Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping cerebellar anatomical heterogeneity in mental and neurological illnesses

Abstract

The cerebellum is linked to motor coordination, cognitive and affective processing, in addition to a wide range of clinical illnesses. To enable robust quantification of individual cerebellar anatomy relative to population norms, we mapped the normative development and aging of the cerebellum across the lifespan using brain scans of >54,000 participants. We estimated normative models at voxel-wise spatial precision, enabling integration with cerebellar atlases. Applying the normative models in independent samples revealed substantial heterogeneity within five clinical illnesses: autism spectrum disorder, mild cognitive impairment, Alzheimer disease, bipolar disorder, and schizophrenia. Notably, individuals with autism spectrum disorder and mild cognitive impairment exhibited increased positive and negative extreme deviations in cerebellar anatomy, while those with schizophrenia and Alzheimer disease showed predominantly negative deviations. Finally, extreme deviations were associated with cognitive scores. Our results provide a voxel-wise mapping of cerebellar anatomy across the human lifespan demonstrating the cerebellum’s nuanced role in different clinical illnesses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normative models based on MRI data from >54,000 participants describe the lifespan trajectories of cerebellar lobules and individual voxels.
Fig. 2: The voxel-wise deviations from estimated norms show high levels of heterogeneity within diagnostic groups.
Fig. 3: Voxel-wise normative models can be applied to existing or future cerebellar atlases.
Fig. 4: When applied to different atlases, significant correlations were observed between the percentage of extreme deviations per participant and estimated IQ scores.

Similar content being viewed by others

Data availability

In this study, we used brain imaging from ABIDE, ADHD200, AOMIC ID1000, Beijing Enhanced, CAMCAN, CoRR, DLBS, DS000119, DS000202, DS000222, Fcon1000, HBN, HCP, MPI Lemon, NKI-Rockland, OASIS-3, PING, SALD, SLIM, and UK Biobank, ADNI, AIBL, DEMGEN, PNC, and TOP. Publicly available datasets are available on request. The models from this work are available via PCNportal (https://pcnportal.dccn.nl/) (ref. 74) .

Code availability

All code used in this work is publicly available at FreeSurfer (https://surfer.nmr.mgh.harvard.edu), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), ACAPULCO (https://gitlab.com/shuohan/acapulco), and SUIT (https://github.com/jdiedrichsen/suit). Code for the normative model is available as an open-source python package, Predictive Clinical Neuroscience (PCN) toolkit (https://github.com/amarquand/PCNtoolkit). Additional codes are available via Github (https://github.com/milinkim/mapping_cerebellar_hetereogeneity).

References

  1. Hofman, M. A. Size and shape of the cerebral cortex in mammals. II. The cortical volume. Brain. Behav. Evol. 32, 17–26 (1988).

    Article  PubMed  Google Scholar 

  2. Lent, R., Azevedo, F. A. C., Andrade-Moraes, C. H. & Pinto, A. V. O. How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur. J. Neurosci. 35, 1–9 (2012).

    Article  PubMed  Google Scholar 

  3. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great apes. Curr. Biol. 24, 2440–2444 (2014).

    Article  PubMed  Google Scholar 

  5. Leiner, H. C., Leiner, A. L. & Dow, R. S. Does the cerebellum contribute to mental skills? Behav. Neurosci. 100, 443–454 (1986).

    Article  PubMed  Google Scholar 

  6. Schmahmann, J. D. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol. Rev. 20, 236–260 (2010).

    Article  PubMed  Google Scholar 

  7. Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32, 413–434 (2009).

    Article  PubMed  Google Scholar 

  8. Schmahmann, J. D. The cerebellum and cognition. Neurosci. Lett. 688, 62–75 (2019).

    Article  PubMed  Google Scholar 

  9. Gellersen, H. M., Guell, X. & Sami, S. Differential vulnerability of the cerebellum in healthy ageing and Alzheimer’s disease. Neuroimage Clin. 30, 102605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moberget, T. et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol. Psychiatry 23, 1512–1520 (2018).

    Article  PubMed  Google Scholar 

  11. D’Mello, A. M., Crocetti, D., Mostofsky, S. H. & Stoodley, C. J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 7, 631–639 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, S. S.-H., Kloth, A. D. & Badura, A. The cerebellum, sensitive periods, and autism. Neuron 83, 518–532 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Traut, N. et al. Cerebellar volume in autism: literature meta-analysis and analysis of the Autism Brain Imaging Data Exchange Cohort. Biol. Psychiatry 83, 579–588 (2018).

    Article  PubMed  Google Scholar 

  14. Wolfers, T., Buitelaar, J. K., Beckmann, C. F., Franke, B. & Marquand, A. F. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57, 328–349 (2015).

    Article  PubMed  Google Scholar 

  15. Marquand, A. F. et al. Conceptualizing mental disorders as deviations from normative functioning. Mol. Psychiatry 24, 1415–1424 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kia, S. M. et al. Closing the life-cycle of normative modeling using federated hierarchical Bayesian regression. PLOS ONE 17, e0278776 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rutherford, S. et al. Charting brain growth and aging at high spatial precision. eLife 11, e72904 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolfers, T. et al. Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. Hum. Brain Mapp. 42, 2546–2555 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Floris, D. L. et al. Atypical brain asymmetry in autism—A candidate for clinically meaningful stratification. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 802–812 (2021).

    PubMed  Google Scholar 

  20. Zabihi, M. et al. Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 567–578 (2018).

    PubMed  Google Scholar 

  21. Zabihi, M. et al. Fractionating autism based on neuroanatomical normative modeling. Transl. Psychiatry 10, 384 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wolfers, T. et al. Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models. Psychol. Med. 50, 314–323 (2020).

    Article  PubMed  Google Scholar 

  23. Verdi, S., Marquand, A. F., Schott, J. M. & Cole, J. H. Beyond the average patient: how neuroimaging models can address heterogeneity in dementia. Brain 144, 2946–2953 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Verdi, S. et al. Revealing individual neuroanatomical heterogeneity in Alzheimer disease using neuroanatomical normative modeling. Neurology https://doi.org/10.1212/WNL.0000000000207298 (2023).

  25. Remiszewski, N. et al. Contrasting case-control and normative reference approaches to capture clinically relevant structural brain abnormalities in patients with first-episode psychosis who are antipsychotic naive. JAMA Psychiatry 79, 1133–1138 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wolfers, T. et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry 75, 1146–1155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Segal, A. et al. Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders. Nat. Neurosci. https://doi.org/10.1038/s41593-023-01404-6 (2023).

  28. Sathyanesan, A. et al. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat. Rev. Neurosci. 20, 298–313 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Han, S., An, Y., Carass, A., Prince, J. L. & Resnick, S. M. Longitudinal analysis of regional cerebellum volumes during normal aging. Neuroimage 220, 117062 (2020).

    Article  PubMed  Google Scholar 

  30. Romero, J. E. et al. Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: a MRI analysis. Hum. Brain Mapp. 42, 1287–1303 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo, C. C. et al. Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain 139, 1527–1538 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin, C.-Y., Chen, C.-H., Tom, S. E., Kuo, S.-H. & Alzheimer’s Disease Neuroimaging Initiative Cerebellar volume is associated with cognitive decline in mild cognitive impairment: results from ADNI. Cerebellum 19, 217–225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jacobs, H. I. L. et al. The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. Brain J. Neurol. 141, 37–47 (2018).

    Article  Google Scholar 

  35. Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11, 1006–1012 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mitoma, H. et al. Consensus paper. Cerebellar reserve: from cerebellar physiology to cerebellar disorders. Cerebellum 19, 131–153 (2020).

    Article  PubMed  Google Scholar 

  37. Graff-Radford, J. et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 20, 222–234 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Constantinides, C. et al. Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium. Mol. Psychiatry 28, 1201–1209 (2023).

    Article  PubMed  Google Scholar 

  39. Kaufmann, T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 22, 1617–1623 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Andreasen, N. C. & Pierson, R. The role of the cerebellum in schizophrenia. Biol. Psychiatry 64, 81–88 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laidi, C. et al. Cerebellar atypicalities in autism? Biol. Psychiatry 92, 674–682 (2022).

    Article  PubMed  Google Scholar 

  42. Lombardo, M. V., Lai, M.-C. & Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry 24, 1435–1450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).

    Article  PubMed  Google Scholar 

  44. Deary, I. J., Penke, L. & Johnson, W. The neuroscience of human intelligence differences. Nat. Rev. Neurosci. 11, 201–211 (2010).

    Article  PubMed  Google Scholar 

  45. Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M. & Deary, I. J. Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence 76, 101376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moberget, T. et al. Cerebellar gray matter volume is associated with cognitive function and psychopathology in adolescence. Biol. Psychiatry 86, 65–75 (2019).

    Article  PubMed  Google Scholar 

  47. Kang, N., Chung, S., Lee, S.-H. & Bang, M. Cerebro-cerebellar gray matter abnormalities associated with cognitive impairment in patients with recent-onset and chronic schizophrenia. Schizophrenia 10, 11 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lange, R. T. in Encyclopedia of Clinical Neuropsychology (eds Kreutzer, J. S. et al.) 1907–1908 (Springer, 2011); https://doi.org/10.1007/978-0-387-79948-3_1066

  50. Tzvi, E., Loens, S. & Donchin, O. Mini-review: the role of the cerebellum in visuomotor adaptation. Cerebellum 21, 306–313 (2022).

    Article  PubMed  Google Scholar 

  51. Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125, 358–384 (2021).

    Article  PubMed  Google Scholar 

  52. Sharma, R. R. Emotional intelligence from 17th century to 21st century: perspectives and directions for future research. Vision 12, 59–66 (2008).

    Article  Google Scholar 

  53. Bethlehem, R. A. I. et al. A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder. Commun. Biol. 3, 486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hong, S.-J. et al. Toward neurosubtypes in autism. Biol. Psychiatry 88, 111–128 (2020).

    Article  PubMed  Google Scholar 

  55. Shan, X. et al. Mapping the heterogeneous brain structural phenotype of autism spectrum disorder using the normative model. Biol. Psychiatry 91, 967–976 (2022).

    Article  PubMed  Google Scholar 

  56. Ségonne, F. et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075 (2004).

    Article  PubMed  Google Scholar 

  57. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  58. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    Article  PubMed  Google Scholar 

  59. Carass, A. et al. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage 183, 150–172 (2018).

    Article  PubMed  Google Scholar 

  60. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fonov, V. et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54, 313–327 (2011).

    Article  PubMed  Google Scholar 

  62. Diedrichsen, J. A spatially unbiased atlas template of the human cerebellum. Neuroimage 33, 127–138 (2006).

    Article  PubMed  Google Scholar 

  63. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46 (2009).

    Article  PubMed  Google Scholar 

  64. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fraza, C. J., Dinga, R., Beckmann, C. F. & Marquand, A. F. Warped Bayesian linear regression for normative modelling of big data. NeuroImage 245, 118715 (2021).

    Article  PubMed  Google Scholar 

  66. Rutherford, S. et al. The normative modeling framework for computational psychiatry. Nat. Protoc. 17, 1711–1734 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rios, G. & Tobar, F. Compositionally-warped Gaussian processes. Neural Netw. 118, 235–246 (2019).

    Article  PubMed  Google Scholar 

  68. Dinga, R. et al. Normative modeling of neuroimaging data using generalized additive models of location scale and shape. Preprint at BioRxiv https://doi.org/10.1101/2021.06.14.448106 (2021).

  69. Bayer, J. M. M. et al. Accommodating site variation in neuroimaging data using normative and hierarchical Bayesian models. NeuroImage 264, 119699 (2022).

    Article  PubMed  Google Scholar 

  70. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Article  Google Scholar 

  71. Bonferroni, C. E. Teoria Statistica Delle Classi e Calcolo Delle Probabilità (R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1936).

  72. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  73. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  74. Barkema, P. et al. Predictive Clinical Neuroscience Portal (PCNportal): instant online access to research-grade normative models for clinical neuroscientists. Wellcome Open Res. 8, 326 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to all the individuals who participated in the studies and acknowledge the contributions of the clinicians and researchers involved in the recruitment and assessment of participants for making this work possible. We gratefully acknowledge the following funding bodies. First, we acknowledge the European Research Council under the European Union’s Horizon 2020 research and Innovation program (ERC StG, grant 802998), the Research Council of Norway (300767, 324499), the South-Eastern Norway Regional Health Authority (2019101). We acknowledge the Norwegian registry of persons assessed for cognitive symptoms (NorCog) for providing access to patient data. We conducted this research using the UK Biobank Resource under application number 27412. T.W. acknowledges funding by the German Research Foundation (DFG; project number: 513851350) as well as starting funding from the faculty of medicine at the University of Tübingen. A.F.M. gratefully acknowledges funding from the European Research Council (‘MENTALPRECISION’ 101001118) and from the Raynor Foundation. We performed this work on the Services for sensitive data (TSD), University of Oslo, Norway, with resources provided by UNINETT Sigma2—the National Infrastructure for High-Performance Computing and Data Storage in Norway. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann–La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research and Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private-sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. In addition, data used in preparation of this article were obtained from the Australian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL) databases (adni.loni.usc.edu) and the Pediatric Imaging, Neurocognition and Genetics (PING) study database (chd.ucsd.edu/research/ping-study.html, now shared through the NIMH Data Archive (NDA). This publication is solely the responsibility of the authors and does not necessarily represent the views of the National Institutes of Health or PING investigators. The work was supported by public funds Helse Sør-Øst grant 2021040 (supporting M.K. and T.M.), DFG Emmy Noether 513851350 (supporting T.W.), Research Council of Norway (no. 324499) and NordForsk (no. 164218), and KG Jebsen Foundation. The funders had no role in conception of the study as well as the analyses and/or interpretations of the results.

Author information

Authors and Affiliations

Authors

Contributions

T.M., T.W., and M.K. originally conceived of the project. M.K., T.W., T.M., and E.L. performed the analyses. M.K., T.W., and T.M. wrote the initial draft of the manuscript. O.A.A., G.R., K.P., G.S., N.E.S., O.B.S., A.F.M., C.F.B., T.U., T.W., and L.T.W. contributed to data curation. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Milin Kim.

Ethics declarations

Competing interests

O.A.A. has received speaker fees from Lundbeck, Janssen, Otsuka, and Sunovion and is a consultant to Cortechs.ai and Precision-Health.ai. The other authors report no competing interests.

Peer review

Peer review information

Nature Mental Health thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–27, and Methods.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Leonardsen, E., Rutherford, S. et al. Mapping cerebellar anatomical heterogeneity in mental and neurological illnesses. Nat. Mental Health (2024). https://doi.org/10.1038/s44220-024-00297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44220-024-00297-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing