands are vulnerable to degradation or destruction because they 
are frequently unmapped and poorly protected12.

Wetlands alter energy and material transport to downstream 
waters (for example, streams, rivers, lakes and coastal waters) via their 
functions and connectivity13. Wetlands perform a variety of source, 
sink, lag, transformation and refuge functions—processes that respec-
tively increase, decrease, affect the timing of (storage and gradual 
release), alter (change in form) or prevent the loss of (provide suit-
able habitat to survive adverse conditions) energy, material fluxes or 
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types nor their connections; we argue that wetland connectivity can 
influence water quality and is integral to understanding the role wetlands 
play in watersheds. A wetland connectivity classification would help 
determine whether connectivity influences water quality and should 
also be considered when prioritizing wetland restoration and protection.

Here, we (1) develop a nationwide wetland connectivity classifica-
tion that can also be applied at other scales; (2) map and characterize 
the geospatial distribution of wetland connectivity throughout the 
CONUS; and (3) use this classification to illustrate the potential effects 
of wetland connectivity on stream water constituents associated with 
acidification, excess organic matter-based brownification, eutrophica-
tion and sedimentation. This CONUS-wide classification advances our 
understanding of how wetland connectivity contributes to watershed 
functions that, in turn, can lead to improved management of waters 
across the United States and, with increasing data availability, globally.

Connectivity classification
Our classification uses CONUS-wide geospatial data of stream net-
works, wetlands and flowpath characteristics to define four wetland 
classes on the basis of their hydrologic connectivity to downstream 
waters (Fig. 1, Table 1 and Methods); note that depth in the class name 
refers to flowpath and not wetland depth:

	(1)	 Riparian wetlands (Riparian) adjoin rivers and streams, have 
very frequent bidirectional connections to them, and provide 
unidirectional transport from upgradient hillslopes.

	(2)	Non-riparian shallow wetlands (NRShw) have permeable 
and poorly drained soils on flowpaths between wetlands and 
downstream waters. Owing to poor drainage, subsurface flows 
are shallow and relatively infrequent surface flows can occur 
through saturation excess overland flow (that is, when soil water 
holding capacity is full)17.

species. The connectivity from wetlands to downstream systems pro-
vides the pathways for energy and material transport to downstream 
waters. In this Article, we use a structural definition of connectivity: ‘the 
degree to which components of a system are connected and interact 
through various transport mechanisms’13. In contrast, functional defini-
tions of connectivity relate to the frequency, magnitude and duration 
of actual material flows between system components.

Connectivity occurs along a gradient. At one extreme, hydrologi-
cally connected systems facilitate energy or material transport. At the 
other extreme, hydrologically isolated systems reduce energy or mate-
rial transport but can increase transformation functions. Connectivity 
between wetlands and downstream waters influences the structure, 
function and dynamics of watersheds and broadly contributes to 
the physical, chemical and biological integrity of those downstream 
waters3,10,14,15. Owing to its effect on the integrity of downstream waters, 
connectivity can also be an important factor in determining whether 
wetlands are considered ‘waters of the United States’, that is, federally 
regulated under the US Clean Water Act16. Here, we focus on wetland 
hydrologic connectivity to downstream waters (hereafter wetland con-
nectivity), since water movement determines fluxes of water quality 
constituents within watersheds.

As wetlands continue to be drained, filled and destroyed, the need 
to understand how wetland connectivity mediates water quality has 
grown3,9,10,13–16. Yet there is little research quantifying or classifying wet-
land connectivity in watersheds, regional wetland landscapes or at 
national scales. This limits us from addressing crucial questions con-
cerning the role of wetland connectivity in watershed fate and transport 
processes. For example, a recent conterminous US (CONUS) analysis8 
suggested that spatially targeting wetland restoration towards nitro-
gen hotspots would remove more nitrogen than randomly distributed 
wetland restoration. This analysis did not distinguish between wetland 
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Fig. 1 | Wetland hydrologic connectivity classification. a, Four hydrologic 
connectivity classes: Riparian wetlands have an outlet within one 30 m pixel 
from a stream and bidirectional flows. The three non-riparian classes are greater 
than one pixel from a stream and all have unidirectional flows. NRShw have 
permeable and poorly drained soils on the flowpath between the wetland and 
downstream water. Owing to poor drainage, subsurface flows are shallow and 
surface flows can occur relatively frequently through saturation excess overland 
flow17. NRMid have permeable and well-drained soils on the flowpath. Owing to 
good drainage, subsurface flows are deeper (mid-depth), but surface flows can 
occur occasionally through infiltration excess overland flow17. NRDeep have 
impermeable soils on the flowpath. Non-channelized surface flows can occur 

when the wetland basin is filled with water and additional water input causes 
the wetland to either spill over or merge into downstream waters18, but this is 
limited to rare and episodic flooding events. Water transport is more common 
via deep subsurface flowpaths from the bottom of the wetland to downstream 
waters. Note that depth in the non-riparian class name refers to flowpath and not 
wetland depth. b, Flow chart summarizing classification of wetland hydrologic 
connectivity classes. Note wetlands are defined on the basis of 2011 NLCD33 
classes 90 (woody wetland) and 95 (emergent herbaceous wetland); however, 
woody versus emergent herbaceous type is not incorporated into the resulting 
classification. For details, see Methods.
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	(3)	Non-riparian mid-depth wetlands (NRMid) have permeable and 
well-drained soils on flowpaths between wetlands and down-
stream waters. Good drainage allows deeper, mid-depth sub-
surface flows, but surface flows can occur occasionally through 
infiltration excess overland flow (that is, when rainfall intensity 
exceeds soil infiltration)17.

	(4)	Non-riparian deep wetlands (NRDeep) have impermeable soils 
on flowpaths between wetlands and downstream waters. Non-
channelized surface flows can occur when the wetland basin is 
filled with water and spills over17,18, but this is limited to rare and 
episodic flooding events. Water transport via deep subsurface 
flowpaths from the bottom of the wetland to downstream wa-
ters is more common.
We hypothesized that Riparian connectivity is the highest, since 

these wetlands have frequent, short-distance, surface and subsur-
face hydrologic connections to streams. In contrast, we hypothesized 
that non-riparian wetland connectivity decreases with increasing 
depth of the subsurface flowpath, assuming non-riparian con-
nectivity is dominated by subsurface hydrologic connections to 
the stream. Consequently, we rank wetland connectivity as Ripar-
ian > NRShw > NRMid > NRDeep. Note that our classification does not 
consider distances between wetlands and downstream waters, other 
than determining whether a wetland adjoins a stream (Methods). Nor 
does it account for travel times between wetlands and downstream 
waters. Rather, it qualitatively represents how quickly water would be 
expected to travel through flowpaths of similar lengths.

To validate our classification, we qualitatively estimated the 
expected magnitudes of the wetland connectivity classes and com-
pared these with quantitative results on the areal distributions of 
these classes for six case study regions (Methods, Supplementary 
Information, Supplementary Fig. 1 and Supplementary Table 1). We 
overpredicted wetland area in three cases and underpredicted area 
in one. Overall, there was good concurrence between the expected 
magnitudes of wetland connectivity classes and quantitative results.

Distribution of connectivity classes
Riparian was the dominant connectivity class based on total wetland 
number, total wetland area and per cent of CONUS area (Table 2). 
NRShw had the smallest total wetland number and among the small-
est total wetland area. NRMid and NRDeep had similar wetland num-
bers, but NRMid had about 1.2 times the total wetland area compared  
with NRDeep. Riparian was made up 3.8% of the CONUS land  
area, compared with about 0.5% each for the three non-riparian 
classes. The mean area of 0.11 km2 per Riparian wetland was 1.8,  
3.7 and 5.5 times larger than mean areas of NRShw, NRMid and 
NRDeep, respectively.

Wetlands are unevenly distributed across the CONUS (Fig. 2a) and 
by connectivity classes (Fig. 2b and Supplementary Figs. 2 and 3). Areas 
with the highest wetland occurrence (>50%) were parts of the South-
eastern United States, a narrow band along the Atlantic and Gulf coasts, 
and areas in northern Minnesota and the upper peninsula of Michigan. 
These locations grade into more extensive areas with >25% wetlands. 
Among wetland connectivity classes, riparian dominated throughout 
much of the CONUS. NRShw was most widespread in only a few areas, 
including portions of Florida and the Atlantic coast, as well as parts 
of Minnesota, Nebraska and the lower peninsula of Michigan. NRMid 
dominated in western Texas and eastern New Mexico, the southern tip 
of Texas, around the Great Salt Lake in Utah, and parts of Minnesota 
and Nebraska. NRDeep was most prevalent in the eastern Dakotas, 
western Minnesota, the Texas panhandle and the southern portion of 
California’s Central Valley.

Wetland connectivity and stream water quality
To assess the influence of wetland connectivity classes on downstream 
water quality, we developed a set of linear mixed effects regression 
models for 11 in-stream water quality constituents (Supplementary 
Table 2) that were placed into four functional groups (acidifica-
tion, brownification, eutrophication and sedimentation; Methods). 
Although the precision of these models (Supplementary Table 3) was 
similar to those for models with all wetlands combined (Supplementary 
Table 4), the purpose of these models was not to produce better pre-
dictions of water quality. Rather, our purpose was to decompose and 
test the individual effects of the four wetland classes on water quality.

The acidification constituents were related to wetland connec-
tivity classes, reflecting the role of residence time on acidic and basic 
water conditions19 (Fig. 3a). Al had a negative standardized population 
mean regression slope (hereafter mean slope)—that is, an inverse 
relationship—with the lowest level of wetland connectivity (NRDeep), 
but the mean slopes switched signs and became increasingly positive 
with the increasing presence of wetlands with higher connectivity. Al, 
which is typically mobilized in acidic soils and soil waters20, increased 
with increasing wetland connectivity through an acidifying organic 
soil matrix. In contrast, Mg, Ca, acid neutralizing capacity (ANC) and 
specific conductance (cond) had a positive mean slope with the lowest 
level of wetland connectivity (NRDeep), and the mean slopes switched 
signs and became increasingly negative with increasing wetland con-
nectivity (Fig. 3a). Mg, Ca, ANC and cond are typically mobilized via 
bedrock weathering21, with greater mobilization associated with 
longer residence times19 and lower acidification22. The negative mean 
slope between NRDeep and Al, together with the positive mean slope 
between NRDeep and Mg, Ca, ANC and cond, may reflect how water 
quality constituents are influenced by the longer water residence time 

Table 1 | Expected connectivity and biogeochemical behaviours of four wetland hydrologic connectivity classes

Wetland 
hydrologic 
connectivity class

Flowpath Expected connectivity behaviour Expected biogeochemical behaviour

Periodicity Direction Velocity Residence time Reaction matrixa

Riparian Surface Frequent Bidirectional Rapid Short Organic

Subsurface Frequent Bidirectional Intermediateb Short Organic/mineral

NRShw Surfacec Infrequent Lateral Intermediate Short Organic

Subsurface Frequent Lateral Intermediate Intermediate Organic/mineral

NRMid Surfaced Infrequent Lateral Intermediate Short Organic

Subsurface Frequent Lateral Slow Long Mineral

NRDeep Surfacee Very infrequent Lateral Intermediate Short Organic

Subsurface Constant Lateral Very slow Very long Mineral/bedrock
aReaction matrix refers to the soil characteristics of the flowpath from the wetland to the downstream water. These include general physical characteristics of the soil profile, specifically 
whether organic, mineral, bedrock or a mix of these materials are assumed to be present, given the particular flowpath depth. bIncluding hyporheic flows. cSurface flows due to saturation 
excess overland flow17. dSurface flows due to infiltration excess overland flow17. eSurface flows due to fill and spill18.
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and potentially greater bedrock weathering reaction potential along 
the deep pathway of wetland connections to streams23. However, the 
model fixed effects explained a low proportion of the variance in Al 
(Supplementary Table 3), and relationships should be interpreted 
with caution.

The brownification constituents, colour and dissolved organic 
carbon (DOC), were positively related to greater presence of each 
wetland connectivity class but had higher mean slopes in the pres-
ence of increased wetland connectivity (Fig. 3b). Higher browning as 
a function of increased wetland connectivity through shallow subsur-
face soils reflects the high DOC production potential of wetlands and 
the interaction with carbon-rich organic layers as water flows from 
the wetland to the stream. The low mean slope between NRDeep and 
browning further underscores this finding, as adsorption of DOC to 
sediments24 and microbial decomposition of DOC25 remove carbon 
along the deep flowpath.

Comparing mean slopes between classes, NRDeep and NRShw 
were significantly different for all acidification and brownification 
constituents (Supplementary Table 5). NRDeep and NRMid mean slopes 
were significantly different for most acidification and brownification 
constituents; the lack of significance for Ca and Mg could mean that 
these effects are weaker or that these constituents are not as sensitive 
for these classes. None were significantly different between NRMid 
and NRShw wetlands except Al. These similar behaviours could mean 
that the STATSGO2 soil drainage class is not the proper attribute to 
distinguish between NRMid and NRShw, or NRMid and NRShw do not 
represent two distinct classes.

While wetlands are considered important sites for denitrification 
and nitrate removal3,8–10 as well as sediment filtration26, these capaci-
ties did not vary with wetland connectivity class. Mean slopes of NO3, 
turbidity (turb) and total suspended solids (TSS) were not significantly 
different from zero for any connectivity class, except for a significant 
negative TSS mean slope for Riparian (Fig. 3c,d and Supplementary 
Table 3). Although NO3 and TSS were not related to wetland connectiv-
ity class, they both had significant negative mean slopes when all wet-
lands were combined into a single watershed measure (Supplementary 

Table 4 and Methods). This reaffirms the importance of wetland pres-
ence—but not connectivity—to the functions of nitrate and sediment 
removal10. As with Al, model fixed effects explained a low proportion 
of the variance in turb and TSS and should be interpreted with caution.

Riparian flowpath linkages to water quality were strong (Fig. 3 and 
Supplementary Table 3). These flowpaths are dominated by carbon-rich 
organic soils with relatively few base cations and lower pH, and they 
are expected to have short residence times and lower adsorption and 
weathering potential. Thus, streams with higher Riparian connections 
tended to have higher DOC and Al, and lower base cations. Riparian gen-
erally had a stronger filtering effect than other classes, as suggested by 
the negative TSS slope for Riparian. This may be because of the runoff 
capturing capacity of Riparian wetlands and their short connections 
to streams. Rapid DOC transport from its source can occur when there 
is limited residence time for biogeochemical transformations, and if 
hydrological transport mechanisms are frequently available27.

Discussion and conclusions
Restoring and protecting wetlands has been important for managing 
water quality for decades28. This includes spatial targeting of wetland 
restoration or protection, which can improve water quality better than 
non-targeted efforts. For example, targeting restoration in nitrogen 
hotspots, where nutrient sources are abundant, is probably more effec-
tive than restoring wetlands randomly or in non-agricultural areas8. Our 
wetland connectivity classification provides a critical dimension for 
improving landscape-scale targeting for water quality management.

The strong relationship between wetland connectivity and acidifi-
cation (Al and basic constituents) and brownification (colour and DOC) 
suggests watershed managers should consider wetland connectivity 
class for restoration or protection of stream water quality related to 
these constituent groups. For example, restoring NRDeep wetlands 
would produce less colour and DOC, if these were of concern, than 
the same increase in Riparian wetlands, since NRDeep has the smaller 
mean slope (Fig. 3). Targeting could be aided by maps showing the 
distribution of individual wetland classes (Supplementary Fig. 2), num-
ber of classes present (Supplementary Fig. 3) and dominant wetland 

Table 2 | Geospatial and modelling analysis results by wetland hydrologic connectivity class and CONUS.

Wetland statisticsa

Wetland hydrologic connectivity classb

Riparian NRShw NRMid NRDeep Unclassified CONUS

Total wetlands (number)c 2,679,963 621,659 1,646,321 1,702,633 12,417 6,662,993

Total wetland area (km2) 294,410 35,767 43,399 38,992 644 413,211

Mean area per wetland (km2)c 0.11 0.06 0.03 0.02 0.05 0.06

Wetlands (%)d 3.84 0.47 0.57 0.51 0.01 5.39

Biogeochemical responsese

Wetland hydrologic connectivity classb

Connectivity trendf Riparian NRShw NRMid NRDeep

Acidificationg ▲ ▲ △ △ ▼

Brownificationh ▲ ▲ ▲ ▲ ▲

Eutrophicationi ►◄ ►◄ ►◄ ►◄ ►◄

Sedimentationj ►◄ ▽ ►◄ ►◄ ►◄
aWetland statistics based on analysis of 2011 NLCD wetland data (Methods). bRiparian wetlands (highest connectivity); NRShw (moderate–high connectivity); NRMid (moderate–low 
connectivity); NRDeep (lowest connectivity); CONUS, wetlands aggregated over the entire CONUS. cWetland number is limited based on the 30 m pixel size of the NLCD used for detecting 
wetlands. This was not sufficient for detecting small wetlands, such as vernal pools. It also creates a bias in our values of total wetlands, which will be too small, and mean area per wetland, 
which will be too large. dWetland classes as a per cent of total CONUS area. eSummary of overall biogeochemical responses from linear mixed effects modelling (for details on the modelling 
approach, see Methods and for specific results, see Supplementary Table 3). Symbols: ▲,▼ >50% of the constituents within the functional group have a positive or negative median 
relationship with the wetland class, respectively. △,▽ >0–50% of the constituents within the functional group have a positive or negative median relationship with the wetland class, 
respectively. ►◄ None of the constituents within the functional group has a median relationship with the wetland class that is significantly different than zero. fThe trend of the standardized 
population mean regression slope as connectivity increases with wetland hydrologic connectivity class; Fig. 3. gAluminium; cond, calcium, magnesium, pH and ANC are basic constituents and 
have the opposite relationship to aluminium (Fig. 3). hDOC and colour. iNitrate. jTSS.
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class (Fig. 2b). For instance, in locations where wetlands are at risk and 
stream acidification is a threat, these maps could be used to identify 
NRDeep wetlands for protection or restoration, since NRDeep has a 
negative relationship with Al and a positive relationship with basic 
constituents29,30 (Fig. 3).

In contrast, watershed managers should spatially target restora-
tion or protection of wetlands, regardless of connectivity, to improve 
water quality related to NO3 removal8 or filtration of TSS or turb. To 
maximize these functions, our analysis of combined wetlands (Supple-
mentary Table 4) suggests that areas of restored or protected wetlands 
of any class should be maximized. In all such cases, both positive and 
negative effects of increasing a constituent need to be balanced, for 
example, increasing DOC concentrations may elevate methylmercury 
or drinking water disinfectant byproducts.

This national wetland connectivity classification system pro-
vides researchers and resource managers insight on a primary 
mechanism by which wetlands affect downstream water quality: 
wetland-to-stream hydrologic connectivity. The system affords 
improved methods for spatially targeting wetland restoration 
and protection. Our finding that 8 of 11 individual constituents 
responded to differences in connectivity supports incorporating 
wetland connectivity into watershed management decisions for 
constituents or constituent groups not yet researched. Our results 
also underscore that losing the ‘portfolio’—or full array—of wetland 
connectivity could cause negative impacts on downstream waters14. 
Creed et al. proposed maintaining this complete portfolio of wetland 

connectivity as an approach for watershed management12. Our clas-
sification could also prove useful in determining whether particular 
wetlands are considered waters of the United States under the US 
Clean Water Act16; this will depend on the standards for identifying 
waters of the United States established by regulation (86 FR 69372) 
or the US Supreme Court.

Limitations and future developments
Our classification is a discrete characterization of continuous patterns 
and so is an approximation. For example, the Central Florida Everglades 
consists of a ridge–slough mosaic that might be considered riparian, 
but the National Hydrography Dataset Plus Version 2 (NHDPlusV2) 
indicated a few rivers. Consequently, the region was classified mostly 
as NRShw, indicative of the area’s shallow water table.

Our modelling approach demonstrates correlative relationships, 
a foundation of most statistical models. We supported our findings 
using (1) independent variables representing underlying hydrological 
processes driving wetland connectivity to streams and (2) foundational 
literature corroborating potential physically based explanations that 
underly our models’ statistical relationships. We further underscore 
that we have made associations between wetland connectivity and 
water quality across the entire CONUS.

Several developments would improve this approach. (1) Because 
our results are based on empirical models and correlation, our findings 
need to be validated with process-based approaches that can support 
causal mechanisms linking wetland connectivity to downstream water 
quality. Field studies are especially needed to investigate NRMid and 
NRShw wetlands, their effects on water quality, alternative geospatial 
indicators and whether these wetlands represent separate classes. (2) 
Distance or travel times between wetlands and downstream waters 
could be incorporated into the approach, although this would increase 
the complexity of the analysis and might not lead to a meaningful 
improvement. However, it might also serve as a metric of sensitivity 
to climate change as residence times and/or infrastructure can change 
with drought and floods. (3) Hydrologic alterations, such as canals, tile 
drains and drainage ditches, can affect wetland connectivity, so our 
method could include new information on these factors as it becomes 
available, for example, agricultural tile drainage data31. (4) Our clas-
sification system could incorporate smaller wetlands (<900 m2) by 
using higher-resolution datasets, such as Lidar-based depressional 
analyses32. In fact, the classification system could be applied to indi-
vidual wetlands of any size by evaluating whether they adjoin a stream 
and the flowpath soil properties using field methods. The classification 
system is flexible and could be applied at multiple scales using various 
data sources. However, smaller wetlands, which are important bio-
geochemical reactors10, will not be captured at coarser scales, thereby 
influencing observed wetland–water quality relations. (5) Our clas-
sification approach could be expanded using international datasets, 
for example, WorldCover land cover data (https://esa-worldcover.
org/en) and SoilGrids Global Soil Data (https://www.isric.org/explore/
soilgrids, which includes soil properties that are empirically related  
to Ksat). We are not aware of global-scale soil drainage class maps, but it 
is available at specific locations, for example, Africa SoilGrids drainage 
classes (https://data.isric.org/geonetwork/srv/api/records/953d0964-
6746-489a-a8d1-f188595516a9). Our existing classification system 
could be implemented at international locations having complete 
data, or NRShw and NRMid could be combined where drainage class 
data are unavailable.

Our national-scale wetland connectivity classification system 
provides a critical link to improving water quality beyond individual 
wetland restoration alone. Elucidating the ‘black box’ between wet-
lands and water quality responses provides improved information for 
watershed-scale water quality management. Through our analysis, we 
demonstrated strong relationships between our wetland connectiv-
ity classes and most stream water quality constituents. Until now, no 

Wetlands (%)

a

0

>0–5

>5–25

>25–50

Riparian (71%)

Dominant class

NRShw (9%) NRMid (10.5%) NRDeep (9.5%)

>50–100

b

Fig. 2 | Wetland characteristics of stream catchments across the CONUS.  
a, Wetlands as a per cent of total land cover within the NHDPlusV2 catchment.  
b, Dominant wetland hydrologic connectivity class within NHDPlusV2 
catchments (parenthetical values in key indicate per cent of catchments across 
the CONUS dominated by that particular connectivity class).
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standardized approach existed to characterize hydrologic connectivity 
between wetlands and downstream waters at the CONUS scale. Con-
sequently, determining regional and nationwide effects of wetland 
connectivity on endpoints such as water quality was impossible. Our 
systematic approach to quantifying the distribution of the wetland 
connectivity classes across the CONUS using hydrologic principles 
and geospatial analyses provides important insights on how wetlands 
affect stream water quality at the CONUS scale. The flexibility of the 
classification approach in handling diverse data can make it useful at 
different scales and across the globe.

Methods
Wetland dataset
Wetlands and streams. We used the publicly available, 2011 National 
Land Cover Dataset (NLCD)33 and NHDPlusV2 (ref. 34) to create the 
hydrologic framework of wetlands and downstream waters. We used 
NLCD, rather than the National Wetlands Inventory (https://www.fws.
gov/wetlands/), because it has a more consistent methodology than 
the National Wetlands Inventory across the United States and controls 
better for individual year and density, which affect our assessment. A 
disadvantage of NLCD is that the 900 m2 pixel was not sufficient for 
detecting small wetlands, which are important for water quality10,12,14. 
While small wetlands are numerous and can be regionally important, 
NLCD is appropriate for a CONUS-scale analysis. Our use of NLCD from 

a single year means that we cannot indicate change from wetlands to 
other land covers or vice versa; we can only examine extant wetland 
area. Wetlands, both inland and coastal, were identified using the 
woody (class 90) and emergent herbaceous (class 95) NLCD classes 
combined. However, class 90 versus class 95 were not separately incor-
porated into the resulting classification. Sets of adjoining wetland 
pixels that were completely surrounded by non-wetland pixels were 
grouped into contiguous wetland patches within the landscape and 
assigned a wetland identification number (WetId).

We used NHDPlusV2 as the hydrologic framework upon which 
we characterized wetland connectivity. NHDPlusV2 is a value-added 
version of the National Hydrography Dataset (NHD). The NHD depicts 
the stream network of the CONUS using 1:100,000 scale blue lines (for 
example, rivers and streams) of US Geological Survey topographic 
quadrangle maps. To make the NHDPlusV2, these blue lines were linked 
to 30 m digital elevation models and major river basin boundaries to 
derive local catchment boundaries for each stream segment, that 
is, the local area draining to a stream segment excluding upstream 
contributions. This process created 2.6 million catchments that are 
each tied to a respective stream segment. Just as the NLCD omits small 
wetlands, the 1:100,000 scale NHDPlusV2 excludes small streams. As 
a result, it underestimates total stream length and, in combination 
with the omission of small wetlands, reduces the number of observed 
wetland–stream connections35.
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Fig. 3 | Relationships between four groups of stream constituents and 
wetland hydrologic connectivity based on standardized population 
mean regression slopes from linear mixed effects models. a–d, Mean slope 
represents the standardized relationship between the constituent and wetland 
connectivity class averaged across all regions. A filled (dark) circle indicates that 
the regression slope is significantly different than zero, that is, the regression 
slope plus or minus the confidence interval (two times the standard error of the 
slope estimate) does not overlap with zero; points represented by an open (light) 

circle are not significantly different than zero (Supplementary Table 3). Wetland 
connectivity for the four classes is NRDeep < NRMid < NRShw < Riparian. For 
details on the modelling approach, see Methods. Dashed line represents zero 
intercept. Acidification (a): cond (n = 1,764), Ca (n = 1,787), Mg (n = 1,787), Al 
(n = 1,180), pH (n = 1,764) and ANC (n = 1,788). Brownification (b): DOC (n = 1,788) 
and colour (n = 1,786). Eutrophication (c): NO3 (n = 1,338). Sedimentation (d): 
turb (n = 1,764) and TSS (n = 1,694).
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Contiguous wetland patches identified in the earlier step were 
subdivided when their areas crossed NHDPlusV2 hydrologic catchment 
boundaries. Subdividing wetlands among NHDPlusV2 catchments 
created hydrologically distinct wetlands from contiguous patches 
and a wetland framework that worked within the existing hydrologic 
framework of streams and local catchments of the NHDPlusV2. The 
subdivision of contiguous wetlands among hydrologic boundaries 
produced about 6.7 million unique wetland units (Table 2). This nested 
framework allowed us to calculate wetland-specific characteristics and 
to hydrologically aggregate these wetland characteristics to the 2.6 
million receiving stream segments and their associated watersheds 
of the NHDPlusV2.

Characterizing the connectivity of wetland units to receiving 
waters required a geospatial representation of streams. We identified 
receiving waters with a combination of NLCD water pixels and a raster 
representation of stream lines extracted from the NHDPlusV2. The 
combination of these datasets (hereafter buffered streams) provided 
width for rivers that were large enough to be detected with Landsat 
imagery. For streams and rivers too narrow to be detected with Landsat 
imagery, a raster version of the NHDPlusV2 stream lines provided an 
estimate of stream locations. Note that while most of the NLCD water 
pixels represented rivers or streams, they could also represent lakes 
or estuaries.

Geospatial processing was performed with scripts in the Python 
programming language36, using the NumPy module37 and ESRI Arc-
GIS38 tools. Other processing steps were done in the R programming 
language39.

Flowpaths. Flowpaths from wetland outlets (pour points) to streams 
were necessary to conduct the connectivity classification. A second-
ary product of the NHDPlusV2 is a set of hydrologically corrected 
digital elevation models and rasters depicting flow (both direction and 
accumulation) across landscapes at a 30 m resolution34. We used these 
hydrologic rasters to define flowpaths connecting streams and wet-
lands. Within each wetland, we first defined the wetland outlet as the 
pixel with the highest flow accumulation value. We then used the ArcGIS 
Cost Path tool38 to delineate flowpaths from wetland outlets to the edge 
of receiving streams; we assumed that these surficial flowpaths also rep-
resented subsurface flowpaths. In some cases, NHDPlusV2 catchments 
do not contain a stream segment. In these catchments, wetland flow-
paths extended into downstream catchments until they encountered 
a stream segment. Flowpaths that passed through multiple wetlands 
were topologically connected on the basis of hydrologic rasters that 
depict the pixel-to-pixel flow directions across land surfaces40.

Wetland hydrologic connectivity classification
Several methods have been used to quantify wetland connectivity, at 
wetland to watershed scales (Table 2 in the US Environmental Protec-
tion Agency (EPA) ref. 16). Yet approaches for characterizing connectiv-
ity at large, national scales do not exist. Our classification system was 
inspired by the conceptual model of Cohen et al.14 Like all classification 
systems, ours prioritizes certain attributes over others. Specifically, we 
emphasize landscape attributes that (1) identify a gradient of high to 
low hydrologic connectivity on the basis of hydrologic principles, (2) 
qualitatively indicate how quickly water travels through unit flowpaths 
(our approach does not account for travel times between wetlands and 
downstream waters), and (3) are available as CONUS-wide datasets. 
Thus, factors that would be critical to travel time, such as slope and 
distance, were not included in our classification. Further, we define 
connectivity structurally13, rather than functionally, which represents 
hydrologic connectivity given sufficient surface water and/or ground-
water availability. This removes the necessity for dynamic attributes 
such as climate-based indicators.

Given the above, we emphasized datasets that are used to deter-
mine whether a wetland directly adjoins a stream and, if not, the 

soil-based attributes that influence the flowpaths that water takes 
from the wetland to the downstream water. If a wetland outlet (pour 
point) was positioned within one 30 m pixel (ordinal and cardinal 
directions) from a buffered stream, it was classified as riparian (Fig. 1). 
In contrast, a non-riparian wetland had an outlet more than one 30 m 
pixel from a buffered stream.

Non-riparian wetlands were further distinguished on the basis 
of the soil characteristics of their flowpaths, specifically Ksat and soil 
drainage class, which were both based on STATSGO2 data (https://www.
nrcs.usda.gov/resources/data-and-reports/description-of-statsgo2-
database). For that effort, we used a Ksat cut-off value of 5.08 cm h−1 to 
distinguish between permeable and impermeable soils, that is, the 
threshold between very fine sandy loams and sandy loams (C. Johnson, 
USDA-NRCS Soil Survey, personal communication). In cases where 
more than one Ksat value occurred over the flowpath, the minimum 
value was used, with the assumption that the smaller value would be 
limiting to hydrologic flow (that is, lead to longer travel times). We 
defined poorly drained soils as consisting of somewhat poorly drained, 
poorly drained and very poorly drained NRCS classifications, and well-
drained soils consisted of excessively drained, somewhat excessively 
drained, well drained and moderately well drained, NRCS classes41. If 
more than one drainage class value occurred over the length of the 
flowpath, the drainage class that occurred over the greatest length 
of the path was used. Our assumption was that drainage class was not 
limiting like Ksat, because the latter was used to distinguish between 
surface and subsurface flows, while the former was used to represent 
differences between subsurface flows and so should be based on the 
most common occurrence.

NRShw have permeable (Ksat > 5.08 cm h−1) and poorly drained soils 
on the flowpath between the wetland and downstream water. Owing 
to poor drainage, subsurface flows are shallow and surface flows can 
occur relatively frequently through saturation excess overland flow17. 
NRMid have permeable (Ksat > 5.08 cm h−1) and well-drained soils on 
the flowpath between the wetland and downstream water. Owing to 
good drainage, subsurface flows are deeper (mid-depth), but surface 
flows can occur occasionally through infiltration excess overland 
flow17. NRDeep have impermeable soils (Ksat < 5.08 cm h−1) on the flow-
path between the wetland and downstream water. Non-channelized 
surface flows can occur when the wetland basin is filled with water and 
additional water inputs cause the wetland to either spill over or merge 
into downstream waters17,18, but this is limited to rare and episodic 
flooding events. Instead, water transport is more commonly via deep 
subsurface flowpaths from the bottom of the wetland to downstream 
waters. Our four classes are similar to the ideas presented in the Cohen 
et al.14 conceptual model, but they add additional information. Further, 
these four classes logically resulted from the application of the riparian, 
Ksat and drainage data.

Since our classification of connectivity is structural, it was not pos-
sible to validate it by comparing our results with those from a functional 
approach such as Vanderhoof and colleagues, who examined changes 
in surface water connectivity as a function of climate variation42. To 
validate our approach, we conducted a qualitative validation assess-
ment in six case study regions (Supplementary Fig. 1): California vernal 
pools, Louisiana bottomland hardwoods and swamps, playa lakes, 
pocosins and Carolina bays, prairie potholes and Southern Florida 
(although each region, except Southern Florida, is named for iconic 
wetlands, other wetlands occur within the regions and were incor-
porated into the analysis). Wetland area within these regions ranged 
from 621 km2 for the playa lakes region to 42,169 km2 for the pocosins 
and Carolina bays region (Supplementary Table 1). For each of these 
regions, we assembled the following information (Supplementary 
Information): (1) Background on each wetland type (for example, 
prairie potholes), including climatic, geologic and/or topographic 
controls. (2) The expected magnitude of the four wetland classes in 
each region. Expected magnitude was a categorical assessment (high, 
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medium or low) of the relative area of wetlands on the basis of a quali-
tative evaluation of the factors affecting wetland connectivity in each 
region. We determined this magnitude on the basis of a combination 
of the literature, first principals, our own familiarity with these regions 
and, in the case of the playa lakes region, in consultation with a regional 
expert. (3) Evaluation of the expected magnitude values compared with 
the actual areal distributions of the four connectivity classes resulting 
from our analysis. For this evaluation, we considered the low, medium 
and high categories to comprise 0–10%, 11–50% and 51–100% wetland 
area, respectively.

Supplementary Figs. 4–9 show the wetland hydrologic connectiv-
ity classes in six different regional wetland landscapes. These figures 
illustrate several elements of the wetland dataset, including the con-
nectivity classes, the NHDPlusV2 streams and NLCD water that combine 
to make the buffered streams, and the flowpaths between wetlands and 
downstream waters. A CONUS-wide dataset containing this informa-
tion is available. For each of 59 hydrologic subregions of the CONUS, 
the dataset consists of three components: (1) A raster that contains 
NHDPlusV2 streams, NLCD water pixels and the flowpaths that connect 
wetlands and downstream waters. (2) A wetland raster that contains 
the WetId of each wetland, where each WetId corresponds to a single 
stand-alone wetland pixel or a group of adjoining wetland pixels. Note 
that WetIds are not globally unique, but are unique within each of the 59 
subunits of NHDPlusV2 Hydrologic Regions (that is, raster processing 
units). Within these raster processing units, each WetId contains only 
a single pour point. (3) A table of wetland characteristics indexed by 
WetId, including wetland area, and wetland hydrologic connectivity 
class. These three components of the wetland dataset and details on 
their use are available by NHDPlusV2 Hydrologic Region at https://doi.
org/10.23719/1528587 ref. 43.

Empirical assessment
To explore the role of wetland connectivity on downstream water 
quality, we tested hypotheses that structural characteristics of wet-
land connectivity influence downstream biogeochemistry (Table 1).  
Riparian wetlands have a high degree of connectivity and convey 
water to downstream waters quickly, with minor processing relative 
to other wetland connectivity types27. Non-riparian wetlands have a 
lower degree of connectivity, convey water into surface waters via 
subsurface flowpaths more slowly and the water is altered during 
the longer residence times in the geologic deposits it traverses along 
the way19. We hypothesized Riparian connections would be brief and 
frequent, passing primarily through organic-rich surface soils, with 
less potential for adsorption–desorption processes or weathering in 
mineral soil. This could result in relatively high concentrations of DOC 
and low concentrations of base cations. In contrast, we hypothesized 
NRDeep connections would pass slowly through deeper mineral soil 
and bedrock, with more potential for weathering release of base cations 
along the flowpath. NRShw and NRMid should fall between Riparian 
and NRDeep. We tested these hypotheses of coupled hydrologic con-
nectivity–biogeochemical behaviours against measured stream water 
quality data (‘Wetland connectivity and stream water quality’).

We focused on 11 water quality constituents that are known to 
affect stream ecosystem functions and associated services44 and are 
often sampled in stream assessments (Supplementary Table 2). These 
constituents were taken from distinct samples once during summer 
low flows at 1,788 sites as part of the US EPA’s 2008/09 National Rivers 
and Streams Assessment (NRSA). NRSA is a national survey that uses 
a spatially balanced, probabilistic sampling design45,46 and represents 
a spatially extensive set of synoptic water quality samples across the 
CONUS. The strength of the NRSA water quality data are in their spa-
tial extent across the CONUS. The samples are taken during summer 
to capture water quality constituent concentrations under baseflow 
conditions. Since the samples are meant to represent spatial variability, 
only one sample is taken at each site (except 10% of sites were revisited 

for quality assurance purposes45), rendering before and after data 
unavailable—publicly or otherwise—across sites. Concomitant national 
data on soil solution chemistry are also not available.

These 11 constituents were placed in one of four functional groups 
reflecting processes known to affect stream ecosystem productivity, 
food web energy transfer and biodiversity44: (1) acidification: cond, 
Ca, Mg, Al, pH and ANC; (b) brownification47,48: DOC and colour; (c) 
eutrophication: NO3 and (d) sedimentation: turb and TSS. To inves-
tigate the effects of wetland connectivity on these constituents, we 
used linear mixed effects models to determine the influence of the four 
wetland connectivity classes on the 11 stream water quality constituents 
(Supplementary Table 2). We then examined the standardized popula-
tion mean regression slopes (hereafter mean slopes) that represent 
the standardized relationship between the constituent and wetland 
connectivity type averaged across CONUS regions (Supplementary 
Table 3). We chose linear models to test the importance of wetland 
connectivity on water quality because (1) the test for the connectivity 
main effect on water quality is equivalent to the one-way analysis of 
covariance when each watershed is composed of a single connectivity 
class, (2) residual analysis did not indicate the assumption of a linear 
response was violated; and (3) generalized additive models do not allow 
for random slopes and also would have complicated the comparison of 
effect sizes among wetland classes and constituent types.

In each model, we included watershed-level summaries of the four 
wetland connectivity classes as predictors of in-stream water quality 
to assess the effect of wetland connectivity on downstream waters. 
Wetland connectivity classes were quantified within watersheds as 
the per cent of watershed area composed of each class. Thus, each 
wetland connectivity class was summarized as a continuous measure-
ment (0–100%). Critically, the percentages of the four connectivity 
classes included the entire watershed area and would not sum to 100% 
on their own unless a watershed was comprised entirely of wetlands, 
which never occurred. Quantifying the wetland connectivity classes as 
percentages of the watershed allowed us to include all four classes as 
predictors for each water sample in all models and to test the impor-
tance of wetland connectivity on downstream water quality. The omis-
sion of small wetlands from the NLCD dataset would only be expected 
to impact model results in areas where these small wetlands make up 
a substantial proportion of total wetland area.

In the simple case where each watershed is composed of a single 
connectivity class, the basic linear model is equivalent to the analysis of 
variance (ANOVA) model with connectivity class as a qualitative factor 
having four levels. The F-test for the connectivity main effect is used to 
test whether the water quality is different between the four connectiv-
ity classes. As an extension of the ANOVA model to the situation where 
each watershed is composed of one or more connectivity classes, the 
0–1 indicator variables for each connectivity class are replaced by the 
per cent of watershed area composed of each class. We further extend 
the basic model by selecting as covariates a unique set of additional 
predictor variables (Supplementary Table 2), on the basis of previous 
work49 or our professional expertize for each constituent of interest; 
this was done to minimize the chance of excluded variable bias in 
our models. The alternate models always included the four wetland 
connectivity class variables to test the connectivity main effect on 
water quality, analogous to a one-way ANOVA with covariates. These 
additional variables included one in-stream measurement of median 
sediment substrate size collected at the time of NRSA sampling as well 
as several watershed landscape variables from the StreamCat dataset50. 
Note that there was no covariate on wetland quality, due to the lack of 
such a national dataset. Although this could also affect water quality, 
we felt that this was not a major issue since the covariates in the model 
included factors that would affect wetland quality (Supplementary 
Table 2); for example, mean imperviousness of anthropogenic surfaces, 
point source N and per cent of watershed area classified as crop and 
hay land use. Further, this was a national-scale analysis with almost  
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7 million wetlands, and such issues should balance out at that scale and 
sampling magnitude.

All response variables were natural log transformed, except for pH 
which was raised to the power of four, to meet assumptions of normality 
of residual errors. Selected covariates (Supplementary Table 2) were 
also natural log transformed to achieve normality. Plots of residual 
errors versus fitted values identified diagonal stripes in TSS, Al and 
NO3, indicating inflation due to zeros or detection limits (censored 
values). Although techniques exist to model censored or zero-inflated 
data, we chose to remove these observations for simplicity and to use 
the same statistical methods across all constituent types. We visually 
confirmed that removal of these sites did not substantially alter or bias 
the distribution of samples across the United States. Doing so resulted 
in 1,694, 1,180 and 1,338 out of 1,788 possible observations to model 
TSS, Al and NO3, respectively. The remaining models were constructed 
with 1,764–1,788 samples depending on the number of valid measure-
ments achieved for each constituent and available watershed metrics 
for sampled sites (Supplementary Table 3). In addition to transforma-
tions, response and predictor variables were standardized to have a 
mean of zero and standard deviation (s.d.) of one. Standardizing both 
response and predictor variables allowed for comparison of regres-
sion slopes across models and was necessary because the ranges of 
both response and predictor variables varied by several orders of 
magnitude (that is, pH had a range of one order of magnitude while at 
the opposite extreme, turb had a range of seven orders of magnitude). 
Standardized slopes of this form can be interpreted as the proportional 
change in the s.d. of the response variable for a one s.d. change in the 
predictor variable. For example, a regression parameter of 0.5 means 
that the response variable changed by one-half s.d. in response to a 
one s.d. change in the associated predictor variable. Finally, multicol-
linearity among predictors was tested at the time of modelling with 
variable inflation factors51. In all cases, variable inflation factors were 
below two, including those for wetlands, indicating low correlations 
among predictors.

Across large, physically complex regions, such as the CONUS, 
geophysical settings and processes that control relationships between 
landscapes and downstream waters can vary substantially. This geo-
physical variability is often reflected statistically as non-independence 
of sites within regions and as cross-regional variability in relation-
ships between response and predictor variables (that is, slopes). In 
such cases, standard linear regression models may not be sufficient 
to characterize these complex relationships and mixed effects models 
are needed. Mixed effects modelling can account for variation in the 
response–predictor variable relationships by fitting random intercepts 
and slopes with respect to a grouping variable, such as eco-region 
or physiographic region52. This approach allows model parameters 
(intercepts, slopes or both) for certain factors to vary stochastically by 
region and come from some assumed distribution (that is, Gaussian) 
if needed. If a predictor variable has a consistent relationship with the 
response variable across regions, it can be modelled as a fixed effect 
without a random effect. A model that uses both fixed and random 
effects is called a mixed effects model. As a grouping variable, we tested 
the nine ecoregions of the US EPA National Aquatic Resource Surveys45 
and 24 US Geological Survey Physiographic Divisions and Provinces 
(https://water.usgs.gov/GIS/metadata/usgswrd/XML/physio.xml). 
When assessed with Akaike’s Information Criterion53, Physiographic 
Provinces were the best grouping variable in all models, except for 
NO3 which was best modelled with the nine National Aquatic Resource 
Surveys ecoregions.

To develop the models, we began by fitting the most complex 
model possible that included both fixed and random coefficients for 
each covariate and the intercept with respect to the grouping variable 
(R package::function lme4::lmer54). We then conducted backward 
selection on the random effects followed by the fixed effects, while 
forcing the model to retain the fixed effects of the four wetland classes 

(R package::function lmerTest::step55). Forcing the model to retain fixed 
effects allowed us to extract parameter estimates for plotting even 
when they were not significantly different from zero. This process uses 
a likelihood ratio test to remove fixed and random effects with mean 
and/or variance, respectively, not significantly different from zero 
at the 0.05 level of significance56. The most parsimonious model was 
chosen by backwards hierarchical elimination of non-significant terms. 
Unlike model selection for choosing the set of predictor variables, 
a backward–forward model selection process is not recommended 
for the inclusion or exclusion of a random slope term to achieve a 
more parsimonious model. Indeed, Kuznetsova et al.55 suggest that 
backwards selection of mixed effects models, as used here, avoids 
the risk of applying a model that is too simple and that could produce 
excluded variable bias. We then extracted the standardized parameter 
estimates and standard errors for plotting and model interpretation 
(Fig. 3). When a fixed effect also has a random component in a mixed 
effects model, the slope of the fixed effect is the population mean 
of random slopes across the grouping variable. In some models, the 
selection procedure determined that random components of wetland 
measures were not needed. In those cases, the parameters of the fixed 
effects alone were extracted and used. All analyses were conducted in 
the R statistical language39.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets are available at the US EPA’s ScienceHub website https://
doi.org/10.23719/1528587 ref. 43.

Code availability
All analysis code and processing steps are available in the GitHub repos-
itory https://github.com/USEPA/WetlandConnectivity/tree/v1.0 ref. 57.

References
1.	 Ghermandi, A., van den Bergh, J. C. J. M., Brander, L. M., de Groot, 

H. L. F. & Nunes, P. A. L. D. Values of natural and human-made 
wetlands: a meta-analysis. Water Resour. Res. 46, W12516 (2010).

2.	 Evenson, G. R., Golden, H. E., Lane, C. R., McLaughlin, D. L. & 
D’Amico, E. Depressional wetlands affect watershed hydrological, 
biogeochemical, and ecological functions. Ecol. Appl. 28, 
953–966 (2018).

3.	 Lane, C. R., Leibowitz, S. G., Autrey, B. C., LeDuc, S. D. & Alexander, 
L. C. Hydrological, physical, and chemical functions and 
connectivity of non‐floodplain wetlands to downstream waters: a 
review. J. Am. Water Resour. Assoc. 54, 346–371 (2018).

4.	 Bousquin, J. & Hychka, K. A geospatial assessment of flood 
vulnerability reduction by freshwater wetlands—a benefit 
indicators approach. Front. Environ. Sci. 7, 54 (2019).

5.	 Comer, P. et al. Biodiversity values of geographically isolated 
wetlands in the United States NatureServe; https://www.
natureserve.org/sites/default/files/biodiversity_values_of_giw_in_
the_us.pdf (2005).

6.	 Mushet, D. M. et al. Differing modes of biotic connectivity within 
freshwater ecosystem mosaics. J. Am. Water Resour. Assoc. 55, 
307–317 (2019).

7.	 Bauder, E. T. The effects of an unpredictable precipitation regime 
on vernal pool hydrology. Freshw. Biol. 50, 2129–2135 (2005).

8.	 Cheng, F. Y., Van Meter, K. J., Byrnes, D. K. & Basu, N. B. Maximizing 
US nitrate removal through wetland protection and restoration. 
Nature 588, 625–630 (2020).

9.	 Fritz, K. M. et al. Physical and chemical connectivity of streams 
and riparian wetlands to downstream waters: a synthesis. J. Am. 
Water Resour. Assoc. 54, 323–345 (2018).

http://www.nature.com/natwater
https://water.usgs.gov/GIS/metadata/usgswrd/XML/physio.xml
https://doi.org/10.23719/1528587
https://doi.org/10.23719/1528587
https://github.com/USEPA/WetlandConnectivity/tree/v1.0
https://www.natureserve.org/sites/default/files/biodiversity_values_of_giw_in_the_us.pdf
https://www.natureserve.org/sites/default/files/biodiversity_values_of_giw_in_the_us.pdf
https://www.natureserve.org/sites/default/files/biodiversity_values_of_giw_in_the_us.pdf


Nature Water | Volume 1 | April 2023 | 370–380 379

Article https://doi.org/10.1038/s44221-023-00057-w

10.	 Marton, J. M. et al. Geographically isolated wetlands are 
important biogeochemical reactors on the landscape. Bioscience 
65, 408–418 (2015).

11.	 Lane, C. R. et al. Vulnerable waters are essential to watershed 
resilience. Ecosystems 26, 1–28 (2023).

12.	 Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. 
Geosci. 10, 809–815 (2017).

13.	 Leibowitz, S. G. et al. Connectivity of streams and wetlands to 
downstream waters: an integrated systems framework. J. Am. 
Water Resour. Assoc. 54, 298–322 (2018).

14.	 Cohen, M. J. et al. Do geographically isolated wetlands influence 
landscape functions? Proc. Natl Acad. Sci. USA 113, 1978–1986 
(2016).

15.	 Rains, M. C. et al. Geographically isolated wetlands are  
part of the hydrological landscape. Hydrol. Process. 30,  
153–160 (2016).

16.	 Connectivity of Streams and Wetlands to Downstream Waters: A 
Review and Synthesis of the Scientific Evidence (Office of Research 
and Development, US Environmental Protection Agency, 2015).

17.	 McDonnell, J. J. Are all runoff processes the same? Hydrol. 
Process. 27, 4103–4111 (2013).

18.	 Leibowitz, S. G., Mushet, D. M. & Newton, W. E. Intermittent 
surface water connectivity: fill and spill vs. fill and merge 
dynamics. Wetlands 36, S323–S342 (2016).

19.	 Maher, K. The dependence of chemical weathering rates on fluid 
residence time. Earth Planet. Sci. Lett. 294, 101–110 (2010).

20.	 Bache, B. W. Aluminium mobilization in soils and waters. J. Geol. 
Soc. London 143, 699–706 (1986).

21.	 Likens, G. E., Bormann, F. H., Johnson, N. M. & Pierce, R. S. The 
calcium, magnesium, potassium, and sodium budgets for a small 
forested ecosystem. Ecology 48, 772–785 (1967).

22.	 Scanlon, T. M., Riscassi, A. L. & Galloway, J. N. Observed changes 
in chronic and episodic acidification in Virginia mountain streams 
in response to the Clean Air Act and amendments. Atmos. 
Environ. 252, 118279 (2021).

23.	 Wolock, D. M., Fan, J. & Lawrence, G. B. Effects of basin size 
on low-flow stream chemistry and subsurface contact time in 
the Neversink River watershed, New York. Hydrol. Process. 11, 
1273–1286 (1997).

24.	 Jardine, P. M., McCarthy, J. F. & Weber, N. L. Mechanisms of 
dissolved organic carbon adsorption on soil. Soil Sci. Soc. Am. J. 
53, 1378–1385 (1989).

25.	 Creed, I. F. et al. The river as a chemostat: fresh perspectives on 
dissolved organic matter flowing down the river continuum. Can. 
J. Fish. Aquat.Sci. 72, 1272–1285 (2015).

26.	 Knox, A. K., Dahgren, R. A., Tate, K. W. & Atwill, E. R. Efficacy 
of natural wetlands to retain nutrient, sediment and microbial 
pollutants. J. Environ. Qual. 37, 1837–1846 (2008).

27.	 Boyer, E. W., Hornberger, G. M., Bencala, K. E. & McKnight, D. M. 
Response characteristics of DOC flushing in an alpine catchment. 
Hydrol. Process. 11, 1635–1647 (1997).

28.	 Johnston, C. A., Detenbeck, N. E. & Niemi, G. J. The cumulative 
effect of wetlands on stream water quality and quantity. A 
landscape approach. Biogeochemistry 10, 105–141 (1990).

29.	 Kaushal, S. S. et al. Watershed ‘chemical cocktails’: forming 
novel elemental combinations in Anthropocene fresh waters. 
Biogeochemistry 141, 281–305 (2018).

30.	 Pound, K. L., Lawrence, G. B. & Passy, S. I. Wetlands serve as 
natural sources for improvement of stream ecosystem health 
in regions affected by acid deposition. Glob. Chang. Biol. 19, 
2720–2728 (2013).

31.	 Valayamkunnath, P., Barlage, M., Chen, F., Gochis, D. J.  
& Franz, K. J. Mapping of 30-meter resolution tile-drained 
croplands using a geospatial modeling approach. Sci. Data 7,  
257 (2020).

32.	 Wu, Q. & Lane, C. R. Delineating wetland catchments and 
modeling hydrologic connectivity using lidar data and aerial 
imagery. Hydrol. Earth Syst. Sci. 21, 3579–3595 (2017).

33.	 Homer, C. G. et al. Completion of the 2011 National Land Cover 
Database for the conterminous United States—representing a 
decade of land cover change information. Photogramm. Eng. 
Remote Sens. 81, 345–354 (2015).

34.	 McKay, L. et al. NHDPlus Version 2: user guide (US Environmental 
Protection Agency, 2012).

35.	 Vanderhoof, M. K., Distler, H. E., Lang, M. W. & Alexander, L. C. 
The influence of data characteristics on detecting wetland/
stream surface-water connections in the Delmarva Peninsula, 
Maryland and Delaware. Wetlands Ecol. Manag. 26, 63–86 
(2018).

36.	 Lutz, M. Programming Python (O’Reilly Media, 2013).
37.	 van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy Array: 

a structure for efficient numerical computation. Comput. Sci. Eng. 
13, 22–30 (2011).

38.	 ESRI. ArcGIS Desktop: release 10.4.1 (Environmental Systems 
Research Institute, 2016).

39.	 R Core Team. R: A Language and Environment for Statistical 
Computing (R Foundation for Statistical Computing, 2021).

40.	 Hill, R. A., Weber, M. H., Debbout, R. M., Leibowitz, S. G. & Olsen, 
A. R. The lake-catchment (lakecat) dataset: characterizing 
landscape features for lake basins within the conterminous USA. 
Freshw. Sci. 37, 208–221 (2018).

41.	 Ditzler, C., Scheffe, K. & Monger H. C. Soil Survey Manual 
(Government Printing Office, 2017).

42.	 Vanderhoof, M. K., Alexander, L. C. & Todd, M. J. Temporal and 
spatial patterns of wetland extent influence variability of surface 
water connectivity in the Prairie Pothole Region, United States. 
Landsc. Ecol. 31, 805–824 (2016).

43.	 Weber, M. WetlandConnectivity v1.0. US EPA, Office of Research 
and Development https://doi.org/10.23719/1528587 (2023).

44.	 Yeakley, J. A. et al. in River Science: Research and Management for 
the 21st Century (eds Gilvear, D. J., Greenwood, M. T., Thoms, M. C. 
& Wood, P. J.) 335–352 (John Wiley & Sons, 2016).

45.	 US EPA. National Rivers and Streams Assessment 2008–2009: A 
Collaborative Survey (US Environmental Protection Agency, Office 
of Water and Office of Research and Development, 2016).

46.	 US EPA. National Rivers and Streams Assessment 2008–2009 
Technical Report (US Environmental Protection Agency, Office of 
Wetlands, Oceans and Watersheds and Office of Research and 
Development, 2016).

47.	 Creed, I. F. et al. Global change-driven effects on dissolved 
organic matter composition: implications for food webs of 
northern lakes. Glob. Chang. Biol. 24, 3692–3714 (2018).

48.	 Solomon, C. T. et al. Ecosystem consequences of changing inputs 
of terrestrial dissolved organic matter to lakes: current knowledge 
and future challenges. Ecosystems 18, 376–389 (2015).

49.	 Bellmore, R. A. et al. Nitrogen inputs drive nitrogen 
concentrations in US streams and rivers during summer low flow 
conditions. Sci. Total Environ. 639, 1349–1359 (2018).

50.	 Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & 
Thornbrugh, D. J. The stream-catchment (streamcat) dataset: 
a database of watershed metrics for the conterminous United 
States. J. Am. Water Resour. Assoc. 52, 120–128 (2016).

51.	 Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data 
exploration to avoid common statistical problems. Methods Ecol. 
Evol. 1, 3–14 (2010).

52.	 Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. 
Mixed Effects Models and Extensions in Ecology with R. Vol. 574 
(Springer, 2009).

53.	 Akaike, H. in International Encyclopedia of Statistical Science  
(ed. Lovric, M.). 25–25 (Springer, 2011).

http://www.nature.com/natwater
https://doi.org/10.23719/1528587


Nature Water | Volume 1 | April 2023 | 370–380 380

Article https://doi.org/10.1038/s44221-023-00057-w

54.	 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-
effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

55.	 Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest 
package: tests in linear mixed effects models. J. Stat. Softw. 82, 
1–26 (2017).

56.	 Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS 
(Springer-Verlag, 2000).

57.	 Weber, M. & Hill, R. WetlandConnectivity. v1.0 US EPA https://
github.com/USEPA/WetlandConnectivity/tree/v1.0 (2023).

Acknowledgements
We greatly benefitted from the discussions at the ‘North American 
Analysis and Synthesis on the Connectivity of ‘Geographically Isolated 
Wetlands’ to Downstream Waters’ Working Group, supported by the 
John Wesley Powell Center for Analysis and Synthesis, funded by the 
US Geological Survey and EPA’s Office of Research and Development. 
We acknowledge D. Haukos for help on the playa lake case study. 
Thanks to A. Ameli and M. Dumelle for their input, D. Aldred for the 
graphics support, and L. Windham-Myers, R. Kwok, P. Meeks and 
three anonymous reviewers for the reviews. The research described 
in this article has been funded in part by the US EPA, partly by an 
appointment to the Internship/Research Participation Program at the 
Office of Research and Development, US EPA, administered by the 
Oak Ridge Institute for Science and Education through an interagency 
agreement between the US Department of Energy and US EPA (R.A.H. 
and C.E.J.); by the Canadian Natural Sciences and Engineering 
Research Council (NSERC) Discovery Grant 06579-2014 (I.F.C.); and 
by National Research Council grant number 83557701 (R.A.B.). The 
views expressed in this article are those of the authors and do not 
necessarily reflect the views or policies of the US EPA.

Author contributions
Project administration: S.G.L. Conceptualization: S.G.L., R.A.H., I.F.C., 
M.C.R., M.H.W., J.E.C., H.E.G. and C.R.L. Methodology: S.G.L., R.A.H., 
M.H.W., C.E.J.Jr, I.F.C., J.E.C., H.E.G., E.H.L. and J.R.C. Software: R.A.H. 
and M.H.W. Formal analysis: R.A.H., M.H.W. and C.E.J.Jr. Investigation: 
S.G.L., R.A.H., I.F.C., J.E.C., H.E.G., M.C.R. and E.H.L. Writing—original 
draft: S.G.L., R.A.H., I.F.C., J.E.C., H.E.G. and M.C.R. Writing—review and 

editing: S.G.L., R.A.H., I.F.C., J.E.C., H.E.G., M.H.W., M.C.R., C.E.J., E.H.L., 
J.R.C., R.A.B. and C.R.L. Data curation: R.A.H. and M.H.W.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s44221-023-00057-w.

Correspondence and requests for materials should be addressed to 
Scott G. Leibowitz.

Peer review information Nature Water thanks the anonymous 
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in 
the US; foreign copyright protection may apply 2023

http://www.nature.com/natwater
https://github.com/USEPA/WetlandConnectivity/tree/v1.0
https://github.com/USEPA/WetlandConnectivity/tree/v1.0
https://doi.org/10.1038/s44221-023-00057-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/




≤




	National hydrologic connectivity classification links wetlands with stream water quality

	Connectivity classification

	Distribution of connectivity classes

	Wetland connectivity and stream water quality

	Discussion and conclusions

	Limitations and future developments


	Methods

	Wetland dataset

	Wetlands and streams
	Flowpaths

	Wetland hydrologic connectivity classification

	Empirical assessment

	Reporting summary


	Acknowledgements

	Fig. 1 Wetland hydrologic connectivity classification.
	Fig. 2 Wetland characteristics of stream catchments across the CONUS.
	Fig. 3 Relationships between four groups of stream constituents and wetland hydrologic connectivity based on standardized population mean regression slopes from linear mixed effects models.
	Table 1 Expected connectivity and biogeochemical behaviours of four wetland hydrologic connectivity classes.
	Table 2 Geospatial and modelling analysis results by wetland hydrologic connectivity class and CONUS.




