Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Future global streamflow declines are probably more severe than previously estimated

Subjects

Abstract

Climate change and increasing water use associated with socio-economic growth have exacerbated the water crisis in many parts of the world. Many regional studies rely on Earth System Models that, however, do not fully exploit streamflow observations. Here we offer an observation-based approach to predicting streamflow change on the basis of the elasticity of streamflow to their climate drivers observed at 9,505 catchments across the globe. We show that near-future (2021–2050) global streamflow may be lower than predicted by Earth System Models, particularly in Africa, Australia and North America. The lower streamflow predicted here is due to smaller contributions from precipitation and stronger sensitivity of streamflow to changes in evapotranspiration, which is related to increased radiation energy and vapour transfer, and enhanced vegetation greening. Our estimate points towards the possibility that a future water crisis could be more severe than anticipated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual streamflow elasiticity to each driver.
Fig. 2: Comparison of predicted streamflow change obtained from ESMs with that obtained from the observation-based framework.
Fig. 3: Comparing contributions to predicted streamflow change obtained from ESMs with those obtained from the observation-based framework.
Fig. 4: Spatial patterns of streamflow climatology, future changes and differences between methods.

Similar content being viewed by others

Data availability

The data generated for the main figures are publicly available at https://doi.org/10.5281/zenodo.5577395.

Code availability

The code producing the main results is available from the corresponding authors upon request.

References

  1. Zhou, G. Y. et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. https://doi.org/10.1038/ncomms6918 (2015).

  2. Arheimer, B., Donnelly, C. & Lindstrom, G. Regulation of snow-fed rivers affects flow regimes more than climate change. Nat. Commun. https://doi.org/10.1038/s41467-017-00092-8 (2017).

  3. Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article  Google Scholar 

  4. Munoz, S. E. et al. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 556, 95–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Milly, P. C. D., Dunne, K. A. & Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Griggs, D. et al. Sustainable development goals for people and planet. Nature https://doi.org/10.1038/495305a (2013).

  9. Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Collins, M. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 12, 1029–1136 (Cambridge Univ. Press, 2013).

  11. Cisneros, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1 (eds Field, C. B. et al.) Ch. 3, 229–269 (Cambridge Univ. Press, 2014).

  12. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  13. Baker, J. C. A. et al. Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models. Hydrol. Earth Syst. Sci. 25, 2279–2300 (2021).

    Article  Google Scholar 

  14. Freedman, F. R., Pitts, K. L. & Bridger, A. F. C. Evaluation of CMIP climate model hydrological output for the Mississippi River Basin using GRACE satellite observations. J. Hydrol. 519, 3566–3577 (2014).

    Article  Google Scholar 

  15. Alkama, R., Marchand, L., Ribes, A. & Decharme, B. Detection of global runoff changes: results from observations and CMIP5 experiments. Hydrol. Earth Syst. Sci. 17, 2967–2979 (2013).

    Article  Google Scholar 

  16. Zeng, Z. et al. Responses of land evapotranspiration to Earth’s greening in CMIP5 Earth System Models. Environ. Res. Lett. 11, 104006 (2016).

    Article  Google Scholar 

  17. Do, H. X. et al. Historical and future changes in global flood magnitude—evidence from a model–observation investigation. Hydrol. Earth Syst. Sci. 24, 1543–1564 (2020).

    Article  Google Scholar 

  18. Li, J. et al. Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979–2014. J. Adv. Model. Earth Syst. 13, e2021MS002515 (2021).

    Article  Google Scholar 

  19. Dai, A., Qian, T., Trenberth, K. E. & Milliman, J. D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 22, 2773–2792 (2009).

    Article  Google Scholar 

  20. Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J. & Bierkens, M. F. P. The ability of a GCM-forced hydrological model to reproduce global discharge variability. Hydrol. Earth Syst. Sci. 14, 1595–1621 (2010).

    Article  Google Scholar 

  21. Troch, P. A. et al. Catchment coevolution: a useful framework for improving predictions of hydrological change? Water Resour. Res. 51, 4903–4922 (2015).

    Article  Google Scholar 

  22. Anderson, A. E., Weiler, M., Alila, Y. & Hudson, R. O. Subsurface flow velocities in a hillslope with lateral preferential flow. Water Resour. Res., https://doi.org/10.1029/2008wr007121 (2009).

  23. Blöschl, G. & Sivapalan, M. Scale issues in hydrological modelling: a review. Hydrol. Process. 9, 251–290 (1995).

    Article  Google Scholar 

  24. Andréassian, V., Coron, L., Lerat, J. & Le Moine, N. Climate elasticity of streamflow revisited—an elasticity index based on long-term hydrometeorological records. Hydrol. Earth Syst. Sci. 20, 4503–4524 (2016).

    Article  Google Scholar 

  25. Chiew, F. H. S. Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J. 51, 613–625 (2006).

    Article  Google Scholar 

  26. Konapala, G. & Mishra, A. K. Three-parameter-based streamflow elasticity model: application to MOPEX basins in the USA at annual and seasonal scales. Hydrol. Earth Syst. Sci. 20, 2545–2556 (2016).

    Article  Google Scholar 

  27. Berghuijs, W. R., Hartmann, A. & Woods, R. A. Streamflow sensitivity to water storage changes across Europe. Geophys. Res. Lett. 43, 1980–1987 (2016).

    Article  Google Scholar 

  28. Zhang, Y. et al. Global variation of transpiration and soil evaporation and the role of their major climate drivers. J. Geophys. Res. Atmosph. 122, 6868–6881 (2017).

    Article  Google Scholar 

  29. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. https://doi.org/10.1038/srep19124 (2016).

  30. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. https://doi.org/10.1126/sciadv.aax0255 (2020).

  31. Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    Article  Google Scholar 

  32. Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R. & McAlpine, C. A. CO2-vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys. Res. Lett. 44, 2310–2318 (2017).

    Article  CAS  Google Scholar 

  33. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  34. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article  CAS  Google Scholar 

  35. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2018).

    Article  CAS  Google Scholar 

  36. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article  Google Scholar 

  37. Her, Y. et al. Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Sci. Rep. 9, 4974 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  39. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  40. Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135 (2018).

    Article  Google Scholar 

  43. Shepherd, A. et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233 (2020).

    Article  Google Scholar 

  44. Zhang, Y., Zheng, H., Chiew, F. H. S., Arancibia, J. P. A. & Zhou, X. Evaluating regional and global hydrological models against streamflow and evapotranspiration measurements. J. Hydrometeorol. 17, 995–1010 (2016).

    Article  Google Scholar 

  45. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article  Google Scholar 

  46. Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schellekens, J. et al. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset. Earth Syst. Sci. Data 9, 389–413 (2017).

    Article  Google Scholar 

  48. Hatfield-Dodds, S. et al. Australia is ‘free to choose’ economic growth and falling environmental pressures. Nature 527, 49–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    Article  Google Scholar 

  50. Liu, N. F. et al. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 17, 2121–2129 (2013).

    Article  Google Scholar 

  51. Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article  Google Scholar 

  52. Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 89, 93–94 (2008).

    Article  Google Scholar 

  53. Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. J. Clim. 33, 1299–1315 (2020).

    Article  Google Scholar 

  54. Falcone, J. A., Carlisle, D. M., Wolock, D. M. & Meador, M. R. GAGES: a stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology 91, 621–621 (2010).

    Article  Google Scholar 

  55. Alvarez-Garreton, C. et al. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies—Chile dataset. Hydrol. Earth Syst. Sci. 22, 5817–5846 (2018).

    Article  Google Scholar 

  56. Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article  Google Scholar 

  57. Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).

    Article  Google Scholar 

  58. Beck, H. E. et al. Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resour. Res. 49, 7843–7863 (2013).

    Article  Google Scholar 

  59. Fenicia, F., Savenije, H. H. G., Matgen, P. & Pfister, L. Is the groundwater reservoir linear? Learning from data in hydrological modelling. Hydrol. Earth Syst. Sci. 10, 139–150 (2006).

    Article  Google Scholar 

  60. Dijk, A. I. J. M., Peña-Arancibia, J. L., Wood, E. F., Sheffield, J. & Beck, H. E. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. Water Resour. Res. 49, 2729–2746 (2013).

    Article  Google Scholar 

  61. Chapman, T. A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Process. 13, 701–714 (1999).

    Article  Google Scholar 

  62. Lyne, V. & Hollick, M. Stochastic time-variable rainfall-runoff modeling. In Institute of Engineers Australia National Conference 89–93 (1979).

  63. Eckhardt, K. How to construct recursive digital filters for baseflow separation. 19, 507–515 (2005).

  64. Voutchkova, D. D., Miller, S. N. & Gerow, K. G. Parameter sensitivity of automated baseflow separation for snowmelt-dominated watersheds and new filtering procedure for determining end of snowmelt period. Hydrol. Process. 33, 876–888 (2019).

    Google Scholar 

  65. Penman, H. L. Evaporation: an introductory survey. Neth. J. Agric. Sci. 4, 9–29 (1956).

    Google Scholar 

  66. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements 1–300 (FAO, 1998).

  67. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213 (2011).

    Article  CAS  Google Scholar 

  68. Takaku, J., Tadono, T. & Tsutsui, K. Generation of high resolution global DSM from ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2, 243–248 (2014).

    Article  Google Scholar 

  69. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gleeson, T., Moosdorf, N., Hartmann, J. & Van Beek, L. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).

    Article  Google Scholar 

  71. Li, M., Zhang, Y., Wallace, J. & Campbell, E. Estimating annual runoff in response to forest change: a statistical method based on random forest. J. Hydrol. 589, 125168 (2020).

    Article  Google Scholar 

  72. Zhang, Y., Chiew, F. H. S., Li, M. & Post, D. Predicting runoff signatures using regression and hydrological modeling approaches. Water Resour. Res. 54, 7859–7878 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

Y.Z. acknowledges funding from the National Key R&D Program of China (grant no. 2022YFC3002804), CAS Pioneer Talents Program, the National Natural Science Foundation of China (grant no. 41971032) and the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0208). G.B. acknowledges funding from the Austrian Science Funds (W1219-N22, I 3174). X.Z. was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0206) and the Youth Innovation Promotion Association CAS (2022053). L.R.L. acknowledges support from US Department of Energy Office of Science Biological and Environmental Research as part of the Regional and Global Model Analysis, Earth and Environmental System Modeling Program. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. The streamflow data used in this study were obtained from Global Runoff Data Centre (GRDC), Geospatial Attributes of Gages for Evaluating Streamflow (GAGES)-II database, the Australian Bureau of Meteorology and the Chinese Academy of Science. We also thank G. Weedon for producing and distributing the WATCH forcing Data ERA-Interim datasets.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and G.B. conceived this study, and wrote the first version of paper. Y.Z., H.Z., Y.G., X.Z. and C. Li prepared input data for the elasticity analysis. H.Z. and Y.G. prepared HydroSHEDS dataset for global prediction. X.Z. prepared ESM outputs dataset. All authors contributed to discussion and interpretations of the results and writing the paper.

Corresponding authors

Correspondence to Yongqiang Zhang or Günter Blöschl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Goutam Konapala, Fitsum Woldemeskel and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Tables 1–4.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zheng, H., Zhang, X. et al. Future global streamflow declines are probably more severe than previously estimated. Nat Water 1, 261–271 (2023). https://doi.org/10.1038/s44221-023-00030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00030-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing