Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality

Abstract

Greenhouse gas (GHG) emissions from the wastewater sector are a major contributor to the overall GHG emissions of all countries, however, there is currently a lack of global, national-scale, detailed spatiotemporal emission data. In this study we elaborated dynamic plant-resolved emission factor values based on the case-specific operating parameters of each municipal wastewater treatment plant (WWTP) and the associated sewers and sludge disposal utilities in China, contrasting with previous estimations that typically focused on WWTP operation without differentiating their spatiotemporal discrepancies. We demonstrate here that China’s municipal wastewater industry generated 53.0 MtCO2e in total GHG emissions in 2019, with the northern and southern areas exhibiting noticeably higher GHG intensities. Due to improved wastewater treatment, the national average wastewater GHG intensity grew by 17.2% between 2009 and 2019, although it is anticipated that the intensity will begin to fall starting in 2020 at rates dependent on the chosen treatment methods. A net-zero emission by the entire sector may be achieved as early as 2044 with continually increasing decarbonized energy and a progressive shift to resource-oriented operations, compared with just a 23.7% decrease by 2050 under the baseline scenario. Joint efforts at the scientific, economic and policy level will be required to make this happen. This study may serve as a roadmap for developing carbon-neutral wastewater management policies and technologies in China and the rest of the globe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: System boundary and statistical analysis of GHG emissions generated during wastewater management.
Fig. 2: Historical trend and distribution of GHG intensity in China’s municipal wastewater sector during the period of 2009–2019.
Fig. 3: Geographical distribution of WWTP operating status and GHG emissions in China’s municipal wastewater sector.
Fig. 4: Projected wastewater GHG emissions under different future wastewater management paradigms.
Fig. 5: Future trends in GHG intensity and total GHG emissions in China’s municipal wastewater sector under different wastewater management scenarios.

Similar content being viewed by others

Data availability

The data generated or analysed during this study are included in this published article and its Supplementary Information files. Supplementary Tables data are also available on Figshare at https://doi.org/10.6084/m9.figshare.21369960. Source data are provided with this paper.

References

  1. Capstick, S., Wang, S. & Khosla, R. Bridging the gap – the role of equitable low-carbon lifestyles. Chap. 6, 1–14 (UNEP, 2020).

  2. Rosa, L., Sanchez, D. L. & Mazzotti, M. Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe. Energy Environ. Sci. 14, 3086–3097 (2021).

    Article  CAS  Google Scholar 

  3. McNicol, G., Jeliazovski, J., François, J. J., Kramer, S. & Ryals, R. Climate change mitigation potential in sanitation via off-site composting of human waste. Nat. Clim. Change 10, 545–549 (2020).

    Article  CAS  Google Scholar 

  4. Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pan, S.-Y. et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nat. Sustain. 3, 399–405 (2020).

    Article  Google Scholar 

  6. Lam, K. L. & van der Hoek, J. P. Low-carbon urban water systems: opportunities beyond water and wastewater utilities? Environ. Sci. Technol. 54, 14854–14861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, D. et al. Greenhouse gas emissions from municipal wastewater treatment facilities in China from 2006 to 2019. Sci. Data 9, 317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu, L. et al. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1, 750–758 (2018).

    Article  Google Scholar 

  9. Li, W.-W., Yu, H.-Q. & Rittmann, B. E. Chemistry: reuse water pollutants. Nature 528, 29–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Gruber, W. et al. N2O emission in full-scale wastewater treatment: proposing a refined monitoring strategy. Sci. Total Environ. 699, 134157 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, B., Wei, Q., Zhang, B. & Bi, J. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China. Sci. Total Environ. 447, 361–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Wei, L. et al. Development, current state and future trends of sludge management in China: based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 144, 106093 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Hao, X. et al. Environmental impacts of resource recovery from wastewater treatment plants. Water Res. 160, 268–277 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Yan, X. et al. Spatial and temporal distribution of greenhouse gas emissions from municipal wastewater treatment plants in China from 2005 to 2014. Earths Future 7, 340–350 (2019).

    Article  CAS  Google Scholar 

  15. Wang, H. et al. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Appl. Energy 184, 873–881 (2016).

    Article  CAS  Google Scholar 

  16. Qu, J. et al. Emerging trends and prospects for municipal wastewater management in China. ACS ES T Eng., https://doi.org/10.1021/acsestengg.1c00345 (2022).

  17. Schneider, A. G., Townsend-Small, A. & Rosso, D. Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification–denitrification. Sci. Total Environ. 505, 1166–1173 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Wastewater treated in vain. Caixin Weekly (2013). http://topics.caixin.com/dirt/ (2021).

  19. Yang, G., Zhang, G. & Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 78, 60–73 (2015).

    Article  PubMed  Google Scholar 

  20. Yang, Z. et al. Assessment of upgrading WWTP in southwest China: towards a cleaner production. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.129381 (2021).

  21. Zhang, H. et al. A review on China’s constructed wetlands in recent three decades: application and practice. J. Environ. Sci. (China) 104, 53–68 (2021).

    Article  PubMed  Google Scholar 

  22. Afzal, M. et al. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat. Sustain. 2, 863–871 (2019).

    Article  Google Scholar 

  23. Yu, B. et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science, https://doi.org/10.1126/science.abd6749 (2020).

  24. Solon, K., Volcke, E. I. P., Spérandio, M. & van Loosdrecht, M. C. M. Resource recovery and wastewater treatment modelling. Environ. Sci. 5, 631–642 (2019).

    CAS  Google Scholar 

  25. Scherson, Y. D. & Criddle, C. S. Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals. Environ. Sci. Technol. 48, 8420–8432 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Discharge Standard of Pollutants for Public Wastewater Treatment Plant (Exposure Draft) (People’s Government of Zhejiang Province, 2018).

  27. Discharge Standard of Pollutants for Urban Wastewater Treatment Plant (Exposure Draft) (Ministry of Ecology and Environment of the People’s Republic of China, 2015).

  28. Hao, X. D., Li, J., van Loosdrecht, M. C. M., Jiang, H. & Liu, R. B. Energy recovery from wastewater: heat over organics. Water Res. 161, 74–77 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, W., Ngo, H. H., Surampalli, R. Y., & Zhang, T. C. Sustainable Resource Management, Volume II: Technologies for Recovery and Reuse of Energy and Waste Materials Vol. 2, 635–662 (Wiley–VCH, 2021).

  30. Su, C., Madani, H., Liu, H., Wang, R. & Palm, B. Seawater heat pumps in China, a spatial analysis. Energy Convers. Manag. https://doi.org/10.1016/j.enconman.2019.112240 (2020).

  31. Hao, X.-D., Fang, X.-M., Li, J. & Jiang, H. Analysis of potential in carbon-neutral operation of WWTPs. China Water Wastewater 34, 11–16 (2018).

    Google Scholar 

  32. Pretel, R., Shoener, B. D., Ferrer, J. & Guest, J. S. Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs). Water Res. 87, 531–541 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. McCarty, P. L., Bae, J. & Kim, J. Domestic wastewater treatment as a net energy producer—can this be achieved? Environ. Sci. Technol. 45, 7100–7106 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Schaubroeck, T. et al. Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res. 74, 166–179 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Alvarado, V. I., Hsu, S. C., Lam, C. M. & Lee, P. H. Beyond energy balance: environmental trade-offs of organics capture and low carbon-to-nitrogen ratio sewage treatment systems. Environ. Sci. Technol. 54, 4746–4757 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Sun, Y. et al. Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management. J. Clean. Prod. 131, 1–9 (2016).

    Article  Google Scholar 

  37. Ma, C., Jensen, M. M., Smets, B. F. & Thamdrup, B. Pathways and controls of N2O production in nitritation–anammox biomass. Environ. Sci. Technol. 51, 8981–8991 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Winiwarter, W., Höglund-Isaksson, L., Klimont, Z., Schöpp, W. & Amann, M. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa9ec9 (2018).

  39. Hao, X., Liu, R. & Huang, X. Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res. 87, 424–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Van Loosdrecht, M. C. M. & Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 344, 1452–1453 (2014).

    Article  PubMed  Google Scholar 

  41. Huang, B.-C., Li, W.-W., Wang, X., Lu, Y. & Yu, H.-Q. Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater. Renew. Sustain. Energy Rev. 110, 132–142 (2019).

    Article  CAS  Google Scholar 

  42. Huang, B. C., Lu, Y. & Li, W. W. Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes. Renew. Energy 158, 534–540 (2020).

    Article  Google Scholar 

  43. Hao, X., Batstone, D. & Guest, J. S. Carbon neutrality: an ultimate goal towards sustainable wastewater treatment plants. Water Res. 87, 413–415 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Lovley, D. R. & Holmes, D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Fu, X. Z. et al. Self-regenerable bio-hybrid with biogenic ferrous sulfide nanoparticles for treating high-concentration chromium-containing wastewater. Water Res. 206, 117731 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Cui, S. et al. Light-assisted fermentative hydrogen production in an intimately-coupled inorganic-bio hybrid with self-assembled nanoparticles. Chem. Eng. J. https://doi.org/10.1016/j.cej.2021.131254 (2022).

  47. Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Predicted national GHGs emission of China in 2030. Climate Action Tracker. https://climateactiontracker.org/countries/china/ (2014).

  49. Urban sewage treatment and resource utilization development plan for the “Fourteenth Five-Year Plan”. National Development and Reform Commission (NDRC). Peoples’s Republic of China; https://en.ndrc.gov.cn/ (2021).

  50. Kovacs, D. P., McCorkindale, W. & Lee, A. A. Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias. Nat. Commun. 12, 1695 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nogrady, B. China launches world’s biggest carbon market. Nature 595, 637 (2021).

    Article  CAS  Google Scholar 

  52. Mihelcic, J. R. et al. Accelerating innovation that enhances resource recovery in the wastewater sector: advancing a national testbed network. Environ. Sci. Technol. 51, 7749–7758 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Cole, A. et al. From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating. Energy Environ. Sci. 9, 1828–1840 (2016).

    Article  CAS  Google Scholar 

  54. Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).

    Article  Google Scholar 

  55. Eggimann, S. et al. The potential of knowing more: a review of data-driven urban water management. Environ. Sci. Technol. 51, 2538–2553 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Mauter, M. S. & Fiske, P. S. Desalination for a circular water economy. Energy Environ. Sci. 13, 3180–3184 (2020).

    Article  CAS  Google Scholar 

  57. National Urban Sewage Treatment Management Information System. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD); http://www.mohurd.gov.cn/ (2021).

  58. Gallego-Schmid, A. & Tarpani, R. R. Z. Life cycle assessment of wastewater treatment in developing countries: a review. Water Res. 153, 63–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (52192681, U21A20160, 51821006 and 22265010) for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

W.-J.D., J.-Y.L. and W.-W.L. conceived the idea. J.-Y.L., W.-J.D., Y.-R.H., J.X., C.Y., B.H. and S.C. collected and analysed the data. J.-Y.L., W.-W.L., J.W., Y.W. and W.-J.D. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Wen-Wei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Stephan Pfister and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–19 and Tables 1–24.

Reporting Summary

Supplementary Data

Raw data.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, WJ., Lu, JY., Hu, YR. et al. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat Water 1, 166–175 (2023). https://doi.org/10.1038/s44221-022-00021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-022-00021-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene