Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetry, cytoarchitectonic morphology and genetics associated with Broca’s area in schizophrenia

Abstract

A common hypothesis on the etiopathology of schizophrenia is that the failure of segregation of right from left hemisphere functions is a core deficit in psychosis. It has even been proposed that schizophrenia symptoms in general may reflect a hemispheric ‘dominance failure’ for language and that the corresponding predisposition is genetic. Here, we show that reduced asymmetries of cytoarchitectonic Broca’s subareas link to the degree of specific psychopathology and that specific gray matter reductions of subareas are related to a cognitive and a negative subtype of schizophrenia. Gene expression analyses indicate an upregulation of the MET gene in these particular areas, which has been implicated in neurodevelopment as well as neurocognition and influences the risk for schizophrenia. Our integrative findings suggest that variations of MET are associated with distinct structural alterations at the subregional level in key language regions, which may contribute to development of specific psychopathology in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Volumetric differences in areas 44 and 45 between patients and healthy controls.
Fig. 2: Association between gray matter morphology and symptom dimensions.
Fig. 3: Three-dimensional visualization of the regional specification analysis.

Similar content being viewed by others

Data availability

COBRE data were obtained from the SchizConnect, a publicly available website (http://www.schizconnect.org/documentation#by_project). The COBRE dataset was downloaded from the Center for Biomedical Research Excellence in Brain Function and Mental Illness (COBRE) (https://coins.trendscenter.org/). Data from the other datasets are not publicly available for download, but access requests can be made to the respective study investigators: Aachen, B.D. (birgit.derntl@med.uni-tuebingen.de); Göttingen, O.G. (oliver.gruber@med.uni-heidelberg.de); Groningen, A.A. (a.aleman@umcg.nl); Utrecht, I.E.S. (isc.sommer@umcg.nl); Regensburg, corresponding author T.B.P.; Singapore, J.H.Z. (helen.zhou@nus.edu.sg). Requests for raw and analyzed data can be made to the corresponding author and will be promptly reviewed by the Ethics Committee at the University of Regensburg to verify whether the request is subject to any intellectual property or confidentiality obligations. The Jülich Brain Atlas is accessible at https://julich-brain-atlas.de and the BrainMap database is accessible at http://www.brainmap.org/.

Code availability

The ‘Dimensions and Clustering Tool for assessing schizophrenia Symptomatology’ (DCTS) is available at http://webtools.inm7.de/sczDCTS/, the Computational Anatomy Toolbox (CAT) at https://neuro-jena.github.io/cat/, the SPM12 software at https://www.fil.ion.ucl.ac.uk/spm/software/spm12/, G*Power software at http://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower, and the JuGEx toolbox at https://www.fz-juelich.de/de/inm/inm-1/leistungen/tools-services-und-forschungsdaten/jugex.

References

  1. Hilker, R. et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide danish twin register. Biol. Psychiatry 83, 492–498 (2018).

    Article  PubMed  Google Scholar 

  2. Heim, S., Dehmer, M. & Berger-Tunkel, M. Impairments of language and communication in schizophrenia. Nervenarzt 90, 485–489 (2019).

    Article  PubMed  Google Scholar 

  3. Covington, M. A. et al. Schizophrenia and the structure of language: the linguist’s view. Schizophr. Res. 77, 85–98 (2005).

    Article  PubMed  Google Scholar 

  4. Mitchell, R. L. & Crow, T. J. Right hemisphere language functions and schizophrenia: the forgotten hemisphere? Brain 128, 963–978 (2005).

    Article  PubMed  Google Scholar 

  5. Crow, T. J. Schizophrenia as failure of hemispheric dominance for language. Trends Neurosci. 20, 339–343 (1997).

    CAS  PubMed  Google Scholar 

  6. Marini, A. et al. The language of schizophrenia: an analysis of micro and macrolinguistic abilities and their neuropsychological correlates. Schizophr. Res. 105, 144–155 (2008).

    Article  PubMed  ADS  Google Scholar 

  7. Kuperberg, G. R. Language in schizophrenia part 1: an introduction. Lang. Linguist. Compass 4, 576–589 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Angrilli, A. et al. Schizophrenia as failure of left hemispheric dominance for the phonological component of language. PLoS ONE 4, e4507 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Sans-Sansa, B. et al. Association of formal thought disorder in schizophrenia with structural brain abnormalities in language-related cortical regions. Schizophr. Res. 146, 308–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Rimol, L. M. et al. Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol. Psychiatry 71, 552–560 (2012).

    Article  PubMed  Google Scholar 

  11. Wisco, J. J. et al. Abnormal cortical folding patterns within Broca’s area in schizophrenia: evidence from structural MRI. Schizophr. Res. 94, 317–327 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jung, S., Lee, A., Bang, M. & Lee, S. H. Gray matter abnormalities in language processing areas and their associations with verbal ability and positive symptoms in first-episode patients with schizophrenia spectrum psychosis. Neuroimage Clin. 24, 102022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jung, W. H. et al. Regional brain atrophy and functional disconnection in Broca’s area in individuals at ultra-high risk for psychosis and schizophrenia. PLoS ONE 7, e51975 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 22, 2059–2062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koutsouleris, N. et al. Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage 39, 1600–1612 (2008).

    Article  PubMed  Google Scholar 

  16. Cavelti, M., Kircher, T., Nagels, A., Strik, W. & Homan, P. Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? A systematic review of neuroimaging findings. Schizophr. Res. 199, 2–16 (2018).

    Article  PubMed  Google Scholar 

  17. Gaser, C., Nenadic, I., Volz, H. P., Büchel, C. & Sauer, H. Neuroanatomy of ‘hearing voices’: a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia. Cereb. Cortex 14, 91–96 (2004).

    Article  PubMed  Google Scholar 

  18. Suga, M. et al. Reduced gray matter volume of Brodmann’s area 45 is associated with severe psychotic symptoms in patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 260, 465–473 (2010).

    Article  PubMed  Google Scholar 

  19. Palaniyappan, L. et al. Structural correlates of formal thought disorder in schizophrenia: an ultra-high field multivariate morphometry study. Schizophr. Res. 168, 305–312 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Berlim, M. T., Mattevi, B. S., Belmonte-de-Abreu, P. & Crow, T. J. The etiology of schizophrenia and the origin of language: overview of a theory. Compr. Psychiatry 44, 7–14 (2003).

    Article  PubMed  Google Scholar 

  21. Kawasaki, Y. et al. Anomalous cerebral asymmetry in patients with schizophrenia demonstrated by voxel-based morphometry. Biol. Psychiatry 63, 793–800 (2008).

    Article  PubMed  Google Scholar 

  22. Shivakumar, V., Sreeraj, V. S., Kalmady, S. V., Gangadhar, B. N. & Venkatasubramanian, G. Pars triangularis volume asymmetry and Schneiderian first rank symptoms in antipsychotic-naïve schizophrenia. Clin. Psychopharmacol. Neurosci. 19, 507–513 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Keller, S. S., Crow, T., Foundas, A., Amunts, K. & Roberts, N. Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain Lang. 109, 29–48 (2009).

    Article  PubMed  Google Scholar 

  24. Brugger, S. P. & Howes, O. D. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry 74, 1104–1111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369, 988–992 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  CAS  PubMed Central  ADS  Google Scholar 

  27. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murphy, E. & Benítez-Burraco, A. Bridging the gap between genes and language deficits in schizophrenia: an oscillopathic approach. Front. Hum Neurosci. 10, 422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stefaniak, J. D., Alyahya, R. S. W. & Lambon Ralph, M. A. Language networks in aphasia and health: a 1000 participant activation likelihood estimation meta-analysis. Neuroimage 233, 117960 (2021).

    Article  PubMed  Google Scholar 

  30. Jackson, R. L. The neural correlates of semantic control revisited. Neuroimage 224, 117444 (2021).

    Article  PubMed  Google Scholar 

  31. Hartwigsen, G., Neef, N. E., Camilleri, J. A., Margulies, D. S. & Eickhoff, S. B. Functional segregation of the right inferior frontal gyrus: evidence from coactivation-based parcellation. Cereb. Cortex 29, 1532–1546 (2019).

    Article  PubMed  Google Scholar 

  32. Bzdok, D. et al. Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct. Funct. 217, 783–796 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen, J. et al. Intrinsic connectivity patterns of task-defined brain networks allow individual prediction of cognitive symptom dimension of schizophrenia and are linked to molecular architecture. Biol. Psychiatry 89, 308–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Gavilán Ibáñez, J. M. & García-Albea Ristol, J. E. Theory of mind and language comprehension in schizophrenia. Psicothema 25, 440–445 (2013).

    PubMed  Google Scholar 

  35. Allen, P. et al. Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr. Bull. 38, 695–703 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ćurčić-Blake, B. et al. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Prog. Neurobiol. 148, 1–20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Romeo, Z. & Spironelli, C. Hearing voices in the head: two meta-analyses on structural correlates of auditory hallucinations in schizophrenia. Neuroimage Clin. 36, 103241 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Modinos, G. et al. Neuroanatomy of auditory verbal hallucinations in schizophrenia: a quantitative meta-analysis of voxel-based morphometry studies. Cortex 49, 1046–1055 (2013).

    Article  PubMed  Google Scholar 

  39. Palaniyappan, L., Balain, V., Radua, J. & Liddle, P. F. Structural correlates of auditory hallucinations in schizophrenia: a meta-analysis. Schizophr. Res. 137, 169–173 (2012).

    Article  PubMed  Google Scholar 

  40. Jardri, R., Pouchet, A., Pins, D. & Thomas, P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am. J. Psychiatry 168, 73–81 (2011).

    Article  PubMed  Google Scholar 

  41. Zmigrod, L., Garrison, J. R., Carr, J. & Simons, J. S. The neural mechanisms of hallucinations: a quantitative meta-analysis of neuroimaging studies. Neurosci. Biobehav. Rev. 69, 113–123 (2016).

    Article  PubMed  Google Scholar 

  42. Fovet, T. et al. Decoding activity in Broca’s area predicts the occurrence of auditory hallucinations across subjects. Biol. Psychiatry 91, 194–201 (2022).

    Article  PubMed  Google Scholar 

  43. Sommer, I. E. et al. Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain 131, 3169–3177 (2008).

    Article  PubMed  Google Scholar 

  44. Clos, M., Amunts, K., Laird, A. R., Fox, P. T. & Eickhoff, S. B. Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 83, 174–188 (2013).

    Article  PubMed  Google Scholar 

  45. Adolphs, R., Damasio, H., Tranel, D., Cooper, G. & Damasio, A. R. A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J. Neurosci. 20, 2683–2690 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de la Rosa, S., Schillinger, F. L., Bülthoff, H. H., Schultz, J. & Uludag, K. fMRI adaptation between action observation and action execution reveals cortical areas with mirror neuron properties in human BA 44/45. Front. Hum. Neurosci. 10, 78 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Rizzolatti, G. & Fabbri-Destro, M. Mirror neurons: from discovery to autism. Exp. Brain Res. 200, 223–237 (2010).

    Article  PubMed  Google Scholar 

  48. Bonini, L., Rotunno, C., Arcuri, E. & Gallese, V. Mirror neurons 30 years later: implications and applications. Trends Cogn. Sci. 26, 767–781 (2022).

    Article  PubMed  Google Scholar 

  49. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 493–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Mehta, U. M. et al. Mirror neuron dysfunction in schizophrenia and its functional implications: a systematic review. Schizophr. Res. 160, 9–19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Brüne, M. ‘Theory of mind’ in schizophrenia: a review of the literature. Schizophr. Bull. 31, 21–42 (2005).

    Article  PubMed  Google Scholar 

  52. Tseng, C. E. et al. Altered cortical structures and tract integrity of the mirror neuron system in association with symptoms of schizophrenia. Psychiatry Res. 231, 286–291 (2015).

    Article  PubMed  Google Scholar 

  53. Schilbach, L. et al. Differential patterns of dysconnectivity in mirror neuron and mentalizing networks in schizophrenia. Schizophr. Bull. 42, 1135–1148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lee, J. S., Chun, J. W., Yoon, S. Y., Park, H. J. & Kim, J. J. Involvement of the mirror neuron system in blunted affect in schizophrenia. Schizophr. Res. 152, 268–274 (2014).

    Article  PubMed  Google Scholar 

  55. Lane, R. D. & Nadel, L. (eds) Cognitive Neuroscience of Emotion (Oxford Univ. Press, 2000).

  56. Robinson, D. R., Wu, Y. M. & Lin, S. F. The protein tyrosine kinase family of the human genome. Oncogene 19, 5548–5557 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Mukamel, Z. et al. Regulation of MET by FOXP2, genes implicated in higher cognitive dysfunction and autism risk. J. Neurosci. 31, 11437–11442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ocklenburg, S. et al. FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain Lang. 126, 279–284 (2013).

    Article  PubMed  Google Scholar 

  59. Sanjuán, J. et al. Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatr. Genet. 16, 67–72 (2006).

    Article  PubMed  Google Scholar 

  60. McCarthy-Jones, S. et al. Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia. J. Psychiatr. Res. 50, 66–72 (2014).

    Article  PubMed  Google Scholar 

  61. Burdick, K. E., DeRosse, P., Kane, J. M., Lencz, T. & Malhotra, A. K. Association of genetic variation in the MET proto-oncogene with schizophrenia and general cognitive ability. Am. J. Psychiatry 167, 436–443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Du, J. et al. The genetic determinants of language network dysconnectivity in drug-naive early stage schizophrenia. npj Schizophr. 7, 18 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pinel, P. et al. Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. J. Neurosci. 32, 817–825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vassilopoulos, A., Fritz, K. S., Petersen, D. R. & Gius, D. The human sirtuin family: evolutionary divergences and functions. Hum. Genomics 5, 485–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kishi, T. et al. SIRT1 gene, schizophrenia and bipolar disorder in the Japanese population: an association study. Genes Brain Behav. 10, 257–263 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, Y. et al. Association between silent information regulator 1 (SIRT1) gene polymorphisms and schizophrenia in a Chinese Han population. Psychiatry Res. 225, 744–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Fang, X., Chen, Y., Wang, Y., Ren, J. & Zhang, C. Depressive symptoms in schizophrenia patients: a possible relationship between SIRT1 and BDNF. Prog. Neuropsychopharmacol. Biol. Psychiatry. 95, 109673 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Luo, X. J. & Zhang, C. Down-regulation of SIRT1 gene expression in major depressive disorder. Am. J .Psychiatry 173, 1046 (2016).

    Article  PubMed  Google Scholar 

  69. Wang, D. et al. A Comprehensive analysis of the effect of SIRT1 variation on the risk of schizophrenia and depressive symptoms. Front. Genet. 11, 832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krynicki, C. R., Upthegrove, R., Deakin, J. F. W. & Barnes, T. R. E. The relationship between negative symptoms and depression in schizophrenia: a systematic review. Acta Psychiatr. Scand. 137, 380–390 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Guessoum, S. B., Le Strat, Y., Dubertret, C. & Mallet, J. A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 99, 109862 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Brosch, K. et al. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders. Mol. Psychiatry 27, 4234–4243 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kay, S. R., Fiszbein, A. & Opler, L. A. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, J. et al. Neurobiological divergence of the positive and negative schizophrenia subtypes identified on a new factor structure of psychopathology using non-negative factorization: an international machine learning study. Biol. Psychiatry 87, 282–293 (2020).

    Article  PubMed  Google Scholar 

  75. Amunts, K. et al. Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Amunts, K., Schleicher, A. & Zilles, K. Outstanding language competence and cytoarchitecture in Broca’s speech region. Brain Lang. 89, 346–353 (2004).

    Article  PubMed  Google Scholar 

  77. Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article  PubMed  Google Scholar 

  78. Fox, P. T. et al. BrainMap taxonomy of experimental design: description and evaluation. Hum. Brain Mapp. 25, 185–198 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Poeppl, T. B. et al. Imbalance in subregional connectivity of the right temporoparietal junction in major depression. Hum. Brain Mapp. 37, 2931–2942 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Poeppl, T. B. et al. A view behind the mask of sanity: meta-analysis of aberrant brain activity in psychopaths. Mol. Psychiatry 24, 463–470 (2019).

    Article  PubMed  Google Scholar 

  81. de Kovel, C. G. F. et al. No alterations of brain structural asymmetry in major depressive disorder: an ENIGMA consortium analysis. Am. J. Psychiatry 176, 1039–1049 (2019).

    Article  PubMed  Google Scholar 

  82. Okada, N. et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol. Psychiatry 21, 1460–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bludau, S. et al. Integration of transcriptomic and cytoarchitectonic data implicates a role for MAOA and TAC1 in the limbic-cortical network. Brain Struct. Funct. 223, 2335–2342 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kong, X. Z. et al. Gene expression correlates of the cortical network underlying sentence processing. Neurobiol. Lang. 1, 77–103 (2020).

    Article  Google Scholar 

  87. Romme, I. A., de Reus, M. A., Ophoff, R. A., Kahn, R. S. & van den Heuvel, M. P. Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biol. Psychiatry 81, 495–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Unger, N. et al. Identification of phonology-related genes and functional characterization of Broca’s and Wernicke’s regions in language and learning disorders. Front. Neurosci. 15, 680762 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research project is supported by a grant from the START-Program of the Faculty of Medicine of the RWTH Aachen University (37/20; funded by the North Rhine-Westphalian Ministry of Culture and Science). J.H.Z. was supported by Yong Loo Lin School of Medicine, National University of Singapore.

Author information

Authors and Affiliations

Authors

Contributions

T.B.P., S.Z. and K. Sakreida designed the study. S.B.E. gave conceptual advice. A.A., T.B., B.D., E.F., T.F., P.F.-C., M.Á.G.-L., O.G., G.H., R.J., L.K., P.M.K., D.M., M.L., B.L., E.P.-C., J.P., M.S., K. Sim, J.S.-V., I.E.S., J.H.Z. and T.B.P. contributed data. S.Z. conducted the analyses under supervision by K. Sakreida and T.B.P. F.H. organized and preprocessed data of the replication sample. J.A.C. and S.B.E. provided the functional characterization. S.B., D.I.P. and T.W.M. advised on the gene expression analyses. S.Z. and T.B.P. wrote the paper. S.B., D.I.P., S.H., T.W.M. and S.B.E. discussed the results and implications. All authors commented on the paper at all stages.

Corresponding author

Correspondence to Timm B. Poeppl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Tables 1–16, Figs. 1–3 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, S., Sakreida, K., Bludau, S. et al. Asymmetry, cytoarchitectonic morphology and genetics associated with Broca’s area in schizophrenia. Nat. Mental Health 2, 310–319 (2024). https://doi.org/10.1038/s44220-023-00200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00200-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing