Abstract
Risky behavior is a heritable trait that can have negative mental health consequences. It has been associated with variability in cortical structure and function, but the relation between cortex, gene expression and risky behavior remains unclear. Here we investigated associations of structural and functional cortical measures with risky behavior in UK Biobank data (Nā=ā19,205) and examined relationships of the identified cortical patterns with regional gene expression. We found that expression of 49 genes that were previously associated with risky behavior (out of 152 tested) was linked to these cortical patterns. We also observed associations between the identified cortical patterns and gene expression related to psychiatric disorders and specific cortical cell types. Through whole-genome analysis, we selected all genes with expression linked to the identified cortical patterns and identified their associated biological pathways. These findings contribute to a deeper understanding of the neural mechanisms underlying the translation of genetic predispositions into risky behavior.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$79.00 per year
only $6.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
This research used data from the UKBB resource at https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100. Access to UKBB data requires the submission and approval of a research project by the UKBB committee. Human gene expression data that support the findings of this study are available via the AHBA at http://human.brain-map.org/static/download. The GWAS summary statistics for risky behaviors can be downloaded via the SSGAC website at https://www.thessgac.org/. To access the GWAS summary statistics, an account on the SSGAC website is required. The dysregulated genes for psychiatric disorders are derived from the study by Gandal et al.45 (the data are deposited in the supplementary file named āaad6469_gandal_sm_data-table-s1.xlsxā). The cell-specific genes can be obtained from the study by Seidlitz et al.46 (Supplementary Data 5). The GO Biological Processes database are available via Zenodo at https://zenodo.org/records/4460714 (ref. 81).
Code availability
Python code on Jupyter notebook used for statistical analyses is available via GitHub at https://github.com/deeppsych/Shu_risky_behavior.
References
de-Juan-Ripoll, C., Chicchi Giglioli, I. A., Llanes-Jurado, J., MarĆn-Morales, J. & AlcaƱiz, M. Why do we take risks? Perception of the situation and risk proneness predict domain-specific risk taking. Front. Psychol. https://doi.org/10.3389/fpsyg.2021.562381 (2021).
Aydogan, G. et al. Genetic underpinnings of risky behaviour relate to altered neuroanatomy. Nat. Hum. Behav. 5, 787ā794 (2021).
Vannucci, A., Simpson, E. G., Gagnon, S. & Ohannessian, C. M. C. Social media use and risky behaviors in adolescents: a meta-analysis. J. Adolesc. https://doi.org/10.1016/j.adolescence.2020.01.014 (2020).
Kusev, P. et al. Understanding risky behavior: the influence of cognitive, emotional and hormonal factors on decision-making under risk. Front. Psychol. https://doi.org/10.3389/fpsyg.2017.00102 (2017).
Bozzini, A. B., Bauer, A., Maruyama, J., SimƵes, R. & Matijasevich, A. Factors associated with risk behaviors in adolescence: a systematic review. Braz. J. Psychiatry https://doi.org/10.1590/1516-4446-2019-0835 (2021).
Beauchamp, J. P., Cesarini, D. & Johannesson, M. The psychometric and empirical properties of measures of risk preferences. J. Risk Uncertain. 54, 203ā237 (2017).
Cesarini, D., Dawes, C. T., Johannesson, M., Lichtenstein, P. & Wallace, B. Genetic variation in preferences for giving and risk taking. Q. J. Econ. https://doi.org/10.1162/qjec.2009.124.2.809 (2009).
Harden, K. P. et al. Beyond dual systems: a genetically-informed, latent factor model of behavioral and self-report measures related to adolescent risk-taking. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2016.12.007 (2017).
Karlsson LinnĆ©r, R. et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 51, 245ā257 (2019).
Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science https://doi.org/10.1126/science.1072356 (2002).
Robbins, E. M. et al. SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron https://doi.org/10.1016/j.neuron.2010.11.003 (2010).
Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank. https://doi.org/10.1089/bio.2015.29031.hmm (2015).
Pasman, J. A. et al. Author correction: GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability Nat. Neurosci. https://doi.org/10.1038/s41593-019-0402-7 (2018).
Sanchez-Roige, S. et al. Genome-wide association studies of impulsive personality traits (BIS-11 and UPPS-P) and drug experimentation in up to 22,861 adult research participants identify loci in the CACNA1I and CADM2 genes. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2662-18.2019 (2019).
Day, F. R. et al. Physical and neurobehavioral determinants of reproductive onset and success. Nat. Genet. https://doi.org/10.1038/ng.3551 (2016).
Albayrak, Ć. et al. Common obesity risk alleles in childhood attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. https://doi.org/10.1002/ajmg.b.32144 (2013).
Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00826-4 (2021).
Grubb, M. A., Tymula, A., Gilaie-Dotan, S., Glimcher, P. W. & Levy, I. Neuroanatomy accounts for age-related changes in risk preferences. Nat. Commun. https://doi.org/10.1038/ncomms13822 (2016).
Jung, W. H., Lee, S., Lerman, C. & Kable, J. W. Amygdala functional and structural connectivity predicts individual risk tolerance. Neuron https://doi.org/10.1016/j.neuron.2018.03.019 (2018).
Nasiriavanaki, Z. et al. Prediction of individual differences in risky behavior in young adults via variations in local brain structure. Front. Neurosci. https://doi.org/10.3389/fnins.2015.00359 (2015).
Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0195-0 (2018).
Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature https://doi.org/10.1038/nature13185 (2014).
Rayon, T., Maizels, R. J., Barrington, C. & Briscoe, J. Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features. Development https://doi.org/10.1242/DEV.199711 (2021).
Kudo, L. C., Karsten, S. L., Chen, J., Levitt, P. & Geschwind, D. H. Genetic analysis of anteriorāposterior expression gradients in the developing mammalian forebrain. Cereb. Cortex https://doi.org/10.1093/cercor/bhl118 (2007).
Polleux, F., Ince-Dunn, G. & Ghosh, A. Transcriptional regulation of vertebrate axon guidance and synapse formation. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn2118 (2007).
Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature https://doi.org/10.1038/s41586-020-2781-z (2020).
Dear, R. et al. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01624-4 (2024).
Fornito, A., ArnatkeviÄiÅ«tÄ, A. & Fulcher, B. D. Bridging the gap between connectome and transcriptome. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2018.10.005 (2019).
Fu, J., Liu, F., Qin, W., Xu, Q. & Yu, C. Individual-level identification of gene expression associated with volume differences among neocortical areas. Cereb. Cortex https://doi.org/10.1093/cercor/bhz333 (2020).
Ritchie, J., Pantazatos, S. P. & French, L. Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex. Neuroimage https://doi.org/10.1016/j.neuroimage.2018.03.027 (2018).
Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science https://doi.org/10.1126/science.1255905 (2015).
ArnatkevicĢiÅ«tÄ, A., Fulcher, B. D., Pocock, R. & Fornito, A. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1005989 (2018).
Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1601745113 (2016).
Anderson, K. M. et al. Gene expression links functional networks across cortex and striatum. Nat. Commun. https://doi.org/10.1038/s41467-018-03811-x (2018).
Shafiei, G. et al. Topographic gradients of intrinsic dynamics across neocortex. eLife https://doi.org/10.7554/eLife.62116 (2020).
Morgan, S. E. et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1820754116 (2019).
Li, J. et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat. Commun. https://doi.org/10.1038/s41467-021-21943-5 (2021).
Anderson, K. M. et al. Convergent molecular, cellular, and cortical neuroimaging signatures of major depressive disorder. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2008004117 (2020).
Romero-Garcia, R., Warrier, V., Bullmore, E. T., Baron-Cohen, S. & Bethlehem, R. A. I. Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism. Mol. Psychiatry https://doi.org/10.1038/s41380-018-0023-7 (2019).
Patel, Y. et al. Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders. JAMA Psychiatry https://doi.org/10.1001/jamapsychiatry.2020.2694 (2021).
Patel, Y. et al. Virtual ontogeny of cortical growth preceding mental illness. Biol. Psychiatry 92, 299ā313 (2022).
Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. https://doi.org/10.1038/s41467-017-01261-5 (2017).
Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage https://doi.org/10.1016/j.neuroimage.2018.05.070 (2018).
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. Neuroimage https://doi.org/10.1016/j.neuroimage.2020.117038 (2020).
Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science https://doi.org/10.1126/science.aad6469 (2018).
Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. https://doi.org/10.1038/s41467-020-17051-5 (2020).
Fulcher, B. D., Arnatkeviciute, A. & Fornito, A. Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data. Nat. Commun. https://doi.org/10.1038/s41467-021-22862-1 (2021).
Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology https://doi.org/10.1038/npp.2009.129 (2010).
Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2008.01.001 (2008).
Aminoff, E. M., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2013.06.009 (2013).
Tobler, P. N., Christopoulos, G. I., OāDoherty, J. P., Dolan, R. J. & Schultz, W. Risk-dependent reward value signal in human prefrontal cortex. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.0809599106 (2009).
Yang, M., Fu, Q., Ma, C. & Li, B. Prefrontal dopaminergic regulation of cue-guided risky decision-making performance in rats. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2022.934834 (2022).
Schonberg, T., Fox, C. R. & Poldrack, R. A. Mind the gap: bridging economic and naturalistic risk-taking with cognitive neuroscience. Trend Cogn. Sci. https://doi.org/10.1016/j.tics.2010.10.002 (2011).
Yang, C. P. et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat. Commun. https://doi.org/10.1038/s41467-018-03247-3 (2018).
Zhu, X. et al. Associations between TCF4 gene polymorphism and cognitive functions in schizophrenia patients and healthy controls. Neuropsychopharmacology https://doi.org/10.1038/npp.2012.234 (2013).
Welsh, J. W., Mataczynski, M., Sarvey, D. B. & Zoltani, J. E. Management of complex co-occurring psychiatric disorders and high-risk behaviors in adolescence. Focus https://doi.org/10.1176/appi.focus.20190038 (2020).
Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science https://doi.org/10.1126/science.1077349 (2003).
Kol, A. et al. Astrocytes contribute to remote memory formation by modulating hippocampalācortical communication during learning. Nat. Neurosci. https://doi.org/10.1038/s41593-020-0679-6 (2020).
Doron, A. et al. Hippocampal astrocytes encode reward location. Nature 609, 772ā778 (2022).
Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron https://doi.org/10.1016/j.neuron.2020.12.008 (2021).
Bazargani, N. & Attwell, D. Astrocyte calcium signaling: the third wave. Nat. Neurosci. https://doi.org/10.1038/nn.4201 (2016).
Slezak, M. et al. Distinct mechanisms for visual and motor-related astrocyte responses in mouse visual cortex. Curr. Biol. https://doi.org/10.1016/j.cub.2019.07.078 (2019).
Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. https://doi.org/10.1038/nn1703 (2006).
Fang, L. P. et al. Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior. Nat. Commun. https://doi.org/10.1038/s41467-022-29020-1 (2022).
Liu, S. et al. Gene expression has distinct associations with brain structure and function in major depressive disorder. Adv. Sci. https://doi.org/10.1002/advs.202205486 (2023).
Yaniv, S. P. & Schuldiner, O. A flyās view of neuronal remodeling. Wiley Interdiscip. Rev. Dev. Biol. https://doi.org/10.1002/wdev.241 (2016).
Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01186-3 (2022).
Arnatkeviciute, A., Markello, R. D., Fulcher, B. D., Misic, B. & Fornito, A. Toward best practices for imaging transcriptomics of the human brain. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2022.10.016 (2023).
Mata, R., Frey, R., Richter, D., Schupp, J. & Hertwig, R. Risk preference: a view from psychology. J. Econ. Perspect. https://doi.org/10.1257/jep.32.2.155 (2018).
Mata, R., Josef, A. K. & Hertwig, R. Propensity for risk taking across the life span and around the globe. Psychol. Sci. https://doi.org/10.1177/0956797615617811 (2016).
Lƶnnqvist, J. E., Verkasalo, M., Walkowitz, G. & Wichardt, P. C. Measuring individual risk attitudes in the lab: task or ask? An empirical comparison. J. Econ. Behav. Organ. https://doi.org/10.1016/j.jebo.2015.08.003 (2015).
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. https://doi.org/10.1038/s41586-018-0579-z (2018).
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage https://doi.org/10.1016/j.neuroimage.2006.01.021 (2006).
Xu, K., Liu, Y., Zhan, Y., Ren, J. & Jiang, T. BRANT: a versatile and extendable resting-state fMRI toolkit. Front. Neuroinform. https://doi.org/10.3389/fninf.2018.00052 (2018).
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature https://doi.org/10.1038/nature11405 (2012).
Markello, R. D. et al. Standardizing workflows in imaging transcriptomics with the Abagen toolbox. eLife https://doi.org/10.7554/eLife.72129 (2021).
ArnatkevicĢiÅ«tÄ, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage https://doi.org/10.1016/j.neuroimage.2019.01.011 (2019).
Arends, R. M. et al. Associations between the CADM2 gene, substance use, risky sexual behavior, and self-control: a phenome-wide association study. Addict. Biol. https://doi.org/10.1111/adb.13015 (2021).
Ibrahim-Verbaas, C. A. et al. GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol. Psychiatry https://doi.org/10.1038/mp.2015.37 (2016).
Martins, D. et al. Imaging transcriptomics: convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep. https://doi.org/10.1016/j.celrep.2021.110173 (2021).
Fulcher, B. D., Arnatkeviciute, A. & Fornito, A. Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data. Nat. Commun. https://doi.org/10.1038/s41467-021-22862-1 (2021).
Acknowledgments
This research has been conducted using the UKBB Resource under application number 30091. We thank the Allen Institute for Brain Science, SSGAC, University of California, Los Angeles and National Institute of Mental Health for sharing human gene expression data, GWAS summary statistics of risky behavior, the dysregulated genes for psychiatric disorders and cell-specific genes, respectively. This work was supported by China Scholarship Council (201904910604) and Yunnan Province (202305AH340006) to S.L. and an Amsterdam Neuroscience grant (PI: K.J.H.V.). A.A. and K.J.H.V. are supported by the Foundation Volksbond Rotterdam. G.v.W. has received research funding by Philips for an unrelated project.
Author information
Authors and Affiliations
Contributions
S.L., A.A., G.v.W. and K.J.H.V. conceived and designed the study. S.L. analyzed the data, wrote the paper and revised the paper according to the reviewersā comments. A.A., K.J.H.V. and G.v.W. provided subtantial feedback on the data analysis and the revision of the paper. A.A., K.J.H.V. and G.v.W. jointly supervised the work.
Corresponding authors
Ethics declarations
Ethics
All participants provided written informed consent and the project received ethical approval from the North West Multi-Center Ethics committee (reference: 11/NW/0382).
Competing interests
All authors report no potential conflicts of interest.
Peer review
Peer review information
Nature Mental Health thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisherās note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Methods, Figs. 1ā6 and Table 14.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, S., Abdellaoui, A., van Wingen, G.A. et al. The relation between cortical gene expression and the neural correlates of risky behavior. Nat. Mental Health (2024). https://doi.org/10.1038/s44220-024-00311-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s44220-024-00311-4