Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO

Abstract

Distortion of the water cycle, particularly of its extremes (droughts and pluvials), will be among the most conspicuous consequences of climate change. Here we applied a novel approach with terrestrial water storage observations from the GRACE and GRACE-FO satellites to delineate and characterize 1,056 extreme events during 2002–2021. Dwarfing all other events was an ongoing pluvial that began in 2019 and engulfed central Africa. Total intensity of extreme events was strongly correlated with global mean temperature, more so than with the El Niño Southern Oscillation or other climate indicators, suggesting that continued warming of the planet will cause more frequent, more severe, longer and/or larger droughts and pluvials. In three regions, including a vast swath extending from southern Europe to south-western China, the ratio of wet to dry extreme events decreased substantially over the study period, while the opposite was true in two regions, including sub-Saharan Africa from 5° N to 20° N.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The most intense wet and dry events.
Fig. 2: Relationships between extreme events, ENSO and global surface temperature.
Fig. 3: Correlations between extreme event total intensity and global mean temperature by climate zone.
Fig. 4: Regional coherence of extreme event timing.

Similar content being viewed by others

Data availability

The GRACE/FO products (CSR GRACE/GRACE-FO RL06 Mascon Solutions, version 02) used in our analyses are available from the University of Texas CSR (https://www2.csr.utexas.edu/grace/RL06_mascons.html). The output from a global GRACE/FO data assimilating instance of the CLSM (GRACEDADM_CLSM025GL_7D 3.0) used to fill the 11 month gap between the GRACE and GRACE-FO missions and 18 additional missing months is available from the Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/GRACEDADM_CLSM025GL_7D_3.0/). The climate oscillation indicator data can be downloaded from the NOAA Physical Sciences Laboratory (https://psl.noaa.gov/data/climateindices/list/ and https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/). The global mean temperature data are available from the NASA Goddard Institute for Space Studies (https://data.giss.nasa.gov/gistemp/). Köppen-Geiger climate map data are available for download at http://koeppen-geiger.vu-wien.ac.at/present.htm. Key data66 including those used to create the four main text figures are available at https://doi.org/10.5281/zenodo.7599831.

Code availability

The Python code for the ST-DBSCAN clustering algorithm was obtained from the Github repository (https://github.com/gitAtila/ST-DBSCAN). Statistical analyses were performed and figures were generated using NCL software.

References

  1. Miyan, M. A. Droughts in Asian least developed countries: vulnerability and sustainability. Weather Clim. Extrem. 7, 8–23 (2015).

    Article  Google Scholar 

  2. Bishop, D. A., Williams, A. P. & Seager, R. Increased fall precipitation in the southeastern United States driven by higher-intensity, frontal precipitation. Geophys. Res. Lett. 46, 8300–8309 (2019).

    Article  Google Scholar 

  3. Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article  PubMed  Google Scholar 

  4. Du, H. et al. Precipitation from persistent extremes is increasing in most regions and globally. Geophys. Res. Lett. 46, 6041–6049 (2019).

    Article  Google Scholar 

  5. Martin, J. T. et al. Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl Acad. Sci. USA 117, 11328–11336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papalexiou, S. M. & Montanari, A. Global and regional increase of precipitation extremes under global warming. Water Resour. Res. 55, 4901–4914 (2019).

    Article  Google Scholar 

  7. Williams, A. P. et al. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 42, 6819–6828 (2015).

    Article  Google Scholar 

  8. Ye, H. & Fetzer, E. J. Asymmetrical shift toward longer dry spells associated with warming temperatures during russian summers. Geophys. Res. Lett. 46, 11455–11462 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zolotokrylin, A. N. & Cherenkova, E. A. Seasonal changes in precipitation extremes in Russia for the last several decades and their impact on vital activities of the human population. Geogr. Environ. Sustain. 10, 69–82 (2017).

    Article  Google Scholar 

  10. Impacts, risks, and adaptation in the United States: the Fourth National Climate Assessment, Volume II. US Global Change Research Program https://nca2018.globalchange.gov/ (2018).

  11. Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds. Masson-Delmotte, C. et al.) Ch. 8 (Cambridge Univ. Press, 2021).

  12. Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F. & Lettenmaier, D. P. Twentieth-century drought in the conterminous United States. J. Hydrometeorol. 6, 985–1001 (2005).

    Article  Google Scholar 

  13. Sheffield, J., Andreadis, K. M., Wood, E. F. & Lettenmaier, D. P. Global and continental drought in the second half of the twentieth century: severity-area-duration analysis and temporal variability of large-scale events. J. Clim. 22, 1962–1981 (2009).

    Article  Google Scholar 

  14. He, X., Pan, M., Wei, Z., Wood, E. F. & Sheffield, J. A global drought and flood catalogue from 1950 to 2016. Bull. Am. Meteorol. Soc. 101, E508–E535 (2020).

    Article  Google Scholar 

  15. Kato, H. et al. Sensitivity of land surface simulations to model physics, land characteristics, and forcings, at four CEOP sites. J. Meteorol. Soc. Japan 85A, 187–204 (2007).

    Article  Google Scholar 

  16. Xia, Y. et al. Comparison and assessment of three advanced land surface models in simulating terrestrial water storage components over the United States. J. Hydrometeorol. 18, 625–649 (2017).

    Article  Google Scholar 

  17. Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu, G. & Franzke, C. L. E. Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over Germany. Geophys. Res. Lett. 47, e2020GL08962 (2020).

    Article  Google Scholar 

  19. Cui, W., Dong, X., Xi, B. & Kennedy, A. Evaluation of reanalyzed precipitation variability and trends using the gridded gauge-based analysis over the CONUS. J. Hydrometeorol. 18, 2227–2248 (2017).

    Article  Google Scholar 

  20. Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).

    Article  Google Scholar 

  21. Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004).

    Article  Google Scholar 

  22. Landerer, F. W. et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 47, e2020GL088306 (2020).

    Article  Google Scholar 

  23. Andersen, O. B., Seneviratne, S. I., Hinderer, J. & Viterbo, P. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys. Res. Lett. 32, L18405 (2005).

    Article  Google Scholar 

  24. Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

    Article  Google Scholar 

  25. Chen, J. L., Wilson, C. R. & Tapley, B. D. The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res. 46, W12526 (2010).

    Article  Google Scholar 

  26. Getirana, A. Extreme water deficit in Brazil detected from space. J. Hydrometeorol. 17, 591–599 (2016).

    Article  Google Scholar 

  27. Leblanc, M. J., Tregoning, P., Ramillien, G., Tweed, S. O. & Fakes, A. Basin-scale, integrated observations of the early 21st century multiyear drought in Southeast Australia. Water Resour. Res. 45, W04408 (2009).

    Article  Google Scholar 

  28. Reager, J. T., Thomas, B. F. & Famiglietti, J. S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 7, 588–592 (2014).

    Article  CAS  Google Scholar 

  29. Shah, D. & Mishra, V. Strong influence of changes in terrestrial water storage on flood potential in India. J. Geophys. Res. Atmosph. 126, e2020JD033566 (2021).

    Article  Google Scholar 

  30. Singh, A., Reager, J. T. & Behrangi, A. Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit. Hydrol. Earth Syst. Sci. 25, 511–526 (2021).

    Article  Google Scholar 

  31. Tangdamrongsub, N., Ditmar, P. G., Steele-Dunne, S. C., Gunter, B. C. & Sutanudjaja, E. H. Assessing total water storage and identifying flood events over Tonlé Sap Basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sens. Environ. 181, 162–173 (2016).

    Article  Google Scholar 

  32. Thomas, A. C., Reager, J. T., Famiglietti, J. S. & Rodell, M. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 41, 1537–1545 (2014).

    Article  Google Scholar 

  33. van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  34. Gerdener, H., Engels, O. & Kusche, J. A framework for deriving drought indicators from the Gravity Recovery and Climate Experiment (GRACE). Hydrol. Earth Syst. Sci. 24, 227–248 (2020).

    Article  Google Scholar 

  35. Birant, D. & Kut, A. ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60, 208–221 (2007).

    Article  Google Scholar 

  36. Houborg, R., Rodell, M., Li, B., Reichle, R. & Zaitchik, B. F. B. F. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res. 48, W07525 (2012).

    Article  Google Scholar 

  37. Mafaranga, H. Heavy rains, human activity, and rising waters at Lake Victoria. Eos 101, 7–9 (2020).

    Article  Google Scholar 

  38. Blunden, J. & Arndt, D. S. State of the climate in 2019. Bull. Am. Meteorol. Soc. 101, S1–S8 (2020).

    Article  Google Scholar 

  39. Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brandimarte, W. & Freitas, G. Jr. Brazil’s worst water crisis in 91 years threatens power supplies. Bloomberg https://www.bloomberg.com/news/articles/2021-05-28/brazil-s-worst-water-crisis-in-91-years-threatens-power-supplies (2021).

  41. Williams, A. P., Cook, B. I. & Smerdon, J. E. Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nat. Clim. Change 12, 232–234 (2022).

    Article  Google Scholar 

  42. Horowitz, J. Europe’s scorching summer puts unexpected strain on energy supply. NY Times https://www.nytimes.com/2022/08/18/world/europe/drought-heat-energy.html (2022).

  43. Rippey, B. R. The U.S. drought of 2012. Weather Clim. Extrem. 10, 57–64 (2015).

    Article  Google Scholar 

  44. Phillips, T., Nerem, R. S., Fox-Kemper, B., Famiglietti, J. S. & Rajagopalan, B. The influence of ENSO on global terrestrial water storage using GRACE. Geophys. Res. Lett. 39, L16705 (2012).

    Article  Google Scholar 

  45. Pfeffer, J., Cazenave, A. & Barnoud, A. Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans. Clim. Dyn. 58, 1065–1084 (2022).

    Article  Google Scholar 

  46. Guo, L. et al. Links between global terrestrial water storage and large-scale modes of climatic variability. J. Hydrol. 598, 126419 (2021).

    Article  Google Scholar 

  47. Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).

    Article  Google Scholar 

  48. Trenberth, K. E. Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Clim. Change 39, 667–694 (1998).

    Article  Google Scholar 

  49. Eicker, A., Forootan, E., Springer, A., Longuevergne, L. & Kusche, J. Does GRACE see the terrestrial water cycle ‘intensifying’? J. Geophys. Res. 121, 733–745 (2016).

    Article  Google Scholar 

  50. Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).

    Article  Google Scholar 

  51. Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    Article  CAS  Google Scholar 

  52. Scanlon, B. R. et al. Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environ. Res. Lett. 16, E1080–E1089 (2021).

    Article  Google Scholar 

  53. Dai, A. G. & Wigley, T. M. L. Global patterns of ENSO induced precipitation. Geophys. Res. 27, 1283–1286 (2000).

    Google Scholar 

  54. Mason, S. J. & Goddard, L. Probabilistic precipitation anomalies associated with ENSO. Bull. Am. Meteorol. Soc. 82, 619–638 (2001).

    Article  Google Scholar 

  55. Maggioni, V. & Massari, C. Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment (Elsevier, 2019).

  56. Wiese, D. N. et al. The mass change designated observable study: overview and results. Earth Space Sci. 9, e2022EA002311 (2022).

    Article  Google Scholar 

  57. Rodell, M. et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 28, 8289–8318 (2015).

    Article  Google Scholar 

  58. Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 48, W04531 (2012).

    Article  Google Scholar 

  59. Rowlands, D. D. et al. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 32, L04310 (2005).

    Article  Google Scholar 

  60. Swenson, S., Yeh, P. J. F., Wahr, J. & Famiglietti, J. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett. 33, L16401 (2006).

    Article  Google Scholar 

  61. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, B. et al. Global GRACE data assimilation for groundwater and drought monitoring: advances and challenges. Water Resour. Res. 55, 7564–7586 (2019).

    Article  Google Scholar 

  63. Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M. & Kumar, P. A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res. Atmosph. 105, 24809–24822 (2000).

    Article  Google Scholar 

  64. Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource (Diane Publishing, 1998).

  65. Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

    Article  Google Scholar 

  66. Li, B. & Rodell, M. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO data sets (version 2). Zenodo https://doi.org/10.5281/zenodo.7599831 (2023).

Download references

Acknowledgements

This study was funded by NASA’s GRACE-FO Science Team and NASA’s Energy and Water Cycle Study (NEWS) programme. Computing resources supporting this work were provided by NASA’s High-End Computing (HEC) programme through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. GRACE and GRACE-FO were jointly developed and operated by NASA, DLR and the GFZ German Research Centre for Geosciences.

Author information

Authors and Affiliations

Authors

Contributions

M.R. designed the study with input from B.L. B.L. led the clustering, correlation and uncertainty analyses with input from M.R. M.R. designed the figures, and B.L. created them. M.R. and B.L. discussed the results and wrote the paper.

Corresponding author

Correspondence to Matthew Rodell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Melissa Rohde and Soumendra Bhanja for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Locations of the top 30 wet events.

Blue shading represents the portion of an event period during which a grid cell experienced wet conditions (> 1σ, location-specific). Intensity and time period (in paratheses) are noted at the top of each panel.

Extended Data Fig. 2 Locations of the top 30 dry events.

Red shading represents the portion of an event period during which a grid cell experienced dry conditions (< −1σ, location-specific). Intensity and time period (in paratheses) are noted at the top of each panel.

Extended Data Fig. 3 Changing frequency of events in the regions of coherence.

The number of wet (left column) and dry (right column) events active in each year in the five polygons shown in Fig. 4.

Extended Data Table 1 Relationships between event metrics and global mean temperature
Extended Data Table 2 Mean statistics of extreme wet events by climate zone
Extended Data Table 3 Mean statistics of extreme dry events by climate zone

Source data

Source Data Fig. 1

Data used to create the 14 inset time series plots in Fig. 1. Note the map data are also available at https://doi.org/10.5281/zenodo.7585390 as Figure1_wet_map.nc and Figure1_dry_map.nc.

Source Data Fig. 2

Time series data used to create Fig. 2.

Source Data Fig. 3

Time series data used to create Fig. 3b,c. Note that Köppen–Geiger climate map data (Fig. 3a) are available for download at http://koeppen-geiger.vu-wien.ac.at/present.htm.

Source Data Fig. 4

Location, year and intensity data used to create the maps in Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodell, M., Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat Water 1, 241–248 (2023). https://doi.org/10.1038/s44221-023-00040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00040-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing