Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides

Abstract

Groundwater contamination by geogenic arsenic is a global problem affecting nearly 200 million people. In South and Southeast Asia, a cost-effective mitigation strategy is to use oxidized low-arsenic aquifers rather than reduced high-arsenic aquifers. Aquifers with abundant oxidized iron minerals are presumably safeguarded against immediate arsenic contamination, due to strong sorption of arsenic onto iron minerals. However, preferential pumping of low-arsenic aquifers can destabilize the boundaries between these aquifers, pulling high-arsenic water into low-arsenic aquifers. We investigate this scenario in a hybrid field-column experiment in Bangladesh where naturally high-arsenic groundwater is pumped through sediment cores from a low-arsenic aquifer, and detailed aqueous and solid-phase measurements are used to constrain reactive transport modelling. Here we show that elevated groundwater arsenic concentrations are induced by sulfate reduction and the predicted formation of highly mobile, poorly sorbing thioarsenic species. This process suggests that contamination of currently pristine aquifers with arsenic can occur up to over 1.5 times faster than previously thought, leading to a deterioration of urgently needed water resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time series of measured effluent groundwater composition (that is, from the column outlet, represented by circles) compared with model fits including all biogeochemical reactions (‘full model’), without thioarsenic species (‘no thioAs’) and IRB only (‘IRB only’).
Fig. 2: Observations of solid-phase Fe and solid-phase As, as measured by XAS and represented as fractions of the total Fe or As, compared with full model results.
Fig. 3: Biogeochemical reaction network of major processes related to Fe, As and sulfur cycling included in the full model and corresponding numerical implementation.
Fig. 4: In space (normalized column length on y axis) and time (PV, on x axis), decrease in sulfate concentrations leads to production of sulfide and the heterogeneous formation of thioarsenic species.
Fig. 5: The end of our experiment coincides with the points of reported higher concentrations of monothioarsenate measured from groundwater in an aquifer setting in the field.

Similar content being viewed by others

Data availability

The column transport parameters and geochemical solute data for the influent groundwater and all column effluent used for modelling have been previously published and can be found in Mozumder et al.29. The solid-phase data for the unaltered sediment can also be found in Mozumder et al.29. The mineralogy data at the end of the experiment for the Pleistocene columns are in Supplementary Tables 1 and 2. The normalized XAS spectra and standards used for both Fe EXAFS and As XANES are also available in in the additional Supplementary Information files. The data compilation of groundwater in Bangladesh is a subset of data publicly available at https://doi.org/10.7916/d8-zenj-yx36.

Code availability

ORTi3D was used for the initial model construction and manual model development and calibration phase (https://orti3d.ensegid.fr/). ORTi3D is an open source software that is a graphical user interface for the public domain codes MODFLOW78, MT3DMS81 and PHT3D79. MODFLOW is available from the United States Geological Survey (USGS) at https://www.usgs.gov/software/software-modflow, and PHT3D is available from www.phtd.org. PEST++ for model calibration is also publicly available (https://github.com/usgs/pestpp). Finally, the input data files for the reactive transport model are publicly available at https://doi.org/10.7916/945c-9w77.

References

  1. Gleeson, T. et al. Groundwater sustainability strategies. Nat. Geosci. 3, 378–379 (2010).

    Article  CAS  Google Scholar 

  2. Ponthieu, M., Juillot, F., Hiemstra, T., van Riemsdijk, W. H. & Benedetti, M. F. Metal ion binding to iron oxides. Geochim. Cosmochim. Acta 70, 2679–2698 (2006).

    Article  CAS  Google Scholar 

  3. McKenzie, R. M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil Res. 18, 61–73 (1980).

    Article  CAS  Google Scholar 

  4. Fendorf, S., Michael, H. A. & van Geen, A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328, 1123–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Islam, F. S. et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Smedley, P. L. & Kinniburgh, D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002).

    Article  CAS  Google Scholar 

  7. Nickson, R. T., Mcarthur, J. M., Ravenscroft, P., Burgess, W. G. & Ahmed, K. M. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403–413 (2000).

    Article  CAS  Google Scholar 

  8. Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Postma, D. et al. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam. Geochim. Cosmochim. Acta 74, 3367–3381 (2010).

    Article  CAS  Google Scholar 

  10. Polizzotto, M. L., Harvey, C. F., Sutton, S. R. & Fendorf, S. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc. Natl. Acad. Sci. USA 102, 18819–18823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burton, E. D., Johnston, S. G. & Planer-Friedrich, B. Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid. Chem. Geol. 343, 12–24 (2013).

    Article  CAS  Google Scholar 

  12. Planer-Friedrich, B., Schaller, J., Wismeth, F., Mehlhorn, J. & Hug, S. J. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies. Environ. Sci. Technol. 52, 5931–5939 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Stucker, V. K., Silverman, D. R., Williams, K. H., Sharp, J. O. & Ranville, J. F. Thioarsenic species associated with increased arsenic release during biostimulated subsurface sulfate reduction. Environ. Sci. Technol. 48, 13367–13375 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Sun, J., Quicksall, A. N., Chillrud, S. N., Mailloux, B. J. & Bostick, B. C. Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere 153, 254–261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kocar, B. D., Borch, T. & Fendorf, S. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim. Cosmochim. Acta 74, 980–994 (2010).

    Article  CAS  Google Scholar 

  16. Burton, E. D., Johnston, S. G. & Kocar, B. D. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Environ. Sci. Technol. 48, 13660–13667 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. van Geen, A. et al. Retardation of arsenic transport through a Pleistocene aquifer. Nature 501, 204–207 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Winkel, L. H. E. et al. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl. Acad. Sci. USA 108, 1246–1251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berg, M. et al. Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron–arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chem. Geol. 249, 91–112 (2008).

    Article  CAS  Google Scholar 

  20. Michael, H. A. & Voss, C. I. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc. Natl Acad. Sci. USA 105, 8531–8536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jamil, N. B. et al. Effectiveness of different approaches to arsenic mitigation over 18 years in Araihazar, Bangladesh: implications for national policy. Environ. Sci. Technol. 53, 5596–5604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoque, M. A., Hoque, M. M. & Ahmed, K. M. Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol. J. 15, 1523–1534 (2007).

    Article  Google Scholar 

  23. Wallis, I. et al. The river–groundwater interface as a hotspot for arsenic release. Nat. Geosci. 13, 288–295 (2020).

    Article  CAS  Google Scholar 

  24. Khan, M. R. et al. Megacity pumping and preferential flow threaten groundwater quality. Nat. Commun. 7, 1–8 (2016).

    Article  Google Scholar 

  25. Prommer, H., Sun, J. & Kocar, B. D. Using reactive transport models to quantify and predict groundwater quality. Elements 15, 87–92 (2019).

    Article  CAS  Google Scholar 

  26. Siade, A. J., Bostick, B. C., Cirpka, O. A. & Prommer, H. Unraveling biogeochemical complexity through better integration of experiments and modeling. Environ. Sci. Process. Impacts 23, 1825–1833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Couture, R. M. et al. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ. Sci. Technol. 47, 5652–5659 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Suess, E. & Planer-Friedrich, B. Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Chemosphere 89, 1390–1398 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Mozumder, M. R. H. et al. Similar retardation of arsenic in gray Holocene and orange Pleistocene sediments: evidence from field-based column experiments in Bangladesh. Water Res. 183, 116081 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, J. et al. Simultaneously quantifying ferrihydrite and goethite in natural sediments using the method of standard additions with X-ray absorption spectroscopy. Chem. Geol. 476, 248–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Nghiem, A. A. et al. Aquifer-scale observations of iron redox transformations in arsenic-impacted environments to predict future contamination. Environ. Sci. Technol. Lett. 7, 916–922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buschmann, J. & Berg, M. Impact of sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong, Bengal and Red River deltas. Appl. Geochem. 24, 1278–1286 (2009).

    Article  CAS  Google Scholar 

  33. Keimowitz, A. R. et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy. Environ. Sci. Technol. 41, 6718–6724 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kirk, M. F. et al. Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 32, 953–956 (2004).

    Article  Google Scholar 

  35. Mozumder, M. R. H. et al. Origin of groundwater arsenic in a rural pleistocene aquifer in Bangladesh depressurized by distal municipal pumping. Water Resour. Res. 56, 1–26 (2020).

    Article  Google Scholar 

  36. Prommer, H., Grassi, M. E., Davis, A. C. & Patterson, B. M. Modeling of microbial dynamics and geochemical changes in a metal bioprecipitation experiment. Environ. Sci. Technol. 41, 8433–8438 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Druhan, J. L. et al. Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fractionation. Environ. Sci. Technol. 46, 8895–8902 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Jakobsen, R. & Postma, D. Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark. Geochim. Cosmochim. Acta 63, 137–151 (1999).

    Article  CAS  Google Scholar 

  39. Postma, D. & Jakobsen, R. Redox zonation: equilibrium constraints on the Fe (III)/ SO4-reduction interface. Geochim. Cosmochim. Acta 60, 3169–3175 (1996).

    Article  Google Scholar 

  40. Poulton, S. W., Krom, M. D. & Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715 (2004).

    Article  CAS  Google Scholar 

  41. Thamdrup, B., Finster, K., Hansen, J. W. & Bak, F. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl. Environ. Microbiol. 59, 101–108 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hansel, C. M. et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J. 9, 2400–2412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wind, T. & Conrad, R. Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol. Ecol. 18, 257–266 (1995).

    Article  CAS  Google Scholar 

  44. Manning, B. A. & Goldberg, S. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci. Soc. Am. J. 60, 121–131 (1996).

    Article  CAS  Google Scholar 

  45. Dixit, S. & Hering, J. G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182–4189 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Hansel, C. M., Benner, S. G. & Fendorf, S. Competing Fe (II)-induced mineralization pathways of ferrihydrite. Environ. Sci. Technol. 39, 7147–7153 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Sun, J., Chillrud, S. N., Mailloux, B. J. & Bostick, B. C. In situ magnetite formation and long-term arsenic immobilization under advective flow conditions. Environ. Sci. Technol. 50, 10162–10171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coker, V. S. et al. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environ. Sci. Technol. 40, 7745–7750 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kumar, N. et al. Redox heterogeneities promote thioarsenate formation and release into groundwater from low arsenic sediments. Environ. Sci. Technol. 54, 3237–3244 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Suess, E., Wallschläger, D. & Planer-Friedrich, B. Stabilization of thioarsenates in iron-rich waters. Chemosphere 83, 1524–1531 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, J. et al. Thiolated arsenic species observed in rice paddy pore waters. Nat. Geosci. 13, 282–287 (2020).

    Article  CAS  Google Scholar 

  52. Planer-Friedrich, B., London, J., Mccleskey, R. B., Nordstrom, D. K. & Wallschläger, D. Thioarsenates in geothermal waters of yellowstone National Park: determination, preservation, and geochemical importance. Environ. Sci. Technol. 41, 5245–5251 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Planer-Friedrich, B. et al. Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by disproportionation of monothioarsenate. Environ. Sci. Technol. 49, 6554–6563 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Stauder, S., Raue, B. & Sacher, F. Thioarsenates in sulfidic waters. Environ. Sci. Technol. 39, 5933–5939 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Helz, G. R. & Tossell, J. A. Thermodynamic model for arsenic speciation in sulfidic waters: a novel use of ab initio computations. Geochim. Cosmochim. Acta 72, 4457–4468 (2008).

    Article  CAS  Google Scholar 

  57. Vlassopoulos, D., Bessinger, B. & O’day, P. A. Aqueous solubility of As2S3 and thermodynamic stability of thioarsenites. Water-Rock Interact. 823–826 (CRC Press, 2010).

  58. Wilkin, R. T. et al. Thioarsenite detection and implications for arsenic transport in groundwater. Environ. Sci. Technol. 53, 11684–11693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Planer-Friedrich, B., Suess, E., Scheinost, A. C. & Wallschläger, D. Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence. Anal. Chem. 82, 10228–10235 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Planer-Friedrich, B. Comment on ‘Thioarsenite detection and implications for arsenic transport in groundwater’. Environ. Sci. Technol. 54, 7730–7731 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Knappett, P. S. K. et al. Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh. J. Hydrol. 539, 674–686 (2016).

    Article  CAS  Google Scholar 

  62. Kazmierczak, J. et al. Groundwater arsenic content in quaternary aquifers of the Red River delta, Vietnam, controlled by the hydrogeological processes. J. Hydrol. 609, 127778 (2022).

    Article  CAS  Google Scholar 

  63. Michael, H. A. & Voss, C. I. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol. J. 17, 1561–1577 (2009).

    Article  CAS  Google Scholar 

  64. Shamsudduha, M., Taylor, R. G. & Chandler, R. E. A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh. Water Resour. Res. 51, 685–703 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Planer-Friedrich, B. et al. Organic carbon mobilization in a Bangladesh aquifer explained by seasonal monsoon-driven storativity changes. Appl. Geochem. 27, 2324–2334 (2012).

    Article  CAS  Google Scholar 

  66. Suess, E., Mehlhorn, J. & Planer-Friedrich, B. Anoxic, ethanolic, and cool—an improved method for thioarsenate preservation in iron-rich waters. Appl. Geochem. 62, 224–233 (2015).

    Article  CAS  Google Scholar 

  67. Zheng, Y. et al. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19, 201–214 (2004).

    Article  CAS  Google Scholar 

  68. Burton, E. D., Johnston, S. G. & Bush, R. T. Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility. Geochim. Cosmochim. Acta 75, 3072–3087 (2011).

    Article  CAS  Google Scholar 

  69. Saalfield, S. L. & Bostick, B. C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ. Sci. Technol. 43, 8787–8793 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Harvey, C. F. et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Besold, J. et al. Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat. Environ. Sci. Technol. 52, 7317–7326 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Eberle, A. et al. Potential of high pH and reduced sulfur for arsenic mobilization—insights from a Finnish peatland treating mining waste water. Sci. Total Environ. 758, 143689 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Van Geen, A. et al. Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour. Res. 39, 1–16 (2003).

    Google Scholar 

  74. Ahsan, H. et al. Health Effects of Arsenic Longitudinal Study (HEALS): description of a multidisciplinary epidemiologic investigation. J. Expo. Sci. Environ. Epidemiol. 16, 191–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Newville, M. Larch: an analysis package for XAFS and related spectroscopies. J. Phys. Conf. Ser. 430, 012007 (2013).

    Article  CAS  Google Scholar 

  76. Webb, S. M. SIXPack a graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. https://doi.org/10.1238/Physica.Topical.115a01011 (2005).

  77. Shoenfelt, E. M., Winckler, G., Lamy, F., Anderson, R. F. & Bostick, B. C. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proc. Natl Acad. Sci. USA 115, 201809755 (2018).

    Article  Google Scholar 

  78. Harbaugh, A. W. MODFLOW-2005: the U. S. Geological survey modular ground-water mode—the ground-water flow process. In6. modeling techniques, chapter A16. US Geol. Surv. Rest. 92, 1–134 (2005).

    Google Scholar 

  79. Prommer, H., Barry, D. A. & Zheng, C. MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water 41, 247–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Parkhurst, D. L. & Appelo, C. A. J. User’s Guide To PHREEQC (version 2)—a computer program for speciation, and inverse geochemical calculations. U.S. Geol. Surv. Water-Resources Investig. Rep. 326, 99–4259 (1999).

    Google Scholar 

  81. Zheng, C. & Wang, P. MT3DMS: A modular three-dimensional multispeces transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems. Documentation and User’s Guide. U.S. Army Corps Eng. https://doi.org/10.1007/978-1-4419-6530-1 (1998).

  82. White, J. T., Hunt, R. J., Fienen, M. N. & Doherty, J. E. Approaches to highly parameterized inversion: PEST++ Version 5, a software suite for parameter estimation, uncertainty analysis, management optimization and sensitivity analysis. U.S. Geol. Surv. Tech. Methods 7C26 https://doi.org/10.3133/tm7C26 (2020).

  83. Siade, A. J., Rathi, B., Prommer, H., Welter, D. & Doherty, J. Using heuristic multi-objective optimization for quantifying predictive uncertainty associated with groundwater flow and reactive transport models. J. Hydrol. 577, 123999 (2019).

    Article  Google Scholar 

  84. Sun, J. et al. Model-based analysis of arsenic immobilization via iron mineral transformation under advective flows. Environ. Sci. Technol. 52, 9243–9253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rawson, J. et al. Quantifying reactive transport processes governing arsenic mobility after injection of reactive organic carbon into a bengal delta aquifer. Environ. Sci. Technol. 51, 8471–8480 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Dzombak, D. A. & Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide (John Wiley & Sons, 1990).

  87. Stollenwerk, K. G. et al. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci. Total Environ. 379, 133–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Hinkle, M. A. G., Wang, Z., Giammar, D. E. & Catalano, J. G. Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces. Geochim. Cosmochim. Acta 158, 130–146 (2015).

    Article  CAS  Google Scholar 

  89. Swedlund, P. J. & Webster, J. G. Cu and Zn ternary surface complex formation with so4 on ferrihydrite and schwertmannite. Appl. Geochem. 16, 503–511 (2001).

    Article  CAS  Google Scholar 

  90. Boland, D. D., Collins, R. N., Miller, C. J., Glover, C. J. & Waite, T. D. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environ. Sci. Technol. 48, 5477–5485 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Barry, D. A. et al. Modelling the fate of oxidisable organic contaminants in groundwater. Adv. Water Resour. 25, 945–983 (2002).

    Article  CAS  Google Scholar 

  92. Zysset, A., Stauffer, F. & Dracos, T. Modeling of reactive groundwater transport governed by biodegradation. Water Resour. Res. 30, 2423–2434 (1994).

    Article  CAS  Google Scholar 

  93. Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q. & Flynn, T. M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311, 183–210 (2011).

    Article  CAS  Google Scholar 

  94. Jin, Q. & Bethke, C. M. A new rate law describing microbial respiration. Appl. Environ. Microbiol. 69, 2340–2348 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Morel, F. M. M. & Hering, J. G. Principles and Applications of Aquatic Chemistry (John Wiley & Sons, 1993).

  96. Lasaga, A. C. Kinetic Theory in the Earth Sciences (Princeton Univ. Press, 1998).

  97. Prommer, H., Anneser, B., Rolle, M., Einsiedl, F. & Griebler, C. Biogeochemical and isotopic gradients in a BTEX/PAH contaminant plume: model-based interpretation of a high-resolution field data set. Environ. Sci. Technol. 43, 8206–8212 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Pedersen, H. D., Postma, D., Jakobsen, R. & Larsen, O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim. Cosmochim. Acta 69, 3967–3977 (2005).

    Article  CAS  Google Scholar 

  99. Cornell, R. M. & Schwertmann, U. The iron oxides: structure, properties, reactions, occurrences and uses. Techniques 39, 9–12 (2003).

    Google Scholar 

  100. Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).

    Article  CAS  Google Scholar 

  101. Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330, 1375–1378 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Ng, G. H. C. et al. Microbial and reactive transport modeling evidence for hyporheic flux-driven cryptic sulfur cycling and anaerobic methane oxidation in a sulfate-impacted wetland-stream system. J. Geophys. Res. Biogeosci. 125, 1–25 (2020).

    Article  Google Scholar 

  103. Zheng, Y. et al. Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochim. Cosmochim. Acta 69, 5203–5218 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental study was supported by the US National Institute of Environmental Health Sciences (NIEHS) grants ES0101349, ES009089 (B.C.B and A.v.G.) and P42ES033719 (B.C.B. and H.P.), US National Science Foundation (NSF) grant 1521356 (B.C.B. and A.v.G.) and US Department of Energy (DOE) grant EE0009596 (B.C.B. and H.P.). The computational modelling work was supported by an NSF Graduate Research Opportunities Worldwide (GROW) grant awarded to A.A.N. to conduct research in Western Australia. A.A.N. was also funded by an NSF Graduate Research Fellowship (NSF grant 1644869). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. Computing resources, including high-performance computing, were provided by CSIRO Australia. The data for part of this work were compiled as a part of the Characterizing Global Variability in Groundwater Arsenic Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the US Geological Survey. We also thank M. Selim, M. Atikul Islam, E. Shoenfelt Troein, T. Ellis, B. Mailloux and I. Choudhury for their contributions to the original experimental work. We also thank M. Stahl and D. Postma for their useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.A.N., H.P. and B.C.B. conceived the reactive transport modelling work based off the column experiment work conceived by M.R.H.M., A.v.G. and B.C.B. The field work and column experiment work were performed by M.R.H.M., B.C.B. and K.M.A.; M.R.H.M. measured and provided data from the column experiment work. A.A.N. and H.P. performed the flow and reactive transport modelling. A.A.N., H.P., J.J. and B.C.B. contributed to the conceptual models underlying the numerical models. A.A.N. performed data curation, data visualization, analysis and model calibration of the reactive transport modelling results. H.P., A.S. and J.J. also contributed to the methodology, software/computing resources, model calibration and validation of the reactive transport modelling. A.S. also performed model sensitivity analysis. A.A.N. provided funding acquisition for the reactive transport modelling work; B.C.B. and A.v.G. provided funding acquisition for the column experiment and field work. A.A.N., H.P. and B.C.B. wrote and prepared the original manuscript, and all authors contributed to the review and editing of the manuscript.

Corresponding authors

Correspondence to Athena A. Nghiem or Benjamin C. Bostick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Rasmus Jakobsen, Britta Planer-Friedrich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–15, Tables 1–9 and references.

Reporting Summary

Supplementary Data 1

Directory containing normalized Fe EXAFS and As XANES spectra.

Supplementary Data 2

Excel file containing root mean squared error for all models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nghiem, A.A., Prommer, H., Mozumder, M.R.H. et al. Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides. Nat Water 1, 151–165 (2023). https://doi.org/10.1038/s44221-022-00022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-022-00022-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing