Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prenatal cannabis exposure, the brain, and psychopathology during early adolescence

Abstract

Prenatal cannabis exposure (PCE) is associated with mental health problems in early adolescence, but the possible neurobiological mechanisms remain unknown. In a large longitudinal sample of adolescents (ages 9–12 years, n = 9,322–10,186), we find that PCE is associated with localized differences in gray and white matter of the frontal and parietal cortices, their associated white matter tracts, and striatal resting-state connectivity, even after accounting for potential pregnancy, familial, and child confounds. Variability in forceps minor and pars triangularis diffusion metrics partially longitudinally mediate associations of PCE with attention problems and attention deficit hyperactivity disorder symptoms. PCE-related differences in brain development may confer vulnerability to worse mental health in early adolescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association of PCE with brain metrics.
Fig. 2: Significant associations of PCE with brain metrics, by exposure group.
Fig. 3: Association of brain metrics with psychopathology in early adolescence.

Similar content being viewed by others

Data availability

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9–10 and follow them over 10 years into early adulthood. The ABCD data repository grows and changes over time. The ABCD data used in this report came from https://doi.org/10.15154/8873-zj65. DOIs can be found at https://nda.nih.gov/abcd/abcd-annual-releases.html. The dataset identifier is https://doi.org/10.15154/dxx6-fk12. Cannabis use disorder summary statistics are available for download at https://pgc.unc.edu/for-researchers/download-results/. Additional datasets used for processing genetic data are available at https://sites.google.com/a/broadinstitute.org/ricopili.

Code availability

Analysis code is available at https://github.com/WashU-BG/PCE_MRI.

References

  1. Volkow, N. D., Han, B., Compton, W. M. & McCance-Katz, E. F. Self-reported medical and nonmedical cannabis use among pregnant women in the United States. JAMA 322, 167–169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. What You Should Know About Using Cannabis, Including CBD, When Pregnant or Breastfeeding (FDA, 2020); https://www.fda.gov/consumers/consumer-updates/what-you-should-know-about-using-cannabis-including-cbd-when-pregnant-or-breastfeeding

  3. Office of the Surgeon General US Surgeon General’s Advisory: Marijuana Use and the Developing Brain (HHS, 2019); https://www.hhs.gov/surgeongeneral/reports-and-publications/addiction-and-substance-misuse/advisory-on-marijuana-use-and-developing-brain/index.html

  4. Marijuana and Pregnancy (American College of Obstetricians and Gynecologists, 2023); https://www.acog.org/womens-health/infographics/marijuana-and-pregnancy

  5. Sorkhou, M., Singla, D. R., Castle, D. J. & George, T. P. Birth, cognitive and behavioral effects of intrauterine cannabis exposure in infants and children: a systematic review and meta‐analysis. Addiction https://doi.org/10.1111/add.16370 (2023).

  6. Olyaei, A. F., Campbell, L. R., Roberts, V. H. J. & Lo, J. O. Animal models evaluating the impact of prenatal exposure to tobacco and marijuana. Clin. Obstet. Gynecol. 65, 334–346 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Day, N. L., Goldschmidt, L., Day, R., Larkby, C. & Richardson, G. A. Prenatal marijuana exposure, age of marijuana initiation, and the development of psychotic symptoms in young adults. Psychol. Med. 45, 1779–1787 (2015).

    Article  PubMed  Google Scholar 

  8. Goldschmidt, L., Day, N. L. & Richardson, G. A. Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicol. Teratol. 22, 325–336 (2000).

    Article  PubMed  Google Scholar 

  9. Gray, K. A., Day, N. L., Leech, S. & Richardson, G. A. Prenatal marijuana exposure: effect on child depressive symptoms at ten years of age. Neurotoxicol. Teratol. 27, 439–448 (2005).

    Article  PubMed  Google Scholar 

  10. Power, E. et al. Intelligence quotient decline following frequent or dependent cannabis use in youth: a systematic review and meta-analysis of longitudinal studies. Psychol. Med. 51, 194–200 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huizink, A. C. Prenatal cannabis exposure and infant outcomes: overview of studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 52, 45–52 (2014).

    Article  PubMed  Google Scholar 

  12. Ruisch, I. H., Dietrich, A., Glennon, J. C., Buitelaar, J. K. & Hoekstra, P. J. Maternal substance use during pregnancy and offspring conduct problems: a meta-analysis. Neurosci. Biobehav. Rev. 84, 325–336 (2018).

    Article  PubMed  Google Scholar 

  13. Zammit, S. et al. Maternal tobacco, cannabis and alcohol use during pregnancy and risk of adolescent psychotic symptoms in offspring. Br. J. Psychiatry 195, 294–300 (2009).

    Article  PubMed  Google Scholar 

  14. Dong, C. et al. Cannabinoid exposure during pregnancy and its impact on immune function. Cell. Mol. Life Sci. 76, 729–743 (2019).

    Article  PubMed  Google Scholar 

  15. Rokeby, A. C. E., Natale, B. V. & Natale, D. R. C. Cannabinoids and the placenta: receptors, signaling and outcomes. Placenta 135, 51–61 (2023).

    Article  PubMed  Google Scholar 

  16. Vacher, C.-M. et al. Placental endocrine function shapes cerebellar development and social behavior. Nat. Neurosci. 24, 1392–1401 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bonnin, A. et al. A transient placental source of serotonin for the fetal forebrain. Nature 472, 347–350 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ursini, G. et al. Prioritization of potential causative genes for schizophrenia in placenta. Nat. Commun. 14, 2613 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu, H.-C. & Mackie, K. Review of the endocannabinoid system. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 607–615 (2021).

    PubMed  Google Scholar 

  20. Scheyer, A. F., Melis, M., Trezza, V. & Manzoni, O. J. J. Consequences of perinatal cannabis exposure. Trends Neurosci. 42, 871–884 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Higuera-Matas, A., Ucha, M. & Ambrosio, E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci. Biobehav. Rev. 55, 119–146 (2015).

    Article  PubMed  Google Scholar 

  22. Navarro, M. & Rubio, P. Behavioural consequences of maternal exposure to natural cannabinoids in rats. Psychopharmacology 122, 1–14 (1995).

    Article  PubMed  Google Scholar 

  23. Lo, J. O., Hedges, J. C. & Metz, T. D. Cannabis use and perinatal health research. JAMA https://doi.org/10.1001/jama.2023.14697 (2023).

    Article  PubMed  Google Scholar 

  24. Paul, S. E. et al. Associations between prenatal cannabis exposure and childhood outcomes: results from the ABCD Study. JAMA Psychiatry 78, 64–76 (2021).

    Article  PubMed  Google Scholar 

  25. Faraj, M. M. et al. Impact of prenatal cannabis exposure on functional connectivity of the salience network in children. J. Neurosci. Res. 101, 162–171 (2023).

    Article  PubMed  Google Scholar 

  26. El Marroun, H. et al. Prenatal cannabis and tobacco exposure in relation to brain morphology: a prospective neuroimaging study in young children. Biol. Psychiatry 79, 971–979 (2016).

    Article  PubMed  Google Scholar 

  27. Peterson, B. S. et al. Associations of maternal prenatal drug abuse with measures of newborn brain structure, tissue organization, and metabolite concentrations. JAMA Pediatr. 174, 831–842 (2020).

    Article  PubMed  Google Scholar 

  28. Evanski, J. M. et al. The first ‘hit’ to the endocannabinoid system? Associations between prenatal cannabis exposure and frontolimbic white matter pathways in children. Biol. Psychiatry Glob. Open Sci. 4, 11–18 (2024).

    Article  PubMed  Google Scholar 

  29. Vishnubhotla, R. V., Ahmad, S. T., Zhao, Y. & Radhakrishnan, R. Impact of prenatal marijuana exposure on adolescent brain structural and functional connectivity and behavioral outcomes. Brain Commun. https://doi.org/10.1093/braincomms/fcae001 (2024).

  30. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) Study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zurolo, E. et al. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies. Neuroscience 170, 28–41 (2010).

    Article  PubMed  Google Scholar 

  32. Buckley, N. E., Hansson, S., Harta, G. & Mezey, É. Expression of the CB1 and CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience 82, 1131–1149 (1997).

    Article  Google Scholar 

  33. Wu, C.-S., Jew, C. P. & Lu, H.-C. Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain. Future Neurol. 6, 459–480 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Baranger, D. A. A. et al. Association of mental health burden with prenatal cannabis exposure from childhood to early adolescence: longitudinal findings from the Adolescent Brain Cognitive Development (ABCD) Study. JAMA Pediatr. 176, 1261–1265 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fine, J. D. et al. Association of prenatal cannabis exposure with psychosis proneness among children in the Adolescent Brain Cognitive Development (ABCD) Study. JAMA Psychiatry 76, 762–764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jacobus, J. et al. Adolescent cortical thickness pre- and post marijuana and alcohol initiation. Neurotoxicol. Teratol. 57, 20–29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Robinson, E. A. et al. Measuring white matter microstructure in 1,457 cannabis users and 1,441 controls: a systematic review of diffusion-weighted MRI studies. Front. Neuroimaging 2, 1129587 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Navarri, X. et al. How do substance use disorders compare to other psychiatric conditions on structural brain abnormalities? A cross-disorder meta-analytic comparison using the ENIGMA consortium findings. Hum. Brain Mapp. 43, 399–413 (2022).

    Article  PubMed  Google Scholar 

  40. Lorenzetti, V., Gaillard, A., Thomson, D., Englund, A. & Freeman, T. P. Effects of cannabinoids on resting state functional brain connectivity: a systematic review. Neurosci. Biobehav. Rev. 145, 105014 (2023).

    Article  PubMed  Google Scholar 

  41. Elman, J. A. et al. Genetic and environmental influences on cortical mean diffusivity. NeuroImage 146, 90–99 (2017).

    Article  PubMed  Google Scholar 

  42. Kim, E. et al. Mapping acute neuroinflammation in vivo with diffusion-MRI in rats given a systemic lipopolysaccharide challenge. Brain. Behav. Immun. 113, 289–301 (2023).

    Article  PubMed  Google Scholar 

  43. Roberts, V. H. J. et al. Chronic prenatal delta-9-tetrahydrocannabinol exposure adversely impacts placental function and development in a rhesus macaque model. Sci. Rep. 12, 20260 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rompala, G., Nomura, Y. & Hurd, Y. L. Maternal cannabis use is associated with suppression of immune gene networks in placenta and increased anxiety phenotypes in offspring. Proc. Natl Acad. Sci. USA 118, e2106115118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Walter, L. & Stella, N. Cannabinoids and neuroinflammation. Br. J. Pharmacol. 141, 775–785 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Palmer, C. E. et al. Microstructural development from 9 to 14 years: evidence from the ABCD Study. Dev. Cogn. Neurosci. 53, 101044 (2022).

    Article  PubMed  Google Scholar 

  47. Meier, M. H. et al. Preparedness for healthy ageing and polysubstance use in long-term cannabis users: a population-representative longitudinal study. Lancet Healthy Longev. 3, e703–e714 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Allen, J. P. et al. Lifetime marijuana use and epigenetic age acceleration: a 17-year prospective examination. Drug Alcohol Depend. 233, 109363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. van Ewijk, H., Heslenfeld, D. J., Zwiers, M. P., Buitelaar, J. K. & Oosterlaan, J. Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 36, 1093–1106 (2012).

    Article  PubMed  Google Scholar 

  51. Hoogman, M. et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am. J. Psychiatry 176, 531–542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ruiz-Rizzo, A. L. et al. Subjective cognitive decline predicts lower cingulo-opercular network functional connectivity in individuals with lower neurite density in the forceps minor. Neuroimage 263, 119662 (2022).

    Article  PubMed  Google Scholar 

  53. Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).

    Article  PubMed  Google Scholar 

  54. de Zeeuw, P. & Durston, S. in The Wiley Handbook of Cognitive Control (ed. Egner, T.) 602–618 (John Wiley & Sons, 2017); https://doi.org/10.1002/9781118920497.ch33

  55. Zheng, S. et al. Measurement bias in caregiver-report of early childhood behavior problems across demographic factors in an ECHO-wide diverse sample. JCPP Adv. 4, e12198 (2024).

  56. De Los Reyes, A. et al. The validity of the multi-informant approach to assessing child and adolescent mental health. Psychol. Bull. 141, 858–900 (2015).

    Article  PubMed Central  Google Scholar 

  57. Karver, M. S. Determinants of multiple informant agreement on child and adolescent behavior. J. Abnorm. Child Psychol. 34, 251–262 (2006).

    Article  PubMed  Google Scholar 

  58. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. https://doi.org/10.18637/jss.v059.i05 (2014).

  59. D’Onofrio, B. M. et al. Smoking during pregnancy and offspring externalizing problems: an exploration of genetic and environmental confounds. Dev. Psychopathol. 20, 139–164 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091 (2019).

    Article  PubMed  Google Scholar 

  61. Xue, F. Multi-Modal Processing Stream. NeuroImaging Tools & Resources Collaboratory https://www.nitrc.org/frs/?group_id=1256&release_id=3948 (2018).

  62. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

  63. Dosenbach, N. U. F. et al. Real-time motion analytics during brain MRI improve data quality and reduce costs. Neuroimage 161, 80–93 (2017).

    Article  PubMed  Google Scholar 

  64. Kennedy, J. T. et al. Reliability and stability challenges in ABCD task fMRI data. Neuroimage 252, 119046 (2022).

    Article  PubMed  Google Scholar 

  65. Achenbach, T, M. & Rescorla, L. A. Manual for the ASEBA School-Age Forms & Profiles: An Integrated System of Multi-Informant Assessment (Univ. Vermont, Research Center for Children, Youth, & Families, 2001).

  66. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (American Psychiatric Association, 2013).

  67. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Karcher, N. R. et al. Assessment of the prodromal questionnaire–brief child version for measurement of self-reported psychoticlike experiences in childhood. JAMA Psychiatry 75, 853–861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Petersen, A. C., Crockett, L., Richards, M. & Boxer, A. A self-report measure of pubertal status: reliability, validity, and initial norms. J. Youth Adolesc. 17, 117–133 (1988).

    Article  PubMed  Google Scholar 

  70. Lam, M. et al. RICOPILI: Rapid Imputation for Consortias PipeLIne. Bioinformatics 36, 930–933 (2020).

    Article  PubMed  Google Scholar 

  71. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  PubMed  Google Scholar 

  72. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  74. Bates, D. et al. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  75. Varoquaux, G. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage 180, 68–77 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by R01DA54750 (R.B., A.A.). Additional funding included the following: D.A.A.B. (K99AA030808), A.P.M. (T32DA015035), A.J.G. (DGE-213989), S.E.P. (F31AA029934), A.S.H. (K01AA030083), E.C.J. (K01DA051759; BBRF Young Investigator Grant 29571), C.E.R. (R01DA046224), A.A. (R01DA54750), and R.B. (R01DA54750, R21AA027827, U01DA055367). Data for this study were provided by the Adolescent Brain Cognitive Development (ABCD) Study, which was funded by awards U01DA041022, U01DA041025, U01DA041028, U01DA041048, U01DA041089, U01DA041093, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123 and U24DA041147 from the NIH and additional federal partners (https://abcdstudy.org/federal-partners.html). We thank T. Sheahan for her assistance with figure graphics. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123 and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

Author information

Authors and Affiliations

Authors

Contributions

D.A.A.B. performed statistical analyses and prepared figures and tables. D.A.A.B. and R.B. drafted the paper. D.A.A.B., S.E.P., A.S.H., A.A., and R.B. designed the study. S.M.C.C. and E.C.J. computed polygenic scores and performed quality assurance checks of genetic data. A.A. and R.B. obtained funding. All authors, including A.J.G., A.P.M., C.D.S., C.E.R. and J.D.B. revised the paper and provided critical intellectual contributions.

Corresponding author

Correspondence to David A. A. Baranger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Wayne Hall, Hilary Marusak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranger, D.A.A., Miller, A.P., Gorelik, A.J. et al. Prenatal cannabis exposure, the brain, and psychopathology during early adolescence. Nat. Mental Health 2, 975–986 (2024). https://doi.org/10.1038/s44220-024-00281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00281-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing