Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning

Abstract

Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto-striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification performances for each working group and transdiagnostic classification performance across working groups.
Fig. 2: Brain regions contributing the most to classification of PD versus HC.
Fig. 3: Brain regions contributing the most to classification of male patients versus male HC.
Fig. 4: Brain regions contributing the most to classification of unmedicated patients versus HC.
Fig. 5: Brain regions contributing the most to classification of low-severity anxiety versus HC.
Fig. 6: Simplified visual representation of the ML pipeline.

Similar content being viewed by others

Data availability

All data used in this study are in principle publicly available within the ENIGMA Consortium. For this study, all site-level data were first transferred to a secure data environment (Amsterdam UMC) and subsequently subjected to the final mega-analyses, all with permission from individual sites. However, some data-sharing restrictions are in place. These include restrictions imposed by (1) site-specific consent documentation, ethical review boards and institutional processes, (2) along with national/international data-sharing legislations (for example, General Data Protection Regulation). Some of these restrictions may require a signed material transfer agreement for limited and predefined data use. However, data sharing might still be possible, requiring submission of a detailed analysis plan to the ENIGMA-Anxiety Consortium. If approved, access to relevant data is provided, depending on data availability, local principal investigator approval and compliance with all supervening regulations. Requests or questions regarding data availability or sharing should be sent to the corresponding author.

Code availability

Relevant analysis codes can be found at https://github.com/WillemB2104.

References

  1. Zacharek, S. J., Kribakaran, S., Kitt, E. R. & Gee, D. G. Leveraging big data to map neurodevelopmental trajectories in pediatric anxiety. Dev. Cogn Neurosci. 50, 100974 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Merikangas, K. R. et al. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 49, 980–989 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vigo, D., Thornicroft, G. & Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 3, 171–178 (2016).

    Article  PubMed  Google Scholar 

  4. Strawn, J. R., Lu, L., Peris, T. S., Levine, A. & Walkup, J. T. Research review: pediatric anxiety disorders – what have we learnt in the last 10 years? J. Child Psychol. Psychiatry 62, 114–139 (2021).

    Article  PubMed  Google Scholar 

  5. Hafstad, G. S. & Augusti, E. M. A lost generation? COVID-19 and adolescent mental health. Lancet Psychiatry 8, 640–641 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Strawn, J. R. et al. Neurobiology of pediatric anxiety disorders. Curr. Behav. Neurosci. Rep. 1, 154–160 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cosgrove, V. E. et al. Structure and etiology of co-occurring internalizing and externalizing disorders in adolescents. J. Abnorm. Child Psychol. 39, 109–123 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Costello, E. J., Mustillo, S., Erkanli, A., Keeler, G. & Angold, A. Prevalence and development of psychiatric disorders in childhood and adolescence. Arch. Gen. Psychiatry. 60, 837–844 (2003).

    Article  PubMed  Google Scholar 

  9. Craske, M. G. et al. Anxiety disorders. Nat. Rev. Dis. Primers 3, 17024 (2017).

    Article  PubMed  Google Scholar 

  10. Bas-Hoogendam, J. M. et al. ENIGMA-Anxiety working group: rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum. Brain Mapp. 43, 83–112 (2022).

    Article  PubMed  Google Scholar 

  11. Janssen, R. J., Mourao-Miranda, J. & Schnack, H. G. Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 798–808 (2018).

    PubMed  Google Scholar 

  12. Marquand, A. F. et al. Conceptualizing mental disorders as deviations from normative functioning. Mol. Psychiatry 24, 1415–1424 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marquand, A. F., Rezek, I., Buitelaar, J. & Beckmann, C. F. Understanding heterogeneity in clinical cohorts using normative models: beyond case–control studies. Biol. Psychiatry 80, 552–561 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paulus, M. P. & Thompson, W. K. The challenges and opportunities of small effects: the new normal in academic psychiatry. JAMA Psychiatry 76, 353–354 (2019).

    Article  PubMed  Google Scholar 

  15. Bzdok, D. & Meyer-Lindenberg, A. Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiatry Cogn Neurosci. Neuroimaging 3, 223–230 (2018).

    PubMed  Google Scholar 

  16. Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G. & Mechelli, A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36, 1140–1152 (2012).

    Article  PubMed  Google Scholar 

  17. Zhang, W. et al. Diagnostic prediction for social anxiety disorder via multivariate pattern analysis of the regional homogeneity. Biomed. Res. Int. 2015, 763965 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Liu, F. et al. Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct. Funct. 220, 101–115 (2015).

    Article  PubMed  Google Scholar 

  19. Xing, M., Fitzgerald, J. M. & Klumpp, H. Classification of social anxiety disorder with support vector machine analysis using neural correlates of social signals of threat. Front. Psychiatry 11, 144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frick, A. et al. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure. Behav. Brain Res. 259, 330–335 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hilbert, K., Lueken, U., Muehlhan, M. & Beesdo-Baum, K. Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: a multimodal machine learning study. Brain Behav. 7, e00633 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pantazatos, S. P., Talati, A., Schneier, F. R. & Hirsch, J. Reduced anterior temporal and hippocampal functional connectivity during face processing discriminates individuals with social anxiety disorder from healthy controls and panic disorder, and increases following treatment. Neuropsychopharmacology. 39, 425–434 (2014).

    Article  PubMed  Google Scholar 

  23. Lueken, U. et al. Neurobiological markers predicting treatment response in anxiety disorders: a systematic review and implications for clinical application. Neurosci. Biobehav. Rev. 66, 143–162 (2016).

    Article  PubMed  Google Scholar 

  24. Lueken, U., Hilbert, K., Wittchen, H. U., Reif, A. & Hahn, T. Diagnostic classification of specific phobia subtypes using structural MRI data: a machine-learning approach. J. Neural Transm. 122, 123–134 (2015).

    Article  PubMed  Google Scholar 

  25. Thompson, P. M. et al. The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Belov, V. et al. Global multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical features of 5,365 participants from the ENIGMA MDD dataset. Preprint at arxiv.org/abs/2206.08122 (2022).

  28. Bruin, W. B. et al. Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters. Transl. Psychiatry 10, 342 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nunes, A. et al. Using structural MRI to identify bipolar disorders—13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol. Psychiatry 25, 2130–2143 (2020).

    Article  PubMed  Google Scholar 

  30. Schnack, H. G. & Kahn, R. S. Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters. Front. Psychiatry 7, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sawyer, S. M., Azzopardi, P. S., Wickremarathne, D. & Patton, G. C. The age of adolescence. Lancet Child Adolesc. Health 2, 223–228 (2018).

    Article  PubMed  Google Scholar 

  32. Wang, S. et al. Emotional intelligence mediates the association between middle temporal gyrus gray matter volume and social anxiety in late adolescence. Eur. Child Adolesc. Psychiatry 30, 1857–1869 (2021).

    Article  PubMed  Google Scholar 

  33. Grabe, H. J. et al. Alexithymia and brain gray matter volumes in a general population sample. Hum. Brain Mapp. 35, 5932–5945 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ren, J. et al. The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. NeuroImage 214, 116751 (2020).

    Article  PubMed  Google Scholar 

  35. Graeff, F. G. & Del-Ben, C. M. Neurobiology of panic disorder: from animal models to brain neuroimaging. Neurosci. Biobehav. Rev. 32, 1326–1335 (2008).

    Article  PubMed  Google Scholar 

  36. Sobanski, T. et al. Temporal and right frontal lobe alterations in panic disorder: a quantitative volumetric and voxel-based morphometric MRI study. Psychol. Med. 40, 1879–1886 (2010).

    Article  PubMed  Google Scholar 

  37. Wang, X. et al. Distinct grey matter volume alterations in adult patients with panic disorder and social anxiety disorder: a systematic review and voxel-based morphometry meta-analysis. J. Affect. Disord. 281, 805–823 (2021).

    Article  PubMed  Google Scholar 

  38. de Carvalho, M. R. et al. Current findings of fMRI in panic disorder: contributions for the fear neurocircuitry and CBT effects. Expert Rev. Neurother. 10, 291–303 (2010).

    Article  PubMed  Google Scholar 

  39. Radua, J., van den Heuvel, O. A., Surguladze, S. & Mataix-Cols, D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch. Gen. Psychiatry 67, 701–711 (2010).

    Article  PubMed  Google Scholar 

  40. Protopopescu, X. et al. Increased brainstem volume in panic disorder: a voxel-based morphometric study. NeuroReport 17, 361–363 (2006).

    Article  PubMed  Google Scholar 

  41. Smith, K. S., Tindell, A. J., Aldridge, J. W. & Berridge, K. C. Ventral pallidum roles in reward and motivation. Behav. Brain Res. 196, 155–167 (2009).

    Article  PubMed  Google Scholar 

  42. Harrewijn, A. et al. Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. Transl. Psychiatry 11, 502 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Duval, E. R., Javanbakht, A. & Liberzon, I. Neural circuits in anxiety and stress disorders: a focused review. Ther. Clin. Risk Manag. 11, 115–126 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Dwyer, D. & Koutsouleris, N. Annual research review: translational machine learning for child and adolescent psychiatry. J. Child Psychol. Psychiatry 63, 421–443 (2022).

    Article  PubMed  Google Scholar 

  45. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xie, S., Zhang, X., Cheng, W. & Yang, Z. Adolescent anxiety disorders and the developing brain: comparing neuroimaging findings in adolescents and adults. Gen. Psychiatr. 34, e100411 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rehbein, E., Hornung, J., Sundstrom Poromaa, I. & Derntl, B. Shaping of the female human brain by sex hormones: a review. Neuroendocrinology 111, 183–206 (2021).

    Article  PubMed  Google Scholar 

  48. Dusi, N., Barlati, S., Vita, A. & Brambilla, P. Brain structural effects of antidepressant treatment in major depression. Curr. Neuropharmacol. 13, 458–465 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hajek, T. & Weiner, M. W. Neuroprotective effects of lithium in human brain? Food for thought. Curr. Alzheimer Res. 13, 862–872 (2016).

    Article  PubMed  Google Scholar 

  50. Abraham, A. et al. Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example. NeuroImage 147, 736–745 (2017).

    Article  PubMed  Google Scholar 

  51. Nieuwenhuis, M. et al. Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage 61, 606–612 (2012).

    Article  PubMed  Google Scholar 

  52. Varoquaux, G. et al. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage 145, 166–179 (2017).

    Article  PubMed  Google Scholar 

  53. Flint, C. et al. Systematic misestimation of machine learning performance in neuroimaging studies of depression. Neuropsychopharmacology. 46, 1510–1517 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Botteron, K. et al. Consensus Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders (American Psychiatric Association, 2012).

  55. Boedhoe, P. S. W. et al. Cortical abnormalities associated with pediatric and adult obsessive–compulsive disorder: findings from the ENIGMA Obsessive–Compulsive Disorder Working Group. Am. J. Psychiatry. 175, 453–462 (2018).

    Article  PubMed  Google Scholar 

  56. Hibar, D. P. et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol. Psychiatry 23, 932–942 (2018).

    Article  PubMed  Google Scholar 

  57. van Erp, T. G. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).

    Article  PubMed  Google Scholar 

  58. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).

    Article  PubMed  Google Scholar 

  59. Hoogman, M. et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4, 310–319 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Varoquaux, G. Cross-validation failure: small sample sizes lead to large error bars. NeuroImage 180, 68–77 (2018).

    Article  PubMed  Google Scholar 

  61. Koppe, G., Meyer-Lindenberg, A. & Durstewitz, D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology. 46, 176–190 (2021).

    Article  PubMed  Google Scholar 

  62. Vieira, S., Liang, X., Guiomar, R. & Mechelli, A. Can we predict who will benefit from cognitive-behavioural therapy? A systematic review and meta-analysis of machine learning studies. Clin. Psychol. Rev. 97, 102193 (2022).

    Article  PubMed  Google Scholar 

  63. Eitel, F., Schulz, M. A., Seiler, M., Walter, H. & Ritter, K. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp. Neurol. 339, 113608 (2021).

    Article  PubMed  Google Scholar 

  64. Woo, C. W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bayer, J. M. M. et al. Site effects how-to and when: an overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses. Front. Neurol. 13, 923988 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014).

    Article  PubMed  Google Scholar 

  67. Zindler, T., Frieling, H., Neyazi, A., Bleich, S. & Friedel, E. Simulating ComBat: how batch correction can lead to the systematic introduction of false positive results in DNA methylation microarray studies. BMC Bioinf. 21, 271 (2020).

    Article  Google Scholar 

  68. Steinberg, L. D. Adolescence (McGraw-Hill, 1993).

  69. Patton, G. C. et al. Adolescence and the next generation. Nature 554, 458–466 (2018).

    Article  PubMed  Google Scholar 

  70. Abbas, H., Garberson, F., Liu-Mayo, S., Glover, E. & Wall, D. P. Multi-modular AI approach to streamline autism diagnosis in young children. Sci. Rep. 10, 5014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Koutsouleris, N. et al. Multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression. JAMA Psychiatry 78, 195–209 (2021).

    Article  PubMed  Google Scholar 

  72. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (American Psychiatric Association, 2000).

  73. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (American Psychiatric Association, 2013).

  74. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  PubMed  Google Scholar 

  75. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  76. Claude, L. A., Houenou, J., Duchesnay, E. & Favre, P. Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions. Bipolar Disord. 22, 334–355 (2020).

    Article  PubMed  Google Scholar 

  77. Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry 77, 534–540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ojala, M. & Garriga, G. C. Permutation tests for studying classifier performance. J. Mach. Learn. Res. 11, 1833–1863 (2010).

    Google Scholar 

  79. Gomez-Verdejo, V., Parrado-Hernandez, E., Tohka, J. & Alzheimera’s Disease Neuroimaging Initiative. Sign-consistency based variable importance for machine learning in brain imaging. Neuroinformatics 17, 593–609 (2019).

  80. Spielberger, C. D. State–Trait Anxiety Inventory Bibliography, 2nd ed. (Consulting Psychologists Press, 1989).

Download references

Acknowledgements

This study was financially supported by The Netherlands Organization for Health Research and Development—ZonMw (research fellowship number 06360322210035 to M. Aghajani), Dutch Research Council NWO (SSH Open Competition number 15810 to M. Aghajani), Leiden University Fund (project Youth Mental Health Meets Big Data Analytics, grant number LUF23075-5-306 to M. Aghajani), Leiden University Fund (project grant number W213085-5 to M. Aghajani), Amsterdam Neuroscience (Amsterdam Neuroscience Alliance Grant Project to M. Aghajani and G.A.v.W.), the Dutch Research Council NWO (Rubicon grant number 019.201SG.022 to J.M.B.-H. and 452020227 to L.K.M.H.), the Carnegie Corporation of New York (to N.A.G.; the statements made and views expressed are solely the responsibility of the author), the National Institute of Mental Health (NIMH; IRP project grant number ZIA-MH002781 to A.M.W., C. Antonacci and D.S.P.; R01-MH070664 to J.P.B.; K23-MH114023 to G.A.F.; R01-MH117601 to N.J.; R00-MH117274 to A.N.K.; R01-MH70918-01A2 and R01-MH070664 to B. Milrod; R01-MH086517 and K23-MH076198 to K.L.P.; R01-MH101486 to J.W.S.; K01-MH118428 to B.S.-J.; K23-MH109983 to C.M.S.; and R01-MH116147, R01-MH121246 and R01-MH129742 to P.M.T.), the National Institutes of Health (grant number R01-MH101486 to J.A.N.), the National Institute of General Medical Sciences Center (grant number 1P20GM121312 to M.P.P.), the German Research Foundation (DFG; grant number BE 3809/8-1 to K.B.-B., KI588/14-1 and KI588/14-2 to T.K. and STR 1146/18-1 to B.S.), the Italian Ministry of Health (RF-2016-02364582 to P.B., GR-2010-2312442 and GR-2011-02348232 to C.O.), the Carlos III Health Institute (ISCIII; M.C. is funded by a ‘Sara Borrell’ postdoctoral contract (CD20/00189), D.P.-C. is funded by a ‘PFIS’ predoctoral fellowship (FI19/00251) and grant number PI18/00036 to N.C.), the Hartford HealthCare (grant number 129522 to G.J.D.), the South African Medical Research Council, Nuclear Technologies in Medicine and the Biosciences Initiative (NTeMBI) and Harry Crossley Foundation to A.G.G.D., the One Mind Baszucki-Brain Research Fund to G.A.F., the FRS-FNRS Belgian National Science Foundation (grant number 1.C.059.18F to A. Heeren), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grant number 2013/08531-5 to A.P.J. and 2014/50917-0 to G.A.S.), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant number 442026/2014-5 to A.P.J. and 465550/2014-2 to G.A.S.), the Ministry of Science and ICT, South Korea (grant number NRF-2019M3C7A1032262 to S.-H.L.), the National Key R&D Program of China (grant numbers 2022YFC2009901 and 2022YFC2009900 to S.L.), the National Natural Science Foundation of China (grant number 82120108014 to S.L.), Humboldt Foundation Friedrich Wilhelm Bessel Research Award and Chang Jiang Scholars (program number T2019069 to S.L.), the BIAL Foundation (grant number 288/20 to E.M.), the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant number 101026595 to K.N.T.M.), the Medical Research Council New Investigator Grant (grant number MR/W005077/1 to F.M.), and the Eunice Kennedy Schriver National Institute of Child Health and Human Development (grant number K99 HD105002 to M.T.P.). A.R. is supported by a fellowship from MQ Mental Health Research and by the NIHR Oxford Health Biomedical Research Centre, the European Research Council (grant number ERC_CoG_772337 to K.R.), European Union’s Seventh Framework Programme (FP7/2007-2013; grant number 337673 to G.A.S.), the McNair Foundation (MIND-DB; Veteran Health Administration grant number VHA I01CX001937 to R. Salas), the Brain and Behavior Research Foundation (NARSAD Young Investigator Grant to B.S.-J. and A.T.), and the Medical Research Council of the National Institute for Health and Care Research to B.W.

Author information

Authors and Affiliations

Authors

Contributions

W.B.B. and M. Aghajani conceived and designed the study. W.B.B. and M. Aghajani collated, analyzed and interpreted the data. All authors were involved in drafting, writing and revising the paper. All authors were involved in site-level data collection and curation. All authors read and approved the final version of the paper.

Corresponding author

Correspondence to Moji Aghajani.

Ethics declarations

Competing interests

F. Agosta is section editor of NeuroImage: Clinical; has received speaker honoraria from Biogen Idec, Roche and Zambon; and receives or has received research supports from the Italian Ministry of Health, AriSLA (Fondazione Italiana di Ricerca per la SLA) and the European Research Council. E.C. has received research support from the Italian Ministry of Health. T.D. has received consulting and speaker honoraria from Novartis, Teva and Hormosan unrelated to this paper. M.F. is editor-in-chief of the Journal of Neurology and associate editor of Human Brain Mapping, Neurological Sciences and Radiology; has received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche and Sanofi; has received compensation for speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda and Teva; has participated in advisory boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme and Takeda; has participated in scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis and Sanofi-Genzyme; and receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla and ARiSLA (Fondazione Italiana di Ricerca per la SLA). G.A.F. owns equity in Alto Neuroscience and is a consultant to Synapse Bio AI. H.J.G. has received travel grants and speaker honoraria from Fresenius Medical Care, Neuraxpharm, Servier and Janssen Cilag, and has received research funding from Fresenius Medical Care. N.J. received partial research grant support from Biogen for research unrelated to this paper. M.P.P. is an advisor to Spring Care, a behavioral health start-up, and has received royalties for an article about methamphetamine in UpToDate. P.M.T. received partial research grant support from Biogen for research unrelated to this paper. All other individually named authors in and outside of the ENIGMA-Anxiety Working Groups reported no biomedical financial interests or potential conflicts of interest.

Peer review

Peer review information

Nature Mental Health thanks Alice Chavanne, Ruiyang Ge and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Discussion, Figs. 1–5 and Tables 1–10.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruin, W.B., Zhutovsky, P., van Wingen, G.A. et al. Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning. Nat. Mental Health 2, 104–118 (2024). https://doi.org/10.1038/s44220-023-00173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00173-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing