Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mega-analysis of functional connectivity and network abnormalities in youth depression

Abstract

Major depressive disorder (MDD) represents the leading cause of mental health disability for young people worldwide but remains poorly understood. Previous neuroimaging research has indicated alterations in the connectivity of brain circuitry in youth MDD; however, findings have been inconsistent. This may relate to limitations in sample size and sample and methodological heterogeneity. In an effort to delineate robust neurobiological markers of youth MDD, we conducted a data-driven, connectome-wide mega-analysis of resting-state functional connectivity in 810 young individuals across 7 independent cohorts with a cross-sectional and case-control design. Compared with healthy comparison individuals (n = 370), youth MDD (n = 440) was associated with significant alterations in connectivity of densely connected brain areas (hubs), anchored in the default mode and dorsal and ventral attention networks. Critically, functional connectivity within these networks was significantly associated with depression symptom severity (r = –0.46 for hypoconnected regions and r = 0.53 for hyperconnected regions; both P values < 0.001), indicating the clinical relevance of functional connectivity alterations. Further, machine-learning analyses demonstrated that individual diagnostic status (AUC = 73.1%) and clinical severity (r = 0.14, P = 0.008) could be predicted on the basis of functional connectivity alone in unseen data using leave-one-site-out cross-validation. Together, our work represents an important first step toward robust characterization of the neurobiological basis of youth depression. We demonstrate the clinical relevance of brain connectivity in youth depression and highlight a critical role of functional hub regions, especially those localized to the default mode and dorsal and ventral attention networks in youth MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mega-analysis design and workflows.
Fig. 2: Functional connectivity changes in youth MDD compared with HC individuals controlling for age and sex.
Fig. 3: Depression symptom severity-related functional connectivity and network changes controlling for age and sex.
Fig. 4: Predictive models of diagnostic status (depression or HC individual) and depression severity.

Similar content being viewed by others

Data availability

This study did not involve the use of publicly available datasets, but de-identified data from seven previously published datasets collected by six research groups across four countries. Data may be made available upon reasonable request at the discretion of each respective principal investigator. Data sharing will be subject to the policies and procedures of the institution where each dataset was collected. Principal investigators from sites that provided data used in this study include C.G.D. (Sites 1 and 2), I.H.G. (Site 3 TAD dataset), B.J.H. (Sites 1 and 2), T.C.H. (Site 3 TIGER dataset), J.Q. (Site 5), J.S. (Site 4) and T.T.Y. (Site 6). Please direct all data requests to N.Y.T. at ngayant@student.unimelb.edu.au.

Code availability

All the neuroimaging pre-processing and analyses conducted in this study involved the use of publicly available toolboxes and resources. This included the fMRIPrep version 23.0.1 (accessible at https://fmriprep.org/en/stable/installation.html), the combined Schaefer 400 cortical and Melbourne Subcortex Atlas (accessible at https://github.com/yetianmed/subcortex/tree/master/Group-Parcellation/3T/Cortex-Subcortex), NBS MATLAB toolbox version 1.2 (accessible at https://www.nitrc.org/projects/nbs/) and ComBat Harmonization package (https://github.com/Jfortin1/ComBatHarmonization). All cortical renderings were generated using the GUI-based toolbox BrainNet Viewer version 1.7 (https://www.nitrc.org/projects/bnv) via MATLAB. For predictive analyses, dimension reduction via PCA was performed using the pca function in MATLAB version R2021a. This was followed by classification and regression analyses performed using the fitclinear and fitrlinear MATLAB functions, respectively.

References

  1. Kessler, R. C. & Bromet, E. J. The epidemiology of depression across cultures. Annu. Rev. Public Health 34, 119–138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kovess-Masfety, V. et al. Irritable mood in adult major depressive disorder: results from the world mental health surveys. Depress. Anxiety 30, 395–406 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gore, F. M. et al. Global burden of disease in young people aged 10–24 years: a systematic analysis. Lancet 377, 2093–2102 (2011).

    Article  PubMed  Google Scholar 

  4. Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).

    Article  Google Scholar 

  5. Dold, M. & Kasper, S. Evidence-based pharmacotherapy of treatment-resistant unipolar depression. Int. J. Psychiatry Clin. Pract. 21, 13–23 (2017).

    Article  PubMed  Google Scholar 

  6. Zisook, S. et al. Preadult onset vs. adult onset of major depressive disorder: a replication study. Acta Psychiatr. Scand. 115, 196–205 (2007).

    Article  PubMed  Google Scholar 

  7. Kessler, R. C. The costs of depression. Psychiatr. Clin. North Am. 35, 1–14 (2012).

    Article  PubMed  Google Scholar 

  8. Iorfino, F., Hickie, I. B., Lee, R. S. C., Lagopoulos, J. & Hermens, D. F. The underlying neurobiology of key functional domains in young people with mood and anxiety disorders: a systematic review. BMC Psychiatry 16, 156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Johnson, D., Dupuis, G., Piche, J., Clayborne, Z. & Colman, I. Adult mental health outcomes of adolescent depression: a systematic review. Depress. Anxiety 35, 700–716 (2018).

    Article  PubMed  Google Scholar 

  10. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  11. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    Article  PubMed  Google Scholar 

  12. Siddiqi, S. H. et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am. J. Psychiatry 177, 435–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cash, R. F. H. et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2020.05.033 (2020).

  14. Siddiqi, S. H. et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat. Hum. Behav. 5, 1707–1716 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cash, R. F. H., Müller, V. I., Fitzgerald, P. B., Eickhoff, S. B. & Zalesky, A. Altered brain activity in unipolar depression unveiled using connectomics. Nat. Ment. Health 1, 174–185 (2023).

    Article  Google Scholar 

  16. Van Essen, D. C. & Barch, D. M. The human connectome in health and psychopathology. World Psychiatry 14, 154–157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ashworth, E., Brooks, S. J. & Schiöth, H. B. Neural activation of anxiety and depression in children and young people: a systematic meta-analysis of fMRI studies. Psychiatry Res. Neuroimaging 311, 111272 (2021).

    Article  PubMed  Google Scholar 

  18. Tse, N. Y., Ratheesh, A., Ganesan, S., Zalesky, A. & Cash, R. F. H. Functional dysconnectivity in youth depression: systematic review, meta‐analysis, and network-based integration. Neurosci. Biobehav. Rev. 153, 105394 (2023).

    Article  PubMed  Google Scholar 

  19. Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Onitsuka, T. et al. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin. Neurosci. 76, 1–14 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zacharek, S. J., Kribakaran, S., Kitt, E. R. & Gee, D. G. Leveraging big data to map neurodevelopmental trajectories in pediatric anxiety. Dev. Cogn. Neurosci. 50, 100974 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zugman, A. et al. Mega-analysis methods in ENIGMA: the experience of the generalized anxiety disorder working group. Hum. Brain Mapp. 43, 255–277 (2022).

    Article  PubMed  Google Scholar 

  26. Gao, S., Calhoun, V. D. & Sui, J. Machine learning in major depression: from classification to treatment outcome prediction. CNS Neurosci. Ther. 24, 1037–1052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patel, M. J., Khalaf, A. & Aizenstein, H. J. Studying depression using imaging and machine learning methods. Neuroimage Clin. 10, 115–123 (2016).

    Article  PubMed  Google Scholar 

  28. Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207 (2010).

    Article  PubMed  Google Scholar 

  29. Jain, S. et al. A psychometric evaluation of the CDRS and MADRS in assessing depressive symptoms in children. J. Am. Acad. Child Adolesc. Psychiatry 46, 1204–1212 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leucht, S., Fennema, H., Engel, R. R., Kaspers-Janssen, M. & Szegedi, A. Translating the HAM-D into the MADRS and vice versa with equipercentile linking. J. Affect. Disord. 226, 326–331 (2018).

    Article  PubMed  Google Scholar 

  31. Oldham, S. & Fornito, A. The development of brain network hubs. Dev. Cogn. Neurosci. 36, 100607 (2019).

    Article  PubMed  Google Scholar 

  32. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  33. Kaiser, M. Mechanisms of connectome development. Trends Cogn. Sci. 21, 703–717 (2017).

    Article  PubMed  Google Scholar 

  34. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96–110 (2014).

    Article  PubMed  Google Scholar 

  35. Sacchet, M. D. et al. Large-scale hypoconnectivity between resting-state functional networks in unmedicated adolescent major depressive disorder. Neuropsychopharmacology 41, 2951–2960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gray, J. P., Müller, V. I., Eickhoff, S. B. & Fox, P. T. Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am. J. Psychiatry 177, 422–434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dai, L., Zhou, H., Xu, X. & Zuo, Z. Brain structural and functional changes in patients with major depressive disorder: a literature review. PeerJ https://doi.org/10.7717/peerj.8170 (2019).

  39. Li, X. & Wang, J. Abnormal neural activities in adults and youths with major depressive disorder during emotional processing: a meta-analysis. Brain Imaging Behav. 15, 1134–1154 (2021).

    Article  PubMed  Google Scholar 

  40. Zhukovsky, P. et al. Coordinate-based network mapping of brain structure in major depressive disorder in younger and older adults: a systematic review and meta-analysis. Am. J. Psychiatry 178, 1119–1128 (2021).

    Article  PubMed  Google Scholar 

  41. Kolk, S. M. & Rakic, P. Development of prefrontal cortex. Neuropsychopharmacology 47, 41–57 (2022).

    Article  PubMed  Google Scholar 

  42. Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl Acad. Sci. 101, 8174–8179 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Casanova, R., Whitlow, C. T., Wagner, B., Espeland, M. A. & Maldjian, J. A. Combining graph and machine learning methods to analyze differences in functional connectivity across sex. Open Neuroimag. J. https://doi.org/10.2174/1874440001206010001 (2012).

  44. Zhang, C., Dougherty, C. C., Baum, S. A., White, T. & Michael, A. M. Functional connectivity predicts gender: evidence for gender differences in resting brain connectivity. Hum. Brain Mapp. 39, 1765–1776 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Korgaonkar, M. S., Goldstein-Piekarski, A. N., Fornito, A. & Williams, L. M. Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Mol. Psychiatry 25, 1537–1549 (2020).

    Article  PubMed  Google Scholar 

  46. Chin Fatt, C. R. et al. Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant. Am. J. Psychiatry 177, 143–154 (2020).

    Article  PubMed  Google Scholar 

  47. Liston, C. et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatry 76, 517–526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Toenders, Y. J. et al. Neuroimaging predictors of onset and course of depression in childhood and adolescence: a systematic review of longitudinal studies. Dev. Cogn. Neurosci. 39, 100700 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  PubMed  Google Scholar 

  51. Xu, Z. et al. Meta-connectomic analysis maps consistent, reproducible, and transcriptionally relevant functional connectome hubs in the human brain. Commun. Biol. 5, 1056 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Grayson, D. S. et al. Structural and functional rich club organization of the brain in children and adults. PLoS ONE 9, e88297 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grayson, D. S. & Fair, D. A. Development of large-scale functional networks from birth to adulthood: a guide to the neuroimaging literature. Neuroimage 160, 15–31 (2017).

    Article  PubMed  Google Scholar 

  54. van den Heuvel, M. P., Scholtens, L. H. & Kahn, R. S. Multiscale neuroscience of psychiatric disorders. Biol. Psychiatry 86, 512–522 (2019).

    Article  PubMed  Google Scholar 

  55. Fornito, A., Bullmore, E. T. & Zalesky, A. Opportunities and challenges for psychiatry in the connectomic era. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 9–19 (2017).

    PubMed  Google Scholar 

  56. Sisk, L. M. & Gee, D. G. Stress and adolescence: vulnerability and opportunity during a sensitive window of development. Curr. Opin. Psychol. 44, 286–292 (2022).

    Article  PubMed  Google Scholar 

  57. Sydnor, V. J. et al. Intrinsic activity development unfolds along a sensorimotor–association cortical axis in youth. Nat. Neurosci. https://doi.org/10.1038/s41593-023-01282-y (2023).

  58. Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Marín, O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat. Med. 22, 1229–1238 (2016).

    Article  PubMed  Google Scholar 

  60. Ho, T. C. & King, L. S. Mechanisms of neuroplasticity linking early adversity to depression: developmental considerations. Transl. Psychiatry 11, 517 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Giedd, J. N., Keshavan, M. & Paus, T. Why do many psychiatric disorders emerge during adolescence. Nat. Rev. Neurosci. 9, 947–957 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Casey, B. J., Heller, A. S., Gee, D. G. & Cohen, A. O. Development of the emotional brain. Neurosci. Lett. 693, 29–34 (2019).

    Article  PubMed  Google Scholar 

  63. Sotiras, A. et al. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proc. Natl Acad. Sci. USA 114, 3527–3532 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).

    Article  PubMed  Google Scholar 

  65. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  PubMed  Google Scholar 

  66. Andrews-Hanna, J. R. The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18, 251–270 (2012).

    Article  PubMed  Google Scholar 

  67. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hamilton, J. P., Farmer, M., Fogelman, P. & Gotlib, I. H. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry 78, 224–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhou, H. X. et al. Rumination and the default mode network: meta-analysis of brain imaging studies and implications for depression. Neuroimage 206, 116287 (2020).

    Article  PubMed  Google Scholar 

  70. Li, B. J. et al. A brain network model for depression: from symptom understanding to disease intervention. CNS Neurosci. Ther. 24, 1004–1019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Davey, C. G. & Harrison, B. J. The self on its axis: a framework for understanding depression. Transl. Psychiatry 12, 23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jamieson, A. J., Harrison, B. J., Razi, A. & Davey, C. G. Rostral anterior cingulate network effective connectivity in depressed adolescents and associations with treatment response in a randomized controlled trial. Neuropsychopharmacology 47, 1240–1248 (2022).

    Article  PubMed  Google Scholar 

  73. Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 30, 625–637 (2009).

    Article  PubMed  Google Scholar 

  74. Hamilton, J. P. et al. Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol. Psychiatry 70, 327–333 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, X., Öngür, D., Auerbach, R. P. & Yao, S. Cognitive vulnerability to major depression: view from the intrinsic network and cross-network interactions. Harv. Rev. Psychiatry 24, 188–201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29–52 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Davey, C. G., Breakspear, M., Pujol, J. & Harrison, B. J. A brain model of disturbed self-appraisal in depression. Am. J. Psychiatry 174, 895–903 (2017).

    Article  PubMed  Google Scholar 

  78. Lees, B. et al. Altered neurocognitive functional connectivity and activation patterns underlie psychopathology in preadolescence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 387–398 (2021).

    PubMed  Google Scholar 

  79. Chai, X. J. et al. Altered intrinsic functional brain architecture in children at familial risk of major depression. Biol. Psychiatry 80, 849–858 (2016).

    Article  PubMed  Google Scholar 

  80. Hirshfeld-Becker, D. R. et al. Intrinsic functional brain connectivity predicts onset of major depression disorder in adolescence: a pilot study. Brain Connect. 9, 388–398 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dunlop, K., Talishinsky, A. & Liston, C. Intrinsic brain network biomarkers of antidepressant response: a review. Curr. Psychiatry Rep. 21, 87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brakowski, J. et al. Resting state brain network function in major depression—depression symptomatology, antidepressant treatment effects, future research. J. Psychiatr. Res. 92, 147–159 (2017).

    Article  PubMed  Google Scholar 

  83. Tura, A. & Goya-Maldonado, R. Brain connectivity in major depressive disorder: a precision component of treatment modalities? Transl. Psychiatry 13, 196 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li, J., Chen, J., Kong, W., Li, X. & Hu, B. Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: a systematic review. J. Affect. Disord. 296, 622–634 (2022).

    Article  PubMed  Google Scholar 

  85. Marwood, L., Wise, T., Perkins, A. M. & Cleare, A. J. Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety. Neurosci. Biobehav. Rev. 95, 61–72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Macêdo, M. A., Sato, J. R., Bressan, R. A. & Pan, P. M. Adolescent depression and resting-state fMRI brain networks: a scoping review of longitudinal studies. Braz. J. Psychiatry 44, 420–433 (2022).

    PubMed  PubMed Central  Google Scholar 

  87. Taïb, S. et al. How does repetitive transcranial magnetic stimulation influence the brain in depressive disorders?: A review of neuroimaging magnetic resonance imaging studies. J. ECT 34, 79–86 (2018).

    Article  PubMed  Google Scholar 

  88. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2012.04.028 (2012).

  89. Weigand, A. et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 84, 28–37 (2018).

    Article  PubMed  Google Scholar 

  90. Cash, R. F. H. et al. A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression. Hum. Brain Mapp. 40, 4618–4629 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cash, R. F. H., Cocchi, L., Lv, J., Fitzgerald, P. B. & Zalesky, A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 78, 337–339 (2021).

    Article  PubMed  Google Scholar 

  92. Siddiqi, S. H., Weigand, A., Pascual-Leone, A. & Fox, M. D. Identification of personalized transcranial magnetic stimulation targets based on subgenual cingulate connectivity: an independent replication. Biol. Psychiatry 90, e55–e56 (2021).

    Article  PubMed  Google Scholar 

  93. Cole, E. J. et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry 177, 716–726 (2020).

    Article  PubMed  Google Scholar 

  94. Cole, E. J. et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am. J. Psychiatry 179, 132–141 (2022).

    Article  PubMed  Google Scholar 

  95. Moreno-Ortega, M. et al. Parcel-guided rTMS for depression. Transl. Psychiatry 10, 283 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang, S. et al. Driving brain state transitions in major depressive disorder through external stimulation. Hum. Brain Mapp. 43, 5326–5339 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Beynel, L., Powers, J. P. & Appelbaum, L. G. Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: a systematic review. Neuroimage 211, 116596 (2020).

    Article  PubMed  Google Scholar 

  98. Philip, N. S., Barredo, J., Aiken, E. & Carpenter, L. L. Neuroimaging mechanisms of therapeutic transcranial magnetic stimulation for major depressive disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 211–222 (2018).

    PubMed  Google Scholar 

  99. Eldaief, M. C. et al. Network-specific metabolic and haemodynamic effects elicited by non-invasive brain stimulation. Nat. Ment. Health 1, 346–360 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sale, M. V., Mattingley, J. B., Zalesky, A. & Cocchi, L. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci. Biobehav. Rev. 57, 187–198 (2015).

    Article  PubMed  Google Scholar 

  101. Cui, Z. & Gong, G. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neuroimage 178, 622–637 (2018).

    Article  PubMed  Google Scholar 

  102. Hetrick, S. E., McKenzie, J. E., Cox, G. R., Simmons, M. B. & Merry, S. N. Newer generation antidepressants for depressive disorders in children and adolescents. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004851.pub3 (2012).

  103. Kim, M. E. et al. Empirical assessment of the assumptions of ComBat with diffusion tensor imaging. J. Med. Imaging 11, 024011 (2024).

    Article  Google Scholar 

  104. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  PubMed  Google Scholar 

  105. Hollunder, B. et al. Toward personalized medicine in connectomic deep brain stimulation. Prog. Neurobiol. 210, 102211 (2022).

    Article  PubMed  Google Scholar 

  106. Bondar, J., Caye, A., Chekroud, A. M. & Kieling, C. Symptom clusters in adolescent depression and differential response to treatment: a secondary analysis of the treatment for adolescents with depression study randomised trial. Lancet Psychiatry https://doi.org/10.1016/S2215-0366(20)30060-2 (2020).

  107. Cheng, W. et al. Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression. Transl. Psychiatry 8, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Berk, M. et al. Youth depression alleviation with anti-inflammatory agents (YoDA-A): a randomised clinical trial of rosuvastatin and aspirin. BMC Med. 18, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Walker, J. C. et al. Study protocol for teen inflammation glutamate emotion research (TIGER). Front. Hum. Neurosci. 14, 585512 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ho, T. C. et al. Default mode and salience network alterations in suicidal and non-suicidal self-injurious thoughts and behaviors in adolescents with depression. Transl. Psychiatry 11, 38 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Davey, C. G., Cearns, M., Jamieson, A. & Harrison, B. J. Suppressed activity of the rostral anterior cingulate cortex as a biomarker for depression remission. Psychol. Med. 53, 2448–2455 (2023).

    Article  Google Scholar 

  112. Connolly, C. G. et al. Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. J. Affect. Disord. 207, 86–94 (2017).

    Article  PubMed  Google Scholar 

  113. Schwartz, J. et al. Resting-state functional connectivity and inflexibility of daily emotions in major depression. J. Affect. Disord. 249, 26–34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chattopadhyay, S. et al. Cognitive behavioral therapy lowers elevated functional connectivity in depressed adolescents. EBioMedicine 17, 216–222 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hagan, C. C. et al. Magnetic resonance imaging of a randomized controlled trial investigating predictors of recovery following psychological treatment in adolescents with moderate to severe unipolar depression: study protocol for Magnetic Resonance-Improving Mood with Psychoanalytic and Cognitive Therapies (MR-IMPACT). BMC Psychiatry 13, 247 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Davey, C. G. et al. The addition of fluoxetine to cognitive behavioural therapy for youth depression (YoDA-C): a randomised, double-blind, placebo-controlled, multicentre clinical trial. Lancet Psychiatry 6, 735–744 (2019).

    Article  PubMed  Google Scholar 

  117. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th ed. (APA, 1994).

  118. Evans, A. C., Janke, A. L., Collins, D. L. & Baillet, S. Brain templates and atlases. Neuroimage 62, 911–922 (2012).

    Article  PubMed  Google Scholar 

  119. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  PubMed  Google Scholar 

  120. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  122. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  123. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J. & Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996).

    Article  PubMed  Google Scholar 

  124. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Article  PubMed  Google Scholar 

  125. Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 (2017).

    Article  PubMed  Google Scholar 

  126. Schaefer, A. et al. Local–global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  127. Tian, Y., Margulies, D. S., Breakspear, M. & Zalesky, A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat. Neurosci. 23, 1421–1432 (2020).

    Article  PubMed  Google Scholar 

  128. Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    Article  PubMed  Google Scholar 

  129. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  130. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  131. Yu, M. et al. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 39, 4213–4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ilioska, I. et al. Connectome-wide mega-analysis reveals robust patterns of atypical functional connectivity in autism. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2022.12.018 (2023).

  133. Du, X. et al. Unraveling schizophrenia replicable functional connectivity disruption patterns across sites. Hum. Brain Mapp. 44, 156–169 (2023).

    Article  PubMed  Google Scholar 

  134. Tian, Y. & Zalesky, A. Machine learning prediction of cognition from functional connectivity: are feature weights reliable? Neuroimage 245, 118648 (2021).

    Article  PubMed  Google Scholar 

  135. Xia, M., Wang, J. & He, Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8, e68910 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Foundation for Suicide Prevention (SRG-1-141-18 to T.T.Y.), the Australian National Health and Medical Research Council (NHMRC; Postgraduate Scholarship grant no. 2022387 to N.Y.T., Early Career fellowship to A.R., Investigator Leadership grant no. 2017962 to L.S. and Emerging Leadership Investigator grant no. 2017527 to R.F.H.C.), the Australian Research Council Future Fellowship (A.Z.), the Australian Research Training Program Scholarship (S.G.), the Brain and Behavior Research Foundation (to T.T.Y. and grant no. 28972 to M.D.S.), the Dimension Giving Fund (M.D.S.), the training fellowship awarded to the Division of Child and Adolescent Psychiatry at Columbia University (grant no. T32 MH016434-42 to J.S.K.), the Graeme Clark Institute top-up scholarship (S.G.), the J. Jacobson Fund (T.T.Y.), the Mary Lugton Postdoc Fellowship (Y.E.T.), the National Center for Advancing Translational Sciences (T.T.Y.), the National Center for Complementary and Integrative Health (grant nos. R21AT009173, R61AT009864, R33AT009864 to T.T.Y.), the National Institutes of Health (RO1 MH129832 to L.S. and UCSF-CTSI UL1TR001872 to T.T.Y.), the National Institute of Mental Health (project no. R01MH125850 to M.D.S. and R01MH085734 to T.T.Y.), the Rebecca L. Cooper Foundation Fellowship (A.Z.), the Rubicon award from the Dutch NOW (grant no. 452020227 to L.K.M.H.), the University of Melbourne Dame Kate Campbell fellowship (L.S.), the UCSF Research Evaluation and Allocation Committee (T.T.Y.) and the UCSF Weill Institute for Neurosciences (T.T.Y.). Data from the MR-IMPACT study site were funded by the United Kingdom Medical Research Council (G0802226) and undertaken at the University of Cambridge. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This research was also supported by The University of Melbourne’s Research Computing Services and the Petascale Campus Initiative.

Author information

Authors and Affiliations

Authors

Contributions

N.Y.T., A.Z., R.F.H.C. and A.R. contributed to the conception and design of the study. N.Y.T., A.Z., R.F.H.C. and A.R. conducted the neuroimaging and statistical analyses with contributions from Y.E.T., C.G.C., C.G.D., I.H.G., B.J.H., T.C.H., A.J.J., J.S.K., Y.L., A.O., J.Q., M.D.S., A.N.S., J.S., D.W. and T.T.Y. contributed data. S.G., X.M. and X.Y. assisted with data collation. N.Y.T., A.Z., R.F.H.C., A.R., L.K.M.H. and L.S. contributed to the writing of the manuscript with input and valuable revision from all authors.

Corresponding author

Correspondence to Andrew Zalesky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Deanna Barch, Mingrui Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Participant exclusion flowchart.

Flowchart outlining the number of participants excluded and the reason for exclusion following each stage of processing. HC = healthy control; MDD = major depressive disorder.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Tables 1–4 and Sections 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tse, N.Y., Ratheesh, A., Tian, Y.E. et al. A mega-analysis of functional connectivity and network abnormalities in youth depression. Nat. Mental Health (2024). https://doi.org/10.1038/s44220-024-00309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44220-024-00309-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing