Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

No replication of Alzheimer’s disease genetics as a moderator of the association between combat exposure and PTSD risk in 138,592 combat veterans

Abstract

Large-scale cohort and epidemiological studies suggest that post-traumatic stress disorder (PTSD) confers risk for late-onset Alzheimer’s disease and related dementias (ADRD); however, the basis for this association remains unclear. Several prior studies of military veterans have reported that carriers of the apolipoprotein E (APOE) ε4 gene variant are at heightened risk for the development of PTSD following combat exposure, suggesting that PTSD and ADRD may share some genetic risk. Here we designed a cohort study to further examine the hypothesis that ADRD genetic risk also confers risk for PTSD. To do so, we examined APOE ε4 and ε2 genotypes, an Alzheimer’s disease polygenic risk score, and other veteran-relevant risk factors for PTSD in age-stratified groups of individuals of European (n = 123,372) and African (n = 15,220) ancestry in the US Department of Veterans Affairs’ Million Veteran Program. Analyses revealed no significant main effect associations between the APOE ε4 (or ε2) genotype or the Alzheimer’s disease polygenic risk score on PTSD severity or diagnosis. There were also no significant interactions between measures of Alzheimer’s disease genetic risk and either combat exposure severity or history of head injury in association with PTSD in any age group. We conclude that the association between PTSD and the primary ADRD genetic risk factor, APOE ε4, that was reported previously was not replicable in this large and relevant dataset. Thus, the epidemiological association between PTSD and ADRD is not likely to be driven by the major genetic factors underlying ADRD risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STROBE flowchart.

Similar content being viewed by others

Data availability

The phenotypes and genetic data analyzed here are available to all researchers with MVP access. Approval to access the individual-level MVP data is only available to VA researchers for an approved and funded MVP project, either through a VA Merit Award or a Career Development Award. See https://www.research.va.gov/funding/Guidance-MVP-Data-Access-Merit-Award.pdf for details. All GWAS results for MVP are made available on dbGAP.

Code availability

Analytic code is available for those with approved MVP access by writing to the corresponding author. Our group generated this code.

References

  1. Yaffe, K. et al. Military-related risk factors in female veterans and risk of dementia. Neurology 92, e205–e211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yaffe, K. et al. Posttraumatic stress disorder and risk of dementia among US veterans. Arch. Gen. Psychiatry 67, 608–613 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qureshi, S. U. et al. Greater prevalence and incidence of dementia in older veterans with posttraumatic stress disorder. J. Am. Geriatr. Soc. 58, 1627–1633 (2010).

    Article  PubMed  Google Scholar 

  4. Bergman, B. P., Mackay, D. F. & Pell, J. P. Dementia in Scottish military veterans: early evidence from a retrospective cohort study. Psychol. Med. 53, 1015–1020 (2023).

    Article  PubMed  Google Scholar 

  5. Gunak, M. M. et al. Post-traumatic stress disorder as a risk factor for dementia: systematic review and meta-analysis. Br. J. Psychiatry 217, 600–608 (2020).

    Article  PubMed  Google Scholar 

  6. Clouston, S. A. P. et al. Incidence of mild cognitive impairment in World Trade Center responders: long-term consequences of re-experiencing the events on 9/11/2001. Alzheimers Dement. 11, 628–636 (2019).

    Google Scholar 

  7. Bhattarai, J. J., Oehlert, M. E., Multon, K. D. & Sumerall, S. W. Dementia and cognitive impairment among U.S. veterans with a history of MDD or PTSD: a retrospective cohort study based on sex and race. J. Aging Health 31, 1398–1422 (2019).

    Article  PubMed  Google Scholar 

  8. Mawanda, F., Wallace, R. B., McCoy, K. & Abrams, T. E. PTSD, psychotropic medication use, and the risk of dementia among US veterans: a retrospective cohort study. J. Am. Geriatr. Soc. 65, 1043–1050 (2017).

    Article  PubMed  Google Scholar 

  9. Wang, T. Y. et al. Risk for developing dementia among patients with posttraumatic stress disorder: a nationwide longitudinal study. J. Affect. Disord. 205, 306–310 (2016).

    Article  PubMed  Google Scholar 

  10. Logue, M. W. et al. Alzheimer’s disease and related dementias among aging veterans: examining gene-by-environment interactions with post-traumatic stress disorder and traumatic brain injury. Alzheimers Dement. 19, 2549–2559 (2023).

    Article  PubMed  Google Scholar 

  11. Greenberg, M. S., Tanev, K., Marin, M. F. & Pitman, R. K. Stress, PTSD, and dementia. Alzheimers Dement. 10, S155–S165 (2014).

    Article  PubMed  Google Scholar 

  12. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 278, 1349–1356 (1997).

    Article  PubMed  Google Scholar 

  13. Genin, E. et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16, 903–907 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kunkle, B. W. et al. Novel Alzheimer disease risk loci and pathways in African American individuals using the African Genome Resources panel: a meta-analysis. JAMA Neurol. 78, 102–113 (2021).

    Article  PubMed  Google Scholar 

  15. Logue, M. W., Dasgupta, S. & Farrer, L. A. Genetics of Alzheimer’s disease in the African American population. J. Clin. Med. 12, 5189 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sherva, R. et al. African ancestry GWAS of dementia in a large military cohort identifies significant risk loci. Mol. Psychiatry 28, 1293–1302 (2023).

    Article  PubMed  Google Scholar 

  17. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

  18. Blacker, D. et al. ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48, 139–147 (1997).

    Article  PubMed  Google Scholar 

  19. Sando, S. B. et al. APOE epsilon 4 lowers age at onset and is a high risk factor for Alzheimer’s disease; a case control study from central Norway. BMC Neurol. 8, 9 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reiman, E. M. et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 11, 667 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Phillips, M. C. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66, 616–623 (2014).

    Article  PubMed  Google Scholar 

  22. Lumsden, A. L., Mulugeta, A., Zhou, A. & Hypponen, E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine 59, 102954 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, C. C., Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alagarsamy, J., Jaeschke, A. & Hui, D. Y. Apolipoprotein E in cardiometabolic and neurological health and diseases. Int. J. Mol. Sci. 23, 9892 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Averill, L. A. et al. Apolipoprotein E gene polymorphism, posttraumatic stress disorder, and cognitive function in older U.S. veterans: results from the National Health and Resilience in Veterans Study. Depress. Anxiety 36, 834–845 (2019).

    Article  PubMed  Google Scholar 

  26. Lutz, M. W., Luo, S., Williamson, D. E. & Chiba-Falek, O. Shared genetic etiology underlying late-onset Alzheimer’s disease and posttraumatic stress syndrome. Alzheimers Dement. 16, 1280–1292 (2020).

    Article  PubMed  Google Scholar 

  27. Porter, B. et al. Measuring aggregated and specific combat exposures: associations between combat exposure measures and posttraumatic stress disorder, depression, and alcohol-related problems. J. Trauma Stress 31, 296–306 (2018).

    Article  PubMed  Google Scholar 

  28. Lyons, M. J. et al. Gene-environment interaction of ApoE genotype and combat exposure on PTSD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 762–769 (2013).

    Article  PubMed  Google Scholar 

  29. Kimbrel, N. A. et al. Effect of the APOE ε4 allele and combat exposure on PTSD among Iraq/Afghanistan-era veterans. Depress. Anxiety 32, 307–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peterson, C. K., James, L. M., Anders, S. L., Engdahl, B. E. & Georgopoulos, A. P. The number of cysteine residues per mole in apolipoprotein E is associated with the severity of PTSD re-experiencing symptoms. J. Neuropsychiatry Clin. Neurosci. 27, 157–161 (2015).

    Article  PubMed  Google Scholar 

  31. Freeman, T., Roca, V., Guggenheim, F., Kimbrell, T. & Griffin, W. S. Neuropsychiatric associations of apolipoprotein E alleles in subjects with combat-related posttraumatic stress disorder. J. Neuropsychiatry Clin. Neurosci. 17, 541–543 (2005).

    Article  PubMed  Google Scholar 

  32. Logue, M. W. et al. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol. Psychiatry 18, 937–942 (2013).

    Article  PubMed  Google Scholar 

  33. Duncan, L. E. et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry https://doi.org/10.1038/mp.2017.77 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 4558 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stein, M. B. et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat. Genet. 53, 174–184 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim, T. Y. et al. Apolipoprotein E gene polymorphism, alcohol use, and their interactions in combat-related posttraumatic stress disorder. Depress. Anxiety 30, 1194–1201 (2013).

    Article  PubMed  Google Scholar 

  37. Johnson, L. A. et al. ApoE2 exaggerates PTSD-related behavioral, cognitive, and neuroendocrine alterations. Neuropsychopharmacology 40, 2443–2453 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roby, Y. Apolipoprotein E variants and genetic susceptibility to combat-related post-traumatic stress disorder: a meta-analysis. Psychiatr. Genet. 27, 121–130 (2017).

    Article  PubMed  Google Scholar 

  39. Olsen, R. H., Agam, M., Davis, M. J. & Raber, J. ApoE isoform-dependent deficits in extinction of contextual fear conditioning. Genes Brain Behav. 11, 806–812 (2012).

    Article  PubMed  Google Scholar 

  40. Vasterling, J. J. et al. Longitudinal associations among posttraumatic stress disorder symptoms, traumatic brain injury, and neurocognitive functioning in army soldiers deployed to the Iraq war. J. Int. Neuropsychol. Soc. 24, 311–323 (2018).

    Article  PubMed  Google Scholar 

  41. Bryant, R. A. et al. The psychiatric sequelae of traumatic injury. Am. J. Psychiatry 167, 312–320 (2010).

    Article  PubMed  Google Scholar 

  42. Yurgil, K. A. et al. Association between traumatic brain injury and risk of posttraumatic stress disorder in active-duty Marines. JAMA Psychiatry 71, 149–157 (2014).

    Article  PubMed  Google Scholar 

  43. Merritt, V. C. et al. Apolipoprotein E epsilon4 genotype is associated with elevated psychiatric distress in veterans with a history of mild to moderate traumatic brain injury. J. Neurotrauma 35, 2272–2282 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kunkle, B. W. et al. Author correction: Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 1423–1424 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cimino, N., Kang, M. S., Honig, L. S. & Rutherford, B. R. Blood-based biomarkers for Alzheimer’s disease in older adults with posttraumatic stress disorder. J. Alzheimers Dis. Rep. 6, 49–56 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Weiner, M. W. et al. Traumatic brain injury and post-traumatic stress disorder are not associated with Alzheimer’s disease pathology measured with biomarkers. Alzheimers Dement. https://doi.org/10.1002/alz.12712 (2022).

    Article  PubMed  Google Scholar 

  48. Pattinson, C. L. et al. Elevated tau in military personnel relates to chronic symptoms following traumatic brain injury. J. Head Trauma Rehabil. 35, 66–73 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Elias, A. et al. Amyloid-β, tau, and 18F-fluorodeoxyglucose positron emission tomography in posttraumatic stress disorder. J. Alzheimers Dis. 73, 163–173 (2020).

    Article  PubMed  Google Scholar 

  50. Kritikos, M. et al. Plasma amyloid beta 40/42, phosphorylated tau 181, and neurofilament light are associated with cognitive impairment and neuropathological changes among World Trade Center responders: a prospective cohort study of exposures and cognitive aging at midlife. Alzheimers Dement. 15, e12409 (2023).

    Google Scholar 

  51. Elman, J. A. et al. Genetic risk for coronary heart disease alters the influence of Alzheimer’s genetic risk on mild cognitive impairment. Neurobiol. Aging 84, 237 e235–237 e212 (2019).

    Article  Google Scholar 

  52. Miller, M. W. & Sadeh, N. Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry 19, 1156–1162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Perry, G., Cash, A. D. & Smith, M. A. Alzheimer disease and oxidative stress. J. Biomed. Biotechnol. 2, 120–123 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jones, K. A. & Thomsen, C. The role of the innate immune system in psychiatric disorders. Mol. Cell Neurosci. 53, 52–62 (2013).

    Article  PubMed  Google Scholar 

  55. Lee, Y. J., Han, S. B., Nam, S. Y., Oh, K. W. & Hong, J. T. Inflammation and Alzheimer’s disease. Arch. Pharm. Res. 33, 1539–1556 (2010).

    Article  PubMed  Google Scholar 

  56. Wieckowska-Gacek, A., Mietelska-Porowska, A., Wydrych, M. & Wojda, U. Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 70, 101397 (2021).

    Article  PubMed  Google Scholar 

  57. He, J. T., Zhao, X., Xu, L. & Mao, C. Y. Vascular risk factors and Alzheimer’s disease: blood-brain barrier disruption, metabolic syndromes, and molecular links. J. Alzheimers Dis. 73, 39–58 (2020).

    Article  PubMed  Google Scholar 

  58. Wolf, E. J. et al. Posttraumatic stress disorder as a catalyst for the association between metabolic syndrome and reduced cortical thickness. Biol. Psychiatry 80, 363–371 (2016).

    Article  PubMed  Google Scholar 

  59. Litkowski, E. M. et al. A diabetes genetic risk score is associated with all-cause dementia and clinically diagnosed vascular dementia in the Million Veteran Program. Diabetes Care 45, 2544–2552 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rosenbaum, S. et al. The prevalence and risk of metabolic syndrome and its components among people with posttraumatic stress disorder: a systematic review and meta-analysis. Metabolism 64, 926–933 (2015).

    Article  PubMed  Google Scholar 

  61. Faborode, O. S., Dalle, E. & Mabandla, M. V. Inescapable footshocks induce molecular changes in the prefrontal cortex of rats in an amyloid-beta-42 model of Alzheimer’s disease. Behav. Brain Res. 419, 113679 (2022).

    Article  PubMed  Google Scholar 

  62. Wei, Z. et al. GSK-3beta and ERK1/2 incongruously act in tau hyperphosphorylation in SPS-induced PTSD rats. Aging 11, 7978–7995 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bahorik, A., Bobrow, K., Hoang, T. & Yaffe, K. Increased risk of dementia in older female US veterans with alcohol use disorder. Addiction 116, 2049–2055 (2021).

    Article  PubMed  Google Scholar 

  64. Mohlenhoff, B. S., O’Donovan, A., Weiner, M. W. & Neylan, T. C. Dementia risk in posttraumatic stress disorder: the relevance of sleep-related abnormalities in brain structure, amyloid, and inflammation. Curr. Psychiatry Rep. 19, 89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. A Product of the CMS Alliance to Modernize Healthcare Federally Funded Research and Development Center Centers for Medicare & Medicaid Services (CMS). Assessment A Demographics (RAND Corporation, 2015).

  66. Terhakopian, A., Sinaii, N., Engel, C. C., Schnurr, P. P. & Hoge, C. W. Estimating population prevalence of posttraumatic stress disorder: an example using the PTSD checklist. J. Trauma Stress 21, 290–300 (2008).

    Article  PubMed  Google Scholar 

  67. Harrington, K. M. et al. Validation of an electronic medical record-based algorithm for identifying posttraumatic stress disorder in U.S. Veterans. J. Trauma. Stress 32, 226–237 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nguyen, X. T. et al. Data Resource Profile: self-reported data in the Million Veteran Program: survey development and insights from the first 850 736 participants. Int. J. Epidemiol. 52, e1–e17 (2023).

    Article  PubMed  Google Scholar 

  69. Weathers, F., Litz, B., Herman, D., Huska, J. A. & Keane, T. The PTSD Checklist (PCL): reliability, validity, and diagnostic utility. In Annual Convention of the International Society for Traumatic Stress Studies (1993).

  70. Vogt, D. S., Proctor, S. P., King, D. W., King, L. A. & Vasterling, J. J. Validation of scales from the Deployment Risk and Resilience Inventory in a sample of Operation Iraqi Freedom veterans. Assessment 15, 391–403 (2008).

    Article  PubMed  Google Scholar 

  71. Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet. 106, 535–548 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schurz, H. et al. Evaluating the accuracy of imputation methods in a five-way admixed population. Front. Genet. 10, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Q. et al. Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture. Nat. Commun. 11, 4799 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is based on data from the Million Veteran Program, Office of Research and Development, Veterans Health Administration. It was supported by VA BLR&D grant 1 I01 BX004192 (MVP015) to M.W.L. and by the Department of VA Clinical Science Research and Development Career Development Award IK2CX002192-01A2 to J.R.F. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the US government.

Author information

Authors and Affiliations

Authors

Contributions

M.W.L., M.W.M., R.S., K.M.H., J.R.F., E.J.W. and J.M.G. were responsible for conceptualization. R.Z. and R.S. were responsible for data analysis and data curation. M.W.M., M.W.L., E.J.W., R.Z., R.S. and N.P.D. were responsible for data interpretation. M.W.L., J.M.G. and K.M.H. developed the methodology. M.W.L. acquired the funding. E.J.W., M.W.M. and M.W.L. wrote the original draft. All authors edited and approved the paper. J.M.G. was responsible for resources.

Corresponding author

Correspondence to Mark W. Logue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Jacob Raber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, E.J., Miller, M.W., Zhang, R. et al. No replication of Alzheimer’s disease genetics as a moderator of the association between combat exposure and PTSD risk in 138,592 combat veterans. Nat. Mental Health 2, 553–561 (2024). https://doi.org/10.1038/s44220-024-00225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00225-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing