Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exposomic and polygenic contributions to allostatic load in early adolescence

Abstract

Allostatic load (AL) is the cumulative ‘wear and tear’ on the body due to chronic adversity. We tested the poly-environmental (exposomic) and polygenic contributions to AL and their combined contribution to adolescent mental health. In this cohort study of N = 5,036 diverse youth (mean age 12 years) from the Adolescent Brain Cognitive Development Study, we calculated a latent AL score, childhood exposomic risk and genetic risk. We tested the associations of exposomic and polygenic risks with AL using linear mixed-effects models, and tested the mediating role of AL on the pathway from exposomic/polygenic risk to mental health. AL was significantly lower among non-Hispanic white youth compared to Hispanic and non-Hispanic black youth. Childhood exposomic burden was associated with AL in adolescence (β = 0.25, 95% CI 0.22–0.29, P < 0.001). In subset analysis of participants of European-like genetic ancestry (n = 2,928), the type 2 diabetes polygenic risk score (T2D-PRS; β = 0.11, 95% CI 0.07–0.14, P < 0.001) and major depressive disorder (MDD)-PRS (β = 0.05, 95% CI 0.02–0.09, P = 0.003) were associated with AL. Both PRSs showed significant gene–environment interactions such that, with greater polygenic risk, associations between exposome and AL were stronger. AL significantly mediated the indirect path from exposomic risk at age 11 years, and from both MDD-PRS and T2D-PRS to psychopathology at age 12 years. Our findings show that AL can be quantified in youth and is associated with exposomic and polygenic burden, supporting the diathesis–stress model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual study design.
Fig. 2: Allostatic load quantification in the ABCD Study.
Fig. 3: Association of exposomic burden with AL and demographic differences.
Fig. 4: Gene–environment interaction in AL.
Fig. 5: Mediation of AL on the paths from exposomic and polygenic risk to mental-health burden.

Similar content being viewed by others

Data availability

Data used in the preparation of this Article were obtained from the ABCD Study (https://abcdstudy.org), held in the National Institute of Mental Health Data Archive and available for researchers upon application (https://nda.nih.gov/abcd/request-access).

Code availability

Code is available at https://github.com/barzilab1/ABCD_Allostatic_load.

References

  1. Guidi, J., Lucente, M., Sonino, N. & Fava, G. A. Allostatic load and its impact on health: a systematic review. Psychother. Psychosom. 90, 11–27 (2021).

    Article  PubMed  Google Scholar 

  2. McEwen, B. S. Protective and damaging effects of stress mediators. New Engl. J. Med. 338, 171–179 (1998).

    Article  PubMed  Google Scholar 

  3. McEwen, B. S. & Wingfield, J. C. The concept of allostasis in biology and biomedicine. Horm. Behav. 43, 2–15 (2003).

    Article  PubMed  Google Scholar 

  4. McEwen, B. S. & Seeman, T. Protective and damaging effects of mediators of stress: elaborating and testing the concepts of allostasis and allostatic load. Ann. NY Acad. Sci. 896, 30–47 (1999).

    Article  PubMed  Google Scholar 

  5. McEwen, B. S. Stress, adaptation and disease: allostasis and allostatic load. Ann. NY Acad. Sci. 840, 33–44 (1998).

    Article  PubMed  Google Scholar 

  6. Seeman, T. E., McEwen, B. S., Rowe, J. W. & Singer, B. H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl Acad. Sci. USA 98, 4770–4775 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kapczinski, F. et al. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci. Biobehav. Rev. 32, 675–692 (2008).

    Article  PubMed  Google Scholar 

  8. Finlay, S., Rudd, D., McDermott, B. & Sarnyai, Z. Allostatic load in psychiatry—systematic review and meta-analysis. Psychoneuroendocrinology 131, 105555 (2021).

    Article  Google Scholar 

  9. McEwen, B. S. Mood disorders and allostatic load. Biol. Psychiatry 54, 200–207 (2003).

    Article  PubMed  Google Scholar 

  10. Rogosch, F. A., Dackis, M. N. & Cicchetti, D. Child maltreatment and allostatic load: consequences for physical and mental health in children from low-income families. Dev. Psychopathol. 23, 1107–1124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Berger, M. et al. Relationship between allostatic load and clinical outcomes in youth at ultra-high risk for psychosis in the NEURAPRO study. Schizophr. Res. 226, 38–43 (2020).

    Article  PubMed  Google Scholar 

  12. Brody, G. H., Lei, M.-K., Chen, E. & Miller, G. E. Neighborhood poverty and allostatic load in African American youth. Pediatrics 134, e1362–e1368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sabbah, W., Watt, R. G., Sheiham, A. & Tsakos, G. Effects of allostatic load on the social gradient in ischaemic heart disease and periodontal disease: evidence from the Third National Health and Nutrition Examination Survey. J. Epidemiol. Community Health 62, 415–420 (2008).

    Article  PubMed  Google Scholar 

  14. Stabellini, N. et al. Allostatic load and cardiovascular outcomes in males with prostate cancer. JNCI Cancer Spectr. 7, pkad005 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lueth, A. J. et al. Allostatic load and adverse pregnancy outcomes. Obstet. Gynecol. 140, 974–982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Felice, F. G., Gonçalves, R. A. & Ferreira, S. T. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat. Rev. Neurosci. 23, 215–230 (2022).

    Article  PubMed  Google Scholar 

  17. Gillespie, S. L. et al. Allostatic load in the association of depressive symptoms with incident coronary heart disease: the Jackson Heart Study. Psychoneuroendocrinology 109, 104369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nelson, S., Bento, S. & Enlow, M. B. Biomarkers of allostatic load as correlates of impairment in youth with chronic pain: an initial investigation. Children 8, 709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parker, H. W., Abreu, A. M., Sullivan, M. C. & Vadiveloo, M. K. Allostatic load and mortality: a systematic review and meta-analysis. Am. J. Prev. Med. 63, 131–140 (2022).

    Article  PubMed  Google Scholar 

  20. Beckie, T. M. A systematic review of allostatic load, health and health disparities. Biol. Res. Nurs. 14, 311–346 (2012).

    Article  PubMed  Google Scholar 

  21. Zheng, D. D. et al. Visual acuity and increased mortality: the role of allostatic load and functional status. Invest. Ophthalmol. Vis. Sci. 55, 5144–5150 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bruun-Rasmussen, N. E. et al. Allostatic load as predictor of mortality: a cohort study from Lolland-Falster, Denmark. BMJ Open 12, e057136 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Duru, O. K., Harawa, N. T., Kermah, D. & Norris, K. C. Allostatic load burden and racial disparities in mortality. J. Natl Med. Assoc. 104, 89–95 (2012).

    PubMed  Google Scholar 

  24. Szanton, S. L., Gill, J. M. & Allen, J. K. Allostatic load: a mechanism of socioeconomic health disparities? Biol. Res. Nurs. 7, 7–15 (2005).

    Article  PubMed  Google Scholar 

  25. Jeste, D. V. et al. Review of major social determinants of health in schizophrenia-spectrum psychotic disorders: III. Biology. Schizophr. Bull. 49, 867–880 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Danese, A. & McEwen, B. S. Adverse childhood experiences, allostasis, allostatic load and age-related disease. Physiol. Behav. 106, 29–39 (2012).

    Article  PubMed  Google Scholar 

  27. Fox, S. E., Levitt, P. & Nelson III, C. A. How the timing and quality of early experiences influence the development of brain architecture. Child Dev. 81, 28–40 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hughes, K. et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health 2, e356–e366 (2017).

    Article  PubMed  Google Scholar 

  29. Shonkoff, J. P., Boyce, W. T. & McEwen, B. S. Neuroscience, molecular biology and the childhood roots of health disparities. JAMA 301, 2252–2259 (2009).

    Article  PubMed  Google Scholar 

  30. McCrory, C. et al. Towards a consensus definition of allostatic load: a multi-cohort, multi-system, multi-biomarker individual participant data (IPD) meta-analysis. Psychoneuroendocrinology 153, 106117 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carbone, J. T., Clift, J. & Alexander, N. Measuring allostatic load: approaches and limitations to algorithm creation. J. Psychosom. Res. 163, 111050 (2022).

    Article  PubMed  Google Scholar 

  32. King, A. L., Garnier-Villarreal, M., Simanek, A. M. & Johnson, N. L. Testing allostatic load factor structures among adolescents: a structural equation modeling approach. Am. J. Hum. Biol. 31, e23242 (2019).

    Article  PubMed  Google Scholar 

  33. Doan, S. N. Allostatic load: developmental and conceptual considerations in a multi-system physiological indicator of chronic stress exposure. Dev. Psychobiol. 63, 825–836 (2021).

    Article  PubMed  Google Scholar 

  34. Li, J. et al. Association between early life adversity and allostatic load in girls with precocious puberty. Psychoneuroendocrinology 152, 106101 (2023).

    Article  PubMed  Google Scholar 

  35. Howard, J. T. & Sparks, P. J. Does allostatic load calculation method matter? Evaluation of different methods and individual biomarkers functioning by race/ethnicity and educational level. Am. J. Hum. Biol. 28, 627–635 (2016).

    Article  PubMed  Google Scholar 

  36. McEwen, B. S., & Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 153, 2093–2101 (1993).

    Article  PubMed  Google Scholar 

  37. Bobba-Alves, N., Juster, R.-P. & Picard, M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 146, 105951 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Loos, R. J. F. & Bouchard, C. Obesity—is it a genetic disorder? J. Intern. Med. 254, 401–425 (2003).

    Article  PubMed  Google Scholar 

  39. Qi, B., Liang, L., Doria, A., Hu, F. B. & Qi, L. Genetic predisposition to dyslipidemia and type 2 diabetes risk in two prospective cohorts. Diabetes 61, 745–752 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Petrovic, D. et al. Sociodemographic, behavioral and genetic determinants of allostatic load in a Swiss population-based study. Psychoneuroendocrinology 67, 76–85 (2016).

    Article  PubMed  Google Scholar 

  41. Schrempft, S. et al. Variation in the heritability of child body mass index by obesogenic home environment. JAMA Pediatr. 172, 1153–1160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, B. et al. Genetic contribution to the variance of blood pressure and heart rate: a systematic review and meta-regression of twin studies. Twin Res. Hum. Genet. 18, 158–170 (2015).

    Article  PubMed  Google Scholar 

  43. Simonis-Bik, A. M. C. et al. The heritability of HbA1c and fasting blood glucose in different measurement settings. Twin Res. Hum. Genet. 11, 597–602 (2008).

    Article  PubMed  Google Scholar 

  44. Heller, D. A., de Faire, U., Pedersen, N. L., Dahlen, G. & McClearn, G. E. Genetic and environmental influences on serum lipid levels in twins. N. Engl. J. Med. 328, 1150–1156 (1993).

    Article  PubMed  Google Scholar 

  45. Zhai, G. et al. Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms. PLoS Genet. 7, e1002025 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Belsky, J. & Pluess, M. Beyond diathesis stress: differential susceptibility to environmental influences. Psychol. Bull. 135, 885–908 (2009).

    Article  PubMed  Google Scholar 

  47. Manuck, S. B. & McCaffery, J. M. Gene–environment interaction. Annu. Rev. Psychol. 65, 41–70 (2014).

    Article  PubMed  Google Scholar 

  48. Brody, G. H. et al. Cumulative socioeconomic status risk, allostatic load and adjustment: a prospective latent profile analysis with contextual and genetic protective factors. Dev. Psychol. 49, 913–927 (2013).

    Article  PubMed  Google Scholar 

  49. Brody, G. H. et al. Supportive family environments, genes that confer sensitivity, and allostatic load among rural African American emerging adults: a prospective analysis. J. Fam. Psychol. 27, 22–29 (2013).

    Article  PubMed  Google Scholar 

  50. Zheutlin, A. B. & Ross, D. A. Polygenic risk scores: what are they good for? Biol. Psychiatry 83, e51–e53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moore, T. M. et al. Modeling environment through a general exposome factor in two independent adolescent cohorts. Exposome 2, osac010 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Logan, A. C., Prescott, S. L., Haahtela, T. & Katz, D. L. The importance of the exposome and allostatic load in the planetary health paradigm. J. Physiol. Anthropol. 37, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Whelan, E., O’Shea, J., Hunt, E. & Dockray, S. Evaluating measures of allostatic load in adolescents: a systematic review. Psychoneuroendocrinology 131, 105324 (2021).

    Article  PubMed  Google Scholar 

  54. McEwen, C. A. Connecting the biology of stress, allostatic load and epigenetics to social structures and processes. Neurobiol. Stress 17, 100426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Deary, V. et al. Genetic contributions to self-reported tiredness. Mol. Psychiatry 23, 609–620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sacks, V. & Murphey, D. The Prevalence of Adverse Childhood Experiences, Nationally, by State, and by Race or Ethnicity. https://www.childtrends.org/publications/prevalence-adverse-childhood-experiences-nationally-state-race-ethnicity (Child Trends, 2018).

  57. Kerr, P., Kheloui, S., Rossi, M., Désilets, M. & Juster, R.-P. Allostatic load and women’s brain health: a systematic review. Front. Neuroendocrinol. 59, 100858 (2020).

    Article  PubMed  Google Scholar 

  58. Hilliard, M. E. et al. Stress and A1c among people with diabetes across the lifespan. Curr. Diab. Rep. 16, 67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dutheil, F. et al. DHEA as a biomarker of stress: a systematic review and meta-analysis. Front. Psychiatry 12, 688367 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Reise, S. P., Moore, T. M. & Haviland, M. G. Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. J. Pers. Assess. 92, 544–559 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bentler, P. M. & Bonett, D. G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 88, 588–606 (1980).

    Article  Google Scholar 

  62. Lucente, M. & Guidi, J. Allostatic load in children and adolescents: a systematic review. Psychother. Psychosom. 92, 295–303 (2023).

    Article  PubMed  Google Scholar 

  63. Borrell, L. N., Dallo, F. J. & Nguyen, N. Racial/ethnic disparities in all-cause mortality in US adults: the effect of allostatic load. Public Health Rep. 125, 810–816 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Geronimus, A. T. et al. Weathering in Detroit: place, race, ethnicity and poverty as conceptually fluctuating social constructs shaping variation in allostatic load. Milbank Q. 98, 1171–1218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moore, J. X., Bevel, M. S., Aslibekyan, S. & Akinyemiju, T. Temporal changes in allostatic load patterns by age, race/ethnicity and gender among the US adult population; 1988–2018. Prev. Med. 147, 106483 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kristen Peek, M. et al. Allostatic load among non-hispanic whites, non-hispanic blacks and people of Mexican origin: effects of ethnicity, nativity and acculturation. Am. J. Public Health 100, 940–946 (2010).

    Article  PubMed  Google Scholar 

  67. Finlay, S. et al. Adverse childhood experiences and allostatic load: a systematic review. Neurosci. Biobehav. Rev. 136, 104605 (2022).

    Article  PubMed  Google Scholar 

  68. Atkinson, L. et al. Social engagement and allostatic load mediate between adverse childhood experiences and multimorbidity in mid to late adulthood: the Canadian Longitudinal Study on Aging. Psychol. Med. 53, 1437–1447 (2023).

    Article  PubMed  Google Scholar 

  69. Baccarelli, A., Dolinoy, D. C. & Walker, C. L. A precision environmental health approach to prevention of human disease. Nat. Commun. 14, 2449 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rappaport, S. M. & Smith, M. T. Environment and disease risks. Science 330, 460–461 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lueth, A. J. et al. Can allostatic load in pregnancy explain the association between race and subsequent cardiovascular disease risk: a cohort study. BJOG 130, 1197–1206 (2023).

    Article  PubMed  Google Scholar 

  72. Dunn, E. C. et al. Genetic determinants of depression: recent findings and future directions. Harv. Rev. Psychiatry 23, 1–18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Warrier, V. et al. Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: a genetically informed approach. Lancet Psychiatry 8, 373–386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Avshalom, C., Hariri, A. R., Andrew, H., Uher, R. & Moffitt, T. E. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am. J. Psychiatry 167, 509–527 (2010).

    Article  Google Scholar 

  75. Zhao, M. et al. BDNF Val66Met polymorphism, life stress and depression: a meta-analysis of gene-environment interaction. J. Affect. Disord. 227, 226–235 (2018).

    Article  PubMed  Google Scholar 

  76. McAllister, K. et al. Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am. J. Epidemiol. 186, 753–761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12, 44 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Van Heeringen, K. & Mann, J. J. The neurobiology of suicide. Lancet Psychiatry 1, 63–72 (2014).

    Article  PubMed  Google Scholar 

  79. Mann, J. The neurobiology of suicide. Nat. Med. 4, 25–30 (1998).

    Article  PubMed  Google Scholar 

  80. O’Shields, J., Mowbray, O. & Patel, D. Allostatic load as a mediator of childhood maltreatment and adulthood depressive symptoms: a longitudinal analysis. Psychoneuroendocrinology 143, 105839 (2022).

    Article  PubMed  Google Scholar 

  81. Scheuer, S. et al. Childhood abuse and depression in adulthood: the mediating role of allostatic load. Psychoneuroendocrinology 94, 134–142 (2018).

    Article  PubMed  Google Scholar 

  82. Ren, Y., Zuo, C., Ming, H., Zhang, Y. & Huang, S. Long-term neighborhood poverty effects on internalizing symptoms in adolescents: mediated through allostatic load and pubertal timing. J. Adolesc. Health https://doi.org/10.1016/J.JADOHEALTH.2023.08.027 (2023).

    Article  PubMed  Google Scholar 

  83. Prior, L., Manley, D. & Jones, K. Stressed out? An investigation of whether allostatic load mediates associations between neighbourhood deprivation and health. Health Place 52, 25–33 (2018).

    Article  PubMed  Google Scholar 

  84. John, A. P., Koloth, R., Dragovic, M. & Lim, S. C. B. Prevalence of metabolic syndrome among Australians with severe mental illness. Med. J. Aust. 190, 176–179 (2009).

    Article  PubMed  Google Scholar 

  85. Ducat, L., Philipson, L. H. & Anderson, B. J. The mental health comorbidities of diabetes. JAMA 312, 691–692 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Quek, Y. H., Tam, W. W. S., Zhang, M. W. B. & Ho, R. C. M. Exploring the association between childhood and adolescent obesity and depression: a meta-analysis. Obesity Rev. 18, 742–754 (2017).

    Article  Google Scholar 

  87. Casagrande, S. et al. Increased glucocorticoid concentrations in early life cause mitochondrial inefficiency and short telomeres. J. Exp. Biol. 223, jeb222513 (2020).

    Article  PubMed  Google Scholar 

  88. Bobba-Alves, N. et al. Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging. Psychoneuroendocrinology 155, 106322 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Picard, M., Juster, R. P. & McEwen, B. S. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat. Rev. Endocrinol. 10, 303–310 (2014).

    Article  PubMed  Google Scholar 

  90. Juster, R. P. et al. A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development. Dev. Psychopathol. 23, 725–776 (2011).

    Article  PubMed  Google Scholar 

  91. Ellis, B. J. & Del Giudice, M. Beyond allostatic load: rethinking the role of stress in regulating human development. Dev. Psychopathol. 26, 1–20 (2014).

    Article  PubMed  Google Scholar 

  92. Callaghan, B. L. & Tottenham, N. The Stress Acceleration Hypothesis: effects of early-life adversity on emotion circuits and behavior. Curr. Opin. Behav. Sci. 7, 76–81 (2016).

    Article  PubMed  Google Scholar 

  93. Ehrlich, K. B., Yu, T., Sadiq, A. & Brody, G. H. Neighborhood poverty, allostatic load and changes in cellular aging in African American young adults: the moderating role of attachment. Attach. Hum. Dev. 24, 339–352 (2022).

    Article  PubMed  Google Scholar 

  94. McCrory, C. et al. How does socio-economic position (SEP) get biologically embedded? A comparison of allostatic load and the epigenetic clock(s). Psychoneuroendocrinology 104, 64–73 (2019).

    Article  PubMed  Google Scholar 

  95. Rosemberg, M. A. S., Granner, J., Li, Y. & Seng, J. S. A scoping review of interventions targeting allostatic load. Stress 23, 519–528 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rebar, A. L. et al. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol. Rev. 9, 366–378 (2015).

    Article  PubMed  Google Scholar 

  97. Hu, M. X. et al. Exercise interventions for the prevention of depression: a systematic review of meta-analyses. BMC Public Health 20, 1255 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Joseph, J. The ‘missing heritability’ of psychiatric disorders: elusive genes or non-existent genes? Appl. Dev. Sci. 16, 65–83 (2012).

    Article  Google Scholar 

  99. Baselmans, B. M. L., Yengo, L., van Rheenen, W. & Wray, N. R. Risk in relatives, heritability, SNP-based heritability and genetic correlations in psychiatric disorders: a review. Biol. Psychiatry 89, 11–19 (2021).

    Article  PubMed  Google Scholar 

  100. Floriou-Servou, A. et al. The acute stress response in the multiomic era. Biol. Psychiatry 89, 1116–1126 (2021).

    Article  PubMed  Google Scholar 

  101. van Calker, D. & Serchov, T. The ‘missing heritability’—problem in psychiatry: is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci. Biobehav. Rev. 126, 23–42 (2021).

    Article  PubMed  Google Scholar 

  102. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yajurvedi, H. Stress and glucose metabolism: a review. Imaging J. Clin. Med. Sci. 5, 8–12 (2018).

    Article  Google Scholar 

  104. Garavan, H. et al. Recruiting the ABCD sample: design considerations and procedures. Dev. Cogn. Neurosci. 32, 16–22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pries, L.-K. et al. Estimating the association between exposome and psychosis as well as general psychopathology: results from the ABCD study. Biol. Psychiatry Glob. Open Sci. 2, 283–291 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schultz, L. M. et al. Stability of polygenic scores across discovery genome-wide association studies. Hum. Genet. Genom. Adv. 3, 100091 (2022).

    Article  Google Scholar 

  107. Daskalakis, N. P. et al. Contributions of PTSD polygenic risk and environmental stress to suicidality in preadolescents. Neurobiol. Stress 15, 100411 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chen, J. et al. Genome-wide association study of type 2 diabetes in Africa. Diabetologia 62, 1204–1211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 4558 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schwarz, G. Estimating the dimension of a model. Ann. Stat 6, 461–464 (1978).

    Article  Google Scholar 

  116. Reise, S. P. The rediscovery of bifactor measurement models. Multivariate Behav. Res. 47, 667–696 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Achenbach, T. M., McConaughy, S. H., Ivanova, M. Y. & Rescorla, L. A. Manual for the ASEBA Brief Problem Monitor (BPM) (ASEBA, 2011).

  118. Achenbach, T. M. & Ruffle, T. M. The child behavior checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr. Rev. 21, 265–271 (2000).

    Article  PubMed  Google Scholar 

  119. Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Data used in the preparation of this article were obtained from the ABCD Study (https://abcdstudy.org), held in the NDA. This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9–10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123 and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the National Institutes of Health or ABCD consortium investigators. R.B. is supported by the National Institute of Mental Health (K23MH120437). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. A draft of this manuscript has been posted as a preprint on medRxiv (https://doi.org/10.1101/2023.10.27.23297674v1).

Author information

Authors and Affiliations

Authors

Contributions

K.W.H., T.M.M., M.M.G., O.K. and R.B. conceived and designed the study. K.T.T., E.V., G.E.D. and L.M.S. curated and organized the data. K.T.T., T.M.M., E.V. and L.M.S. analyzed the data. B.H.C., L.A., M.R.H. and N.P.D. substantially contributed to interpretation of the data. K.W.H., K.T.T. and R.B. wrote the first draft of the manuscript. M.M.G., O.K., B.H.C., L.M.S., L.A., M.R.H. and N.P.D. substantially revised the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Ran Barzilay.

Ethics declarations

Competing interests

R.B. serves on the Scientific Advisory Board and holds equity in Taliaz Health, with no relevance to this work. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Zhiyang Wang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8 and Fig. 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, K.W., Tran, K.T., Moore, T.M. et al. Exposomic and polygenic contributions to allostatic load in early adolescence. Nat. Mental Health 2, 828–839 (2024). https://doi.org/10.1038/s44220-024-00255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00255-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research