Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-surface-area functionalized nanolaminated membranes for energy-efficient nanofiltration and desalination in forward osmosis

Abstract

Stacking two-dimensional nanosheets into laminar membranes to create nanochannels has attracted widespread attention at both fundamental and practical levels in separation technology. Constructing space-tunable and long-term stable sub-nanometre channels provides original systems for nanofluidic investigations and accurate molecular sieving. Here we report a scalable strategy for the preparation of non-swelling, covalently functionalized MoS2 membranes with tunable cohesion energy and interlayer space ranging from 3.5 to 7.7 Å, depending on the nature of the functional groups attached to the MoS2 nanosheets. We evaluated the relationship between the capillary width, surface chemistry, stacking disorder and sieving behaviour of the membranes in forwards osmosis (FO). By combining experimental investigations and numerical simulations, we determined that functionalization with aryl groups induces the formation of a capillary width of 7.1 Å and an interlayer stiffness as low as 5.6 eV Å−2, leading to controlled stacking defects. We also report the fabrication of membranes with an area of up to 45 cm2 that demonstrate a salt rejection as high as 94.2% for a continuous operating time of 7 days. Furthermore, the desalination strategy in FO has a specific energy consumption of 4 × 10−3 kWh m−3, which compares favourably with commercial FO membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the functionalized MoS2 nanosheets.
Fig. 2: Characterization of the functionalized MoS2 membranes.
Fig. 3: Water permeation and ionic transport.
Fig. 4: Mechanical properties of functionalized MoS2 nanosheets.
Fig. 5: Water purification performance of the functionalized MoS2 membranes.
Fig. 6: Molecular weight cut-off and water desalination performance of the functionalized MoS2 membranes.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from FigShare (https://doi.org/10.6084/m9.figshare.21901638.v1).

References

  1. Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  CAS  Google Scholar 

  2. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  3. Wang, S. et al. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071–1089 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Kang, Y., Xia, Y., Wang, H. & Zhang, X. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019).

    Article  Google Scholar 

  5. Cheng, L., Liu, G., Zhao, J. & Jin, W. Two-dimensional-material membranes: manipulating the transport pathway for molecular separation. Acc. Mater. Res. 2, 114–128 (2021).

    Article  CAS  Google Scholar 

  6. Safaei, J., Xiong, P. & Wang, G. Progress and prospects of two-dimensional materials for membrane-based water desalination. Mater. Today Adv. 8, 100108 (2020).

    Article  Google Scholar 

  7. Liu, P. et al. Two-dimensional material membranes for critical separations. Inorg. Chem. Front. 7, 2560–2581 (2020).

    Article  Google Scholar 

  8. Cheng, Y., Pu, Y. & Zhao, D. Two‐dimensional membranes: new paradigms for high‐performance separation membranes. Chem. Asian J. 15, 2241–2270 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Joshi, R. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Shen, J. et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 10, 3398–3409 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Hung, W.-S. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014).

    Article  CAS  Google Scholar 

  14. Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Su, P., Wang, F., Li, Z., Tang, C. Y. & Li, W. Graphene oxide membranes: controlling their transport pathways. J. Mater. Chem. A 8, 15319–15340 (2020).

    Article  CAS  Google Scholar 

  16. Han, Z.-y. et al. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci. 56, 9545–9574 (2021).

    Article  CAS  Google Scholar 

  17. Sun, L., Huang, H. & Peng, X. Laminar MoS2 membranes for molecule separation. Chem. Commun. 49, 10718–10720 (2013).

    Article  CAS  Google Scholar 

  18. Guo, B.-Y. et al. MoS2 membranes for organic solvent nanofiltration: stability and structural control. J. Phys. Chem. Lett. 10, 4609–4617 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Ren, C. E. et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Ding, L. et al. A two‐dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017).

    Article  CAS  Google Scholar 

  21. Wang, J. et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nat. Commun. 11, 3540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, S., Wang, H. & Lee, Y. M. 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew. Chem. Int. Ed. 131, 17674–17689 (2019).

    Article  Google Scholar 

  23. Wang, Z. et al. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Mei, L. et al. Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34, 2201416 (2022).

    Article  CAS  Google Scholar 

  26. Chu, C. et al. Precise ångström controlling the interlayer channel of MoS2 membranes by cation intercalation. J. Memb. Sci. 615, 118520 (2020).

    Article  CAS  Google Scholar 

  27. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Creemers, A. F. & Lugtenburg, J. The preparation of all-trans uniformly 13C-labeled retinal via a modular total organic synthetic strategy. Emerging central contribution of organic synthesis toward the structure and function study with atomic resolution in protein research. J. Am. Chem. Soc. 124, 6324–6334 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Duthaler, R. O., Förster, H. & Roberts, J. D. Nitrogen-15 and carbon-13 nuclear magnetic resonance spectra of diazo and diazonium compounds. J. Am. Chem. Soc. 100, 4974–4979 (1978).

    Article  CAS  Google Scholar 

  30. Nightingale, E.Jr. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).

    Article  CAS  Google Scholar 

  31. Teychené, J., Roux-de Balmann, H., Maron, L. & Galier, S. Investigation of ions hydration using molecular modeling. J. Mol. Liq. 294, 111394 (2019).

    Article  Google Scholar 

  32. Wei, Y. et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016).

    Article  CAS  Google Scholar 

  33. Morelos-Gomez, A. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Hoenig, E. et al. Controlling the structure of MoS2 membranes via covalent functionalization with molecular spacers. Nano Lett. 20, 7844–7851 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Chekli, L. et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects. J. Memb. Sci. 497, 430–449 (2016).

    Article  CAS  Google Scholar 

  36. Wang, K. Y., Chung, T.-S. & Qin, J.-J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Memb. Sci. 300, 6–12 (2007).

    Article  CAS  Google Scholar 

  37. Lu, X. et al. Relating selectivity and separation performance of lamellar two-dimensional molybdenum disulfide (MoS2) membranes to nanosheet stacking behavior. Environ. Sci. Technol. 54, 9640–9651 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Alturki, A. et al. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresour. Technol. 113, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Andreeva, D. V. et al. Two-dimensional adaptive membranes with programmable water and ionic channels. Nat. Nanotechnol. 16, 174–180 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Al-aibi, S., Mahood, H. B., Sharif, A. O., Alpay, E. & Simcoe-Read, H. Evaluation of draw solution effectiveness in a forward osmosis process. Desalination Water Treat. 57, 13425–13432 (2016).

    Article  CAS  Google Scholar 

  41. Li, G., Li, X.-M., He, T., Jiang, B. & Gao, C. Cellulose triacetate forward osmosis membranes: preparation and characterization. Desalination Water Treat. 51, 2656–2665 (2013).

    Article  CAS  Google Scholar 

  42. Zou, S. & He, Z. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Res. 99, 235–243 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lambrechts, R. & Sheldon, M. Performance and energy consumption evaluation of a fertiliser drawn forward osmosis (FDFO) system for water recovery from brackish water. Desalination 456, 64–73 (2019).

    Article  CAS  Google Scholar 

  44. Al-Karaghouli, A. & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013).

    Article  CAS  Google Scholar 

  45. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Qin, M. & He, Z. Self-supplied ammonium bicarbonate draw solute for achieving wastewater treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system. Environ. Sci. Technol. Lett. 1, 437–441 (2014).

    Article  CAS  Google Scholar 

  47. Horvath A. L. Handbook of Aqueous Electrolyte Solutions (Halsted Press, 1985).

    Google Scholar 

  48. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  49. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  50. Sresht, V. et al. Quantitative modeling of MoS2–solvent interfaces: predicting contact angles and exfoliation performance using molecular dynamics. J. Phys. Chem. C 121, 9022–9031 (2017).

    Article  CAS  Google Scholar 

  51. Onofrio, N. & Ko, T. W. Exploring the compositional ternary diagram of Ge/S/Cu glasses for resistance switching memories. J. Phys. Chem. C 123, 9486–9495 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the French National Agency (ANR, programme 2D-MEMBA, ANR-21-CE09-0034-01). D.V., K.Q. and H.W. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 804320). W.W., J. Liu and J. Li acknowledge Ph.D. scholarships from the China Scholarship Council (CSC). C.S. acknowledges funding from the French National Agency (ANR, JCJC programme, MONOMEANR-20-CE08-0009). K.Q. and Y.Z. acknowledge financial support from the China Postdoctoral Science Foundation (2018M633127) and the Natural Science Foundation of Guangdong Province (2018A030310602). J. Li acknowledges financial support from the National Natural Science Foundation of China (21808134). The French Région Ile-de-France – SESAME programme is acknowledged for financial support (700 MHz NMR spectrometer). GENCI granted access to the HPC resources of IDRIS under allocation 2021-2022-A0110913046 and 097535. L.L. acknowledges funding from the Andalusian regional government (FEDER-UCA-18-107490), the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 823717 – ESTEEM3), the Spanish Ministerio de Economía y Competitividad (PID2019-107578GA-I00), the Ministerio de Ciencia e Innovación MCIN/AEI/10.13039/501100011033 and the European Union ‘NextGenerationEU’/PRTR (RYC2021-033764-I, CPP2021-008986). The (S)TEM measurements were performed at the National Facility ELECMI ICTS (Division de Microscopía Electrónica, Universidad de Cádiz, DME-UCA).

Author information

Authors and Affiliations

Authors

Contributions

D.V. conceived the idea, designed the experiments and wrote the manuscript. W.W. designed the experiments with D.V., synthesized the functionalized nanosheets, fabricated the membranes and performed the experiments. D.V. and W.W. analysed the data and wrote the manuscript. N.O. performed the atomistic calculations and discussed the results with D.V. and W.W. B.A.K. assisted W.S. with the measurements and synthesized MXene. E.P. performed the liquid NMR and HPLC-UV analyses to quantify the membrane rejection, while H.W., J. Liu, J. Li, K.Q. and Y.Z. assisted W.W with the WCA, Raman and Fourier transform infrared measurements. L.L. performed the (S)TEM measurements and analysed the data. C.G. performed the solid-state 13C NMR spectroscopy measurements and discussed the results with C.S. P.M. and Z.Z. discussed the results with W.W. and D.V. All of the authors edited the manuscript before submission.

Corresponding author

Correspondence to Damien Voiry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Haiping Fang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Notes 1–8 and Tables 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Onofrio, N., Petit, E. et al. High-surface-area functionalized nanolaminated membranes for energy-efficient nanofiltration and desalination in forward osmosis. Nat Water 1, 187–197 (2023). https://doi.org/10.1038/s44221-023-00036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00036-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing