Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte

Abstract

Electrocatalytic hydrogenation enables the efficient treatment of oxidized contaminants in water under mild conditions, but its application has been greatly hindered by the need for a supporting electrolyte and the large amounts of unsafe intermediate products. Here we report the development of a rhodium nanoparticle-modified palladium membrane electrochemical reactor (Rh NPs-PdMER) for the hydrogenation of oxidized contaminants in drinking water and industrial effluents. The Rh NPs-PdMER not only enabled the hydrogenation of 12 different oxidized contaminants to safe products with ≥99% conversion and ≥95% yield in water without a supporting electrolyte, but also required a very low operating voltage of only 1.4 V. The performance of the Rh NPs-PdMER can be attributed to the specific reactor configuration and the unique adsorbability of the hydrogenated intermediates of the oxidized contaminants to the Rh nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of two electrochemical reactor configurations.
Fig. 2: TCAA hydrogenation performance in different PdMERs.
Fig. 3: Comparison of the TCAA hydrogenation performance in different reactors.
Fig. 4: Hydrogenation performance of CAAs in real tap water.

Similar content being viewed by others

Data availability

The data supporting the findings in this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Tao, T. & Xin, K. Public health: a sustainable plan for China’s drinking water. Nature 511, 527–528 (2014).

    Article  CAS  Google Scholar 

  2. Llorente-Esteban, A. et al. Allosteric regulation of mammalian Na+/I symporter activity by perchlorate. Nat. Struct. Mol. Biol. 27, 533–539 (2020).

    Article  CAS  Google Scholar 

  3. Cai, Y., Long, X., Luo, Y. H., Zhou, C. & Rittmann, B. E. Stable dechlorination of trichloroacetic acid (TCAA) to acetic acid catalyzed by palladium nanoparticles deposited on H2-transfer membranes. Water Res. 192, 116841 (2021).

    Article  CAS  Google Scholar 

  4. Liu, J., Olson, C., Qiu, N. & Sayes, C. M. Differential cytotoxicity of haloaromatic disinfection byproducts and lead co-exposures against human intestinal and neuronal cells. Chem. Res. Toxicol. 33, 2401–2407 (2020).

    Article  CAS  Google Scholar 

  5. Ford, C. L., Park, Y. J., Matson, E. M., Gordon, Z. & Fout, A. R. A bioinspired iron catalyst for nitrate and perchlorate reduction. Science 354, 741–743 (2016).

    Article  CAS  Google Scholar 

  6. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  Google Scholar 

  7. Ye, S. et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 15, 760–770 (2022).

    Article  CAS  Google Scholar 

  8. Qin, S., Lei, C., Wang, X., Chen, W. & Huang, B. Electrocatalytic activation of organic chlorides via direct and indirect electron transfer using atomic vacancy control of palladium-based catalyst. Cell Rep. Phys. Sci. 3, 100713 (2022).

    Article  CAS  Google Scholar 

  9. Gu, Z., Zhang, Z., Ni, N., Hu, C. & Qu, J. Simultaneous phenol removal and resource recovery from phenolic wastewater by electrocatalytic hydrogenation. Environ. Sci. Technol. 56, 4356–4366 (2022).

    Article  CAS  Google Scholar 

  10. Huang, D. et al. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination. Environ. Sci. Technol. 55, 13306–13316 (2021).

    CAS  Google Scholar 

  11. Gan, G. et al. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 11, 14284–14292 (2021).

    Article  CAS  Google Scholar 

  12. Zhang, J. et al. Electrochemical-driven nanoparticulate catalysis for highly efficient dechlorination of chlorinated environmental pollutant. J. Catal. 395, 362–374 (2021).

    Article  CAS  Google Scholar 

  13. Isse, A. A., Huang, B., Durante, C. & Gennaro, A. Electrocatalytic dechlorination of volatile organic compounds at a copper cathode. Part I: polychloromethanes. Appl. Catal. B 126, 347–354 (2012).

    Article  CAS  Google Scholar 

  14. Huang, B., Isse, A. A., Durante, C., Wei, C. & Gennaro, A. Electrocatalytic properties of transition metals toward reductive dechlorination of polychloroethanes. Electrochim. Acta 70, 50–61 (2012).

    Article  CAS  Google Scholar 

  15. McGuire, C. M. & Peters, D. G. Electrochemical dechlorination of 4,4′-(2,2,2-trichloroethane-1,1-diyl)bis(chlorobenzene) (DDT) at silver cathodes. Electrochim. Acta 137, 423–430 (2014).

    Article  CAS  Google Scholar 

  16. Liu, H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202202556 (2022).

    Article  Google Scholar 

  17. Guo, Y. et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. Energy Environ. Sci. 14, 3938–3944 (2021).

    Article  CAS  Google Scholar 

  18. Xu, Y. et al. Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Appl. Catal. B 277, 119057 (2020).

    Article  CAS  Google Scholar 

  19. Zhou, Y. et al. Enhanced stabilization and effective utilization of atomic hydrogen on Pd−In nanoparticles in a flow-through electrode. Environ. Sci. Technol. 53, 11383–11390 (2019).

    Article  CAS  Google Scholar 

  20. Mousset, E. & Doudrick, K. A review of electrochemical reduction processes to treat oxidized contaminants in water. Curr. Opin. Electrochem. 22, 221–227 (2020).

    Article  CAS  Google Scholar 

  21. Mao, R. et al. Enhanced indirect atomic H* reduction at a hybrid Pd/graphene cathode for electrochemical dechlorination under low negative potentials. Environ. Sci. Nano 5, 2282–2292 (2018).

    Article  CAS  Google Scholar 

  22. Sun, Z., Zhang, J., Wang, X. & Hu, X. Electrochemically reductive dechlorination of 2,4,6-trichlorophenol on palladium loaded titanium cathode modified with graphene/polymeric pyrrole-sodium dodecyl benzene sulfonate. Desalination Water Treat. 88, 128–138 (2017).

    Article  CAS  Google Scholar 

  23. Liu, R. et al. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H. Environ. Sci. Technol. 52, 9992–10002 (2018).

    Article  CAS  Google Scholar 

  24. Mao, Z. et al. Atomically dispersed Pd electrocatalyst for efficient aqueous phase dechlorination reaction. Electrochim. Acta 391, 138886 (2021).

    Article  CAS  Google Scholar 

  25. Yang, J., Sebastian, P., Duca, M., Hoogenboom, T. & Koper, M. T. pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes. Chem. Commun. 50, 2148–2151 (2014).

    Article  CAS  Google Scholar 

  26. Xu, Y., Ma, H., Ge, T., Chu, Y. & Ma, C. A. Rhodium-catalyzed electrochemical hydrodefluorination: a mild approach for the degradation of fluoroaromatic pollutants. Electrochem. Commun. 66, 16–20 (2016).

    Article  CAS  Google Scholar 

  27. Wang, J., Cui, C., Xin, Y., Zheng, Q. & Zhang, X. High-performance electrocatalytic hydrodechlorination of pentachlorophenol by amorphous Ru-loaded polypyrrole/foam nickel electrode. Electrochim. Acta 296, 874–881 (2019).

    Article  CAS  Google Scholar 

  28. Xu, Y. H., Zhang, H., Chu, C. P. & Ma, C. A. J. Dechlorination of chloroacetic acids by electrocatalytic reduction using activated silver electrodes in aqueous solutions of different pH. J. Electroanal. Chem. 664, 39–45 (2012).

    Article  CAS  Google Scholar 

  29. Yao, Q. et al. Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Res. 165, 114930 (2019).

    Article  CAS  Google Scholar 

  30. Mao, R. et al. Dechlorination of trichloroacetic acid using a noble metal-free graphene–Cu foam electrode via direct cathodic reduction and atomic H. Environ. Sci. Technol. 50, 3829–3837 (2016).

    Article  CAS  Google Scholar 

  31. Li, J. et al. Kinetics and mechanisms of electrocatalytic hydrodechlorination of diclofenac on Pd-Ni/PPy-rGO/Ni electrodes. Appl. Catal. B 268, 118696 (2020).

    Article  CAS  Google Scholar 

  32. Li, A. et al. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Appl. Catal. B 111112, 628–635 (2012).

    Article  Google Scholar 

  33. Xu, Y. et al. Rh-Pd-alloy catalyzed electrochemical hydrodefluorination of 4-fluorophenol in aqueous solutions. Electrochim. Acta 270, 110–119 (2018).

    Article  CAS  Google Scholar 

  34. Huang, L. Z. et al. Hierarchical MoS2 nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination. Environ. Sci. Nano 4, 2286–2296 (2017).

    Article  CAS  Google Scholar 

  35. He, J., Ela, W. P., Betterton, E. A., Arnold, R. G. & Saez, A. E. Reductive dehalogenation of aqueous-phase chlorinated hydrocarbons in an electrochemical reactor. Ind. Eng. Chem. Res. 43, 7965–7974 (2004).

    Article  CAS  Google Scholar 

  36. Bhat, H. K., Kanz, M. F., Campbell, G. A. & Ansari, G. A. S. Ninety day toxicity study of chloroacetic acids in rats. Fundam. Appl. Toxicol. 17, 240–253 (1991).

    Article  CAS  Google Scholar 

  37. Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).

    Article  CAS  Google Scholar 

  38. Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

    Article  CAS  Google Scholar 

  39. Inoue, H., Abe, T. & Iwakura, C. Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen. Chem. Commun.55–56 (1996).

  40. Niwa, S.-I. et al. A one-step conversion of benzene to phenol with a palladium membrane. Science 295, 105–107 (2002).

    Article  CAS  Google Scholar 

  41. Liu, Y. et al. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al2O3 catalyst. Electrochim. Acta 232, 13–21 (2017).

    Article  CAS  Google Scholar 

  42. Zhang, J. et al. Synchronous reduction–oxidation process for efficient removal of trichloroacetic acid: H* initiates dechlorination and ·OH Is responsible for removal efficiency. Environ. Sci. Technol. 53, 14586–14594 (2019).

    Article  CAS  Google Scholar 

  43. Guilian, W. & Naibin, B. Structure–activity relationships for rat and mouse LD50 of miscellaneous alcohols. Chemosphere 36, 1475–1483 (1998).

    Article  Google Scholar 

  44. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  45. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Res. Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  46. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  47. Seifitokaldani, A. et al. Hydronium-induced switching between CO2 electroreduction pathways. J. Am. Chem. Soc. 140, 3833–3837 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Natural Science Foundation of China (21576238 and 21106133, to Y.X.), the Natural Science Foundation of Zhejiang Province, China (LY16B060012, to Y.X.), Zhejiang Provincial Key Research and Development Program (2020C03085, to J.Y.) and the Singapore Ministry of Education Academic Research Fund (AcRF) Tier 1 (RG4/20 and RG2/21) and Tier 2 (MOE-MOET2EP10120-0002, to B.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.X. and B.L. conceived and designed the project and prepared the manuscript. Z.M. prepared the catalytic Pd membranes and carried out the hydrogenation experiments. R.Q. and J.W. performed the UPD and related experiments. X.L. and J.D. carried out the DFT calculations. J.Y., M.S. and X.M. contributed to the materials characterizations and analysed the experimental data.

Corresponding authors

Correspondence to Yinghua Xu or Bin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Emmanuel Mousset, Rui Liu and Binbin Huang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Table 1 and references 49–53.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Mao, Z., Qu, R. et al. Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nat Water 1, 95–103 (2023). https://doi.org/10.1038/s44221-022-00002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-022-00002-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing