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Heterogeneous factors influence social 
cognition across diverse settings in brain 
health and age-related diseases

Sol Fittipaldi1,2,3, Agustina Legaz1,4,5, Marcelo Maito1, Hernan Hernandez    1,6, 
Florencia Altschuler4,5, Veronica Canziani4, Sebastian Moguilner1,4, 
Claire M. Gillan2,3,7, Josefina Castillo1, Patricia Lillo8,9, Nilton Custodio10,11, 
José Alberto Avila-Funes12,13, Juan Felipe Cardona14, Andrea Slachevsky8,9,15,16, 
Fernando Henriquez    8,9, Matias Fraile-Vazquez4, Leonardo Cruz de Souza17, 
Barbara Borroni18,19, Michael Hornberger20, Francisco Lopera21, 
Hernando Santamaria-Garcia2,22, Diana Matallana22,23, Pablo Reyes1, 
Cecilia Gonzalez-Campo4,5, Maxime Bertoux24 & Agustin Ibanez    1,2,3,4,5,7 

Aging diminishes social cognition, and changes in this capacity can indicate 
brain diseases. However, the relative contribution of age, diagnosis and 
brain reserve to social cognition, especially among older adults and in 
global settings, remains unclear when considering other factors. Here, using 
a computational approach, we combined predictors of social cognition 
from a diverse sample of 1,063 older adults across nine countries. Emotion 
recognition, mentalizing and overall social cognition were predicted via 
support vector regressions from various factors, including diagnosis 
(subjective cognitive complaints, mild cognitive impairment, Alzheimer’s 
disease and behavioral variant frontotemporal dementia), demographics, 
cognition/executive function, brain reserve and motion artifacts from 
functional magnetic resonance imaging recordings. Higher cognitive/
executive functions and education ranked among the top predictors, 
outweighing age, diagnosis and brain reserve. Network connectivity did not 
show predictive values. The results challenge traditional interpretations of 
age-related decline, patient–control differences and brain associations of 
social cognition, emphasizing the importance of heterogeneous factors.

Social cognition plays a key role in human interaction, encompassing the 
mental processes involved in perceiving, interpreting and responding 
to the social cues of others1. The core and most studied components are 
emotion recognition and mentalizing2. Emotion recognition conveys 
the ability to identify how others feel. Mentalizing is the capacity to infer 
the mental states of others, such as their intentions, beliefs and desires. 
Aging may diminish performance in both processes3, associated with gray 
matter loss and functional connectivity changes across brain networks4,5. 

Social cognition dysfunction in aging can increase social isolation, loneli-
ness and vulnerability6, impacting brain health7 and quality of life8. Stand-
ardized tasks of social cognition are increasingly used in research and 
clinical contexts to assess the performance of patients with age-related 
conditions such as subjective cognitive complaints (SCC), mild cogni-
tive impairment (MCI) and dementia, in comparison to that of healthy 
controls (HCs)9–11. However, despite its relevance, several gaps persist in 
our understanding of the factors that influence social cognition in aging.
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traditional factors (that is, age and diagnosis) influencing social cog-
nition as reported in homogeneous and stereotypical samples are 
hypothesized to show a reduced predictive value21. Our findings have 
the potential to advance our understanding of social cognition in aging 
populations by elucidating the factors that contribute to performance 
variability in current assessments. This knowledge can inform the 
development of tailored predictive models and tools to assess and 
improve social cognition in brain health and age-related diseases.

Results
Traditional effects (age and diagnosis) on social cognition
Simple linear regression analyses showed that advanced age signifi-
cantly predicted worse emotion recognition, mentalizing and the 
social cognition total score (Fig. 1b and Extended Data Table 1). Linear  
mixed-effects models47 controlling for sex, age, education and coun-
try of origin revealed that the diagnosis had a significant effect on 
emotion recognition (F = 32.88, P < 0.0001 and ηp

2 = 0.12), mentaliz-
ing (F = 59.72, P < 0.0001 and ηp

2 = 0.2) and the total score (F = 63.93, 
P < 0.0001 and ηp

2 = 0.21). Šidák-corrected post hoc tests showed that 
HC and SCC groups outperformed MCI, AD and bvFTD groups in the 
three measures, and that individuals with bvFTD performed signifi-
cantly worse than those with AD in emotion recognition (Fig. 1c). No 
other significant between-group differences were found. Diagnosis 
effects on mentalizing (F = 12.75, P < 0.0001 and ηp

2 = 0.17) and the 
total score (F = 14.36, P < 0.0001 and ηp

2 = 0.08) were maintained when 
including the participants’ performance in the mentalizing control 
questions of the test33 as a covariate of no interest (Extended Data  
Fig. 1). This analysis confirms that results were not entirely explained 
by a lack of attention to or understanding of the stimuli.

Combined predictors of social cognition
Support vector regression (SVR) models48 were used to predict social 
cognition (emotion recognition, mentalizing and the total score) from 
the complete set of potential predictors. Multicollinearity between 
predictors is assumed and addressed in our models (Methods). In any 
case, as multicollinearity concerns the relationships among predic-
tors49, it does not inherently imply any circular relationship with the 
outcomes of our models (that is, social cognition). Data were harmo-
nized across countries (using equivalence tables50, scale transforma-
tion and z-scores estimation), and 170 missing values were imputed 
using a sklearn iterative imputer with Bayesian ridge regression51. SVR 
models were optimized using Bayesian optimization52 with k = 3 cross-
validation for tuning the hyperparameters on training (70%) and testing 
(30%) folds, with ten repetitions. Feature selection was performed 
using backward elimination53 to identify each model’s top predictors 
(in order of relevance). To obtain the final models, 1,000 optimized SVR 
regressors were trained and tested for each outcome variable using a 
bootstrap approach, setting aside median-stratified 30% of the data 
as a test partition. We report the average models’ performance and 
largest false discovery rate-corrected P values (statsmodels version 
0.13.2) on the test partition of the data. Analyses were performed in the 
full sample (n = 998, after removing participants with invalid scores) 
and in subsamples with neuroimaging recordings, including structural 
MRI (n = 598) and resting-state fMRI (n = 388) sequences.

Behavioral predictors
The first set of models assessed whether behavioral data (clinical 
diagnosis, demographics and cognition) were able to predict social 
cognition (Fig. 2a). The model using emotion recognition as the out-
come variable was significant (R² = 0.35, confidence interval (CI) (95%) 
0.07, f2 = 0.53, F = 22.31 and P < 0.0001). The best predictors of emo-
tion recognition were, in order of importance, cognition (β = 29.67 
and P < 0.0001), executive function (β = 18.98 and P < 0.0001), edu-
cation (β = 7.88 and P < 0.0001), sex (β = 7.11 and P < 0.0001), country 
income (β = 5.95 and P < 0.0001) and diagnosis (β = 5.51 and P < 0.0001).  

One critical problem is the considerable variability observed in 
social cognition performance among otherwise similar individuals12, 
especially in the older population3 and at a global scale13,14. This vari-
ability may stem from multiple factors, such as demographic charac-
teristics (sex, age, education13–16 and socioeconomic status17,18) and 
individual differences in other cognitive abilities (for example, memory 
and processing speed4) or executive functions (for example, inhibition 
and working memory19). Brain reserve, defined as the accumulation 
during the lifespan of structural and functional brain resources that 
mitigate the effects of neural decline caused by aging or disease20, 
may also play a role in social cognition variability4,5. Crucially, when 
considering underrepresented aging samples from low- and upper-
middle-income countries (UMICs), brain health determinants exhibit 
greater heterogeneity, challenging mainstream evidence from high-
income countries (HICs)21–25. Socioeconomic disparities worsen brain 
health and increase the rate of dementia23. Within these heterogeneous 
determinants, factors related to disparities, such as social determinants 
of health and education can exert a stronger influence than traditional 
factors such as age and sex21. Thus, heterogeneity constrains standard 
brain–behavior and brain–phenotype associations26–30, and predic-
tive models often fail to classify individuals with nonstereotypical 
profiles regarding demographics, clinical presentation, admixtures, 
cognition and brain function26,27. In the same vein, functional connec-
tivity-based models usually fail to generalize to diverse samples and 
are influenced by image acquisition artifacts, particularly in-scanner 
head motion26,31,32. These issues limit our ability to draw generalized 
conclusions about social cognition in healthy and pathological aging, 
hampering the development of a more global agenda.

In this Article, to address these gaps, we systematically investi-
gated combined predictors of social cognition in older individuals 
through a multicentric computational approach (Fig. 1a). We sought 
to determine whether the traditional effects of age (Fig. 1b) and 
patient–control differences (Fig. 1c) are indeed the primary drivers 
of performance variability in social cognition tasks. We assembled 
1,063 participants (>50 years) from nine countries to maximize sample 
diversity. Our outcomes of interest were facial emotion recognition, 
mentalizing and a social cognition total score (that is, the combination 
of both measures) using a well-characterized battery, the mini-social 
cognition and emotional assessment (mini-SEA)33. In the mini-SEA, par-
ticipants are asked to identify the emotion depicted in a subset of pho-
tos from the Ekman series and to identify unintended transgression of 
social rules (that is, faux pas) in short stories. The potential predictors 
of social cognition comprised the following factors: (1) clinical diag-
nosis (HCs, SCC, MCI, Alzheimer’s disease (AD) and behavioral variant 
frontotemporal dementia (bvFTD)); (2) demographics (sex (female or 
male), age (years), education (years) and country income as a proxy of 
socioeconomic status (HICs and UMICs)34); (3) cognition (cognitive35–37 
and executive function38,39 screening scores); (4) brain reserve (gray 
matter volume derived from voxel-based morphometry (VBM) analy-
sis40 and functional connectivity strength derived from seed analysis41 
of the resting-state functional magnetic resonance imaging (fMRI) 
networks: salience network (SN)42, default mode network (DMN)43, 
executive network (EN)44, visual network (VN)45 and motor network 
(MN46)); and (5) in-scanner motion artifacts (average translation and 
rotation parameters during the resting-state sequence). The analysis 
consisted of three distinct model sets. The initial set focused on behav-
ioral data, spanning clinical diagnosis, demographics and cognition. 
The second set integrated structural brain reserve factors (gray matter 
volume) with the previous behavioral predictors. Lastly, the third set 
incorporated functional connectivity metrics and motion artifacts, 
building upon the predictors from both the first and second sets.

We anticipate that healthy individuals, female13,14, younger in  
age13–15, highly educated13,15,16, from HICs17, with better cognitive and 
executive abilities16,19 and with higher brain reserve20 will exhibit 
higher emotion recognition, mentalizing and total scores. However, 
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Age was not a significant contributor for emotion recognition (β = 3.53 
and P = 0.97). Mentalizing was significantly predicted (R² = 0.34, CI 
(95%) 0.09, f2 = 0.52, F = 21.76 and P < 0.0001) by cognition (β = 45.31 
and P < 0.0001), executive function (β = 29.87 and P < 0.0001), educa-
tion (β = 16.23 and P < 0.0001), diagnosis (β = 7.17 and P < 0.0001) and 
country income (β = 7 and P < 0.0001). Sex and age were not significant 
(β = 2.51, P = 0.85 and β = 2.34, P = 0.84, respectively). Finally, the social 
cognition total score was successfully predicted (R² = 0.44, CI (95%) 
0.06, f2 = 0.79, F = 33.07 and P < 0.0001) by cognition (β = 63.13 and 
P < 0.0001), executive function (β = 41.13 and P < 0.0001), education 
(β = 23.23 and P < 0.0001), diagnosis (β = 11.50 and P < 0.0001) and sex 
(β = 8.05 and P < 0.0001). Country income and age were not significant 
(β = 6.55, P = 0.12 and β = 3.75, P = 0.79, respectively). The results were  
similar when assessed without data imputation (Extended Data Table 2),  
and in the subsamples with structural MRI (Extended Data Table 3) or 
resting-state fMRI (Extended Data Table 4) recordings. A consistent 

pattern of behavioral predictors was also found when stratifying the 
sample by sex (Extended Data Table 5) and analyzing HCs separately 
(Extended Data Table 6). Taken together, better cognitive and execu-
tive functions and higher educational level consistently emerged as 
the top predictors of social cognition performance, above diagnosis 
and other demographic characteristics.

Behavioral and structural brain reserve predictors
The second set of models included the previous behavioral predictors 
plus one level of brain reserve (gray matter volume) as predictors of 
social cognition performance (Fig. 2b). The model predicting emo-
tion recognition was significant (R² = 0.28, CI (95%) 0.09, f2 = 0.39, 
F = 5.45 and P < 0.0001) and included the following features: cognition 
(β = 27.25 and P < 0.0001), executive function (β = 20.37 and P < 0.0001), 
SN volume (β = 20.19, T = 116.11 and P < 0.0001), EN volume (β = 15.44 
and P < 0.0001), sex (β = 9.79 and P < 0.0001), MN volume (β = 9.01 
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Fig. 1 | Analysis pipeline and traditional effects of age and diagnosis on 
social cognition performance. a, (i) Participants were recruited from HICs 
(Chile, France, Italy and the United Kingdom) and UMICs (Argentina, Brazil, 
Colombia, Peru and Mexico) through ReDLat, the INSCD and GERO. (ii) Diagnosis, 
demographics, cognition, gray matter volume (vol) and fMRI resting-state 
functional connectivity of brain networks, and in-scanner motion artifacts were 
entered into computational models as predictors of social cognition.  
(iii) Data were harmonized across countries (including scale transformation) and 
missing values were imputed. (iv) The analysis involved Bayesian optimization 
with k = 3 cross-validation for tuning the hyperparameters in 70:30 train and test 
partitioning and SVR models using a bootstrap approach. (v) Outcome variables 
were facial emotion recognition, mentalizing and a social cognition total score 
from the mini-SEA battery. Emotion recognition image was reproduced from  

ref. 118. b, Age significantly predicted worse performance in emotion 
recognition, mentalizing and the total score across the full sample (n = 998). Data 
were analyzed with simple linear regression analysis. Red lines and gray shadings 
represent the best-fit line for each simple linear regression with 95% confidence 
bands. **P < 0.0001 (for details, see Extended Data Table 1). c, Participants with 
MCI (n = 96), AD (n = 339) and bvFTD (n = 102) performed significantly worse 
in social cognition relative to HCs (n = 316) and the SCC group (n = 145), and 
participants with bvFTD also performed significantly worse than those with AD 
in emotion recognition. Data were analyzed with linear mixed-effects models47 
controlling for sex, age, education and country of origin. The red dots and lines 
display the mean and s.d. P values are corrected for multiple comparisons using 
the Šidák method.
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Fig. 2 | SVR results. a, Models including diagnosis, demographics and cognition 
as predictors of social cognition performance (n = 998). b, Models including 
one level of brain reserve (gray matter volume) together with behavioral 
features as predictors of social cognition performance (n = 598). c, Models 
including resting-state functional connectivity features (brain networks and 
motion artifacts) as predictors of social cognition performance in addition to 
behavioral and gray matter volume predictors (n = 388). Bars plots represent 

the β coefficient and CI associated with each predictor in each model. Violin 
plots show the distribution of R² values in the test partitions of the data from 
the bootstrap approach (n = 1,000 optimized SVR models). Thick lines inside 
density plots display the IQR and whiskers show maximum and minimum values 
of R². The translucid panel displays a nonsignificant model. Move rot: rotation 
movements; move trans: translation movements. *P < 0.05 and **P < 0.01 (details 
are provided in the main text).
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and P < 0.0001), diagnosis (β = 8.14 and P < 0.0001) and education 
(β = 7.58 and P < 0.0001). DMN volume (β = 5.99 and P = 0.92), age 
(β = 5.63 and P = 0.23), VN volume (β = 5.04 and P = 0.69) and country 
income (β = 2.12 and P = 0.77) were not significant. Mentalizing was also 
successfully predicted (R² = 0.33, CI (95%) 0.09, f2 = 0.5, F = 6.97 and 
P < 0.0001) by cognition (β = 40.82 and P < 0.0001), executive function 
(β = 25.60 and P < 0.0001), education (β = 14.10 and P < 0.0001), country 
income (β = 11.49 and P < 0.0001) and diagnosis (β = 7.43 and P = 0.02).  
EN volume (β = 7.48 and P = 0.6), DMN volume (β = 5.87 and P = 0.83),  
SN volume (β = 5.18 and P = 0.78), VN volume (β = 4.46 and P = 0.95), MN 
volume (β = 4.31 and P = 0.44), sex (β = 3.20 and P = 0.82) and age (β = 3.15 
and P = 0.22) were not significant. The social cognition total score was 
significantly predicted (R² = 0.43, CI (95%) 0.06, f2 = 0.73, F = 10.2 and 
P < 0.0001) by cognition (β = 57.93 and P < 0.0001), executive function 
(β = 42.49 and P < 0.0001), education (β = 23.21 and P < 0.0001), SN 
volume (β = 18.38 and P < 0.0001), EN volume (β = 18.13 and P < 0.0001), 
diagnosis (β = 18.12 and P < 0.0001) and sex (β = 10.13 and P < 0.0001). 
MN volume (β = 11.11 and P = 0.89), DMN volume (β = 5.95 and P = 0.73), 
VN volume (β = 5.88 and P = 0.95), country income (β = 3.58 and P = 0.82) 
and age (β = 2.88 and P = 0.72) were not significant. Models includ-
ing only gray matter predictors were not significant (Extended Data 
Table 7). Overall, higher cognitive and executive functions and years 
of education remained among the top predictors of social cognition 
(together with diagnosis). The higher the gray matter volume of SN, 
EN and MN hubs, the larger the contributions to emotion recognition.

Behavioral and structural–functional brain predictors
The last set of models included the previous two set of predictors 
(behavior and gray matter volume) plus functional connectivity and 
motion artifact predictors (Fig. 2c). Emotion recognition was signifi-
cantly (R² = 0.32, CI (95%) 0.11, f2 = 0.48, F = 4.13 and P < 0.01) predicted 
by rotation movements (β = 30.07 and P < 0.0001), cognition (β = 26.24 
and P < 0.0001), translation movements (β = 17.40 and P < 0.03), SN vol-
ume (β = 14.72, P < 0.034 and P < 0.0001), executive function (β = 14.24 
and P < 0.0001), education (β = 10.49 and P < 0.0001), sex (β = 8.10 and 
P < 0.001) and diagnosis (β = 5.22 and P < 0.036). MN volume (β = 4.95 
and P = 0.46), MN (β = 4.42 and P = 0.28), age (β = 2.48 and P = 0.96) 
and VN volume (β = 2.41 and P = 0.93) were not significant. Mentalizing 
was not successfully predicted in this model (R² = 0.3, CI (95%) 0.11, 
f2 = 0.44, F = 5.96 and P = 1). Finally, the social cognition total score was 
significantly (R² = 0.4, CI (95%) 0.11, f2 = 0.69, F = 6.59 and P < 0.0001) 
predicted and characterized by cognition (β = 49.85 and P < 0.0001), 
executive function (β = 36.16 and P < 0.0001), education (β = 22.67 and 
P < 0.0001), SN volume (β = 17.32 and P < 0.0001), diagnosis (β = 13.73 
and P < 0.0001) and MN volume (β = 9.90 and P = 0.003). EN volume 
(β = 15.90 and P = 0.23), translation movements (β = 14.02 and P = 0.83), 
DMN (β = 10.76 and P = 0.6), VN (β = 9.31 and P = 0.15) and sex (β = 7.95 
and P = 0.7) did not contribute to the model. Models including func-
tional connectivity and motion features alone (Extended Data Table 
8) and functional connectivity and motion features together with gray 
matter predictors (that is, only brain reserve, Extended Data Table 9) 
were not significant. Briefly, better cognitive and executive functions, 
higher education and more gray matter volume of SN hubs remained 
among the best predictors of social cognition together with diagnosis. 
While brain networks did not make significant contributions to the 
models, higher motion artifacts were associated with social cognition.

Discussion
We investigated the top predictors of social cognition in aging. Two 
main strengths enabled us to address this issue systematically: (1) the 
use of a diverse sample comprising 1,063 older individuals from nine 
countries, representing a wide range of demographics and socioeco-
nomic contexts, and (2) the development of a multicentric computa-
tional approach that thoroughly examined the combined influence 
of various contributing factors. The results from SVR showed that 

combinations of behavioral, brain reserve (gray matter volume) and 
motion artifact features explained between 28% and 44% of the vari-
ance in tasks involving emotion recognition and mentalizing, with large 
effect sizes (f2 = 0.39–0.79). Higher cognitive and executive functions 
consistently predicted higher social cognition across models. More 
years of education was also ranked among the top predictors of social 
cognition in most models. Such factors had a larger influence than age 
across models, a finding that persisted even within the group of HCs. 
Furthermore, a direct comparison between nested regression models 
unveiled that, according to different statistical criteria (R2, adjusted R2, 
likelihood ratio test, Akaike information criterion, Bayesian informa-
tion criterion and root mean squared error), the model encompassing 
all potential predictors surpassed the model with age (Supplementary 
Information and Supplementary Table 1). Moreover, while diagnostic 
differences in social cognition followed the expected pattern, with MCI 
and dementia groups performing poorer than HCs and SCC groups9,54, 
and bvFTD underperforming AD only in emotion recognition55, diag-
nosis was not the primary determinant of performance variability. 
Across models, the diagnosis effect was overshadowed by other factors, 
particularly cognition, executive functions and education. Finally, 
structural (to a lesser extent) and functional brain reserve measures 
had small and partial effects in the models’ performance. These results 
challenge traditional interpretations of age-related decline, patient–
control differences and brain associations of social cognition, empha-
sizing the importance of heterogeneous factors. This knowledge has 
implications for developing tailored predictive social cognition models 
in diverse aging populations. It also informs the development of more 
robust assessment and intervention tools, ultimately improving brain 
health and quality of life.

The strong influence of cognitive and executive functions on 
social cognition performance is consistent with a growing body of 
evidence suggesting that age-related decline in a wide range of para-
digms is dependent on task demands16,17,19,56–58. Accurately identifying 
the emotions of others partially rests on attention allocation, and 
attentional disturbances can lead to misrecognition of emotions and 
the development of affective symptoms59. Mentalizing relies on the 
capacity to inhibit one’s own perspective in favor of adopting that of 
others, a process that requires executive functions (that is, working 
memory and set shifting)19. Thus, the well-established decrease on 
these general-purpose abilities in older adults60 may explain social 
cognition decline. Relatedly, as in previous studies16,61, higher educa-
tion also consistently emerged among the top predictors of social 
cognition performance. Taken together, cognition and education 
might represent proxies of the cognitive reserve in aging, namely the 
ability to cope with brain pathology to maintain function62. While a 
previous work showed that cognitive reserve was not associated with 
social cognition in older adults63, such evidence came from a homo-
geneous HIC population, potentially failing to capture the diversity 
of individual differences.

Another factor that predicted better emotion recognition and 
mentalizing was country income (HICs). The World Bank country clas-
sification34 represents a national level measure of the socioeconomic 
background of an individual (that is, social and monetary wealth or 
power)64. Socioeconomic status is known to have robust effects in 
predicting brain health outcomes in older individuals65 and dementia23. 
However, its impact on social cognition and emotional processing has 
only recently been addressed, pointing to a mediator role of cognitive 
and executive functions17. Our results expand this emergent research by 
revealing a unique contribution of socioeconomic status to social cog-
nition performance. Finally, female sex was associated with improved 
emotion recognition (but not mentalizing), as previously observed13,63. 
Women’s advantage in identifying others’ emotions may be a result 
of gender-role stereotypes66. However, more research is needed to 
determine the underlying mechanisms of such advantage. In sum-
mary, our behavioral models suggested that, in addition to cognition, 
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executive functions, and education, socioeconomic status and sex play 
an important role in some social cognition domains.

Including brain reserve measures (gray matter volume) in the 
model architecture did not explain the additional variance in social 
cognition performance. Moreover, the model that solely utilized gray 
matter features did not yield predictive value. Cognitive and executive 
abilities remained the top predictors of emotion recognition, mental-
izing and the total score. Consequently, cognitive reserve may be more 
relevant than structural brain reserve for social cognition outcomes, 
potentially reflecting the deployment of active mechanisms (for exam-
ple, processing resources or compensation) that facilitate coping with 
pathology beyond brain size62. Following cognitive factors, higher gray 
matter volume of the main hubs of the SN (bilateral insula and anterior 
cingulate cortex42), the EN (bilateral middle frontal and inferior parietal 
cortex67) and the MN (precentral cortex67) was associated with better 
emotion recognition. This finding is consistent with the role of these 
regions in detecting and attending to salient stimuli68, as well as in the 
embodied processing of emotions through mirroring mechanisms69,70. 
Conversely, gray matter volume did not significantly contribute to 
mentalizing. A possible explanation for this discrepancy could be 
the higher cognitive demands necessary to mental state inference as 
opposed to facial emotion recognition, resulting in cognition captur-
ing more variance.

The last set of models showed that fMRI brain network connectiv-
ity failed to predict social cognition when combined with behavioral 
features and brain volume (and also when considered independently). 
Moreover, mentalizing was not significantly predicted in these analy-
ses. In contrast, translation and rotation in-scanner motion artifacts 
were associated with better emotion recognition (together with cogni-
tion, executive functions, SN volume, education, sex and diagnosis). 
Considering the existing evidence on resting-state functional con-
nectivity associations with social cognition (particularly the SN68 and 
the DMN43,71), this pattern of results may appear unusual. However, it is 
becoming increasingly evident that clinical and demographic heteroge-
neity can hinder the identification of brain–behavior associations26,72. 
Predictive models from homogeneous samples fail to characterize 
nonstereotypical individuals, particularly from multisite cohorts72, 
with in-scanner motion parameters representing a major source of 
model failure26. In brief, brain networks failed to explain social cogni-
tion performance, with cognitive and motion features emerging as top 
predictors in the emotion model, emphasizing the need to consider 
disparate sources of variability in future studies.

This work reveals that social cognition components in aging are 
shaped by heterogeneous factors, adding to recent literature on the 
demographic, socioeconomic and sociocultural determinants of social 
cognition12–14,18,23. Contrary to mainstream research, our results indicate 
that age and clinical diagnosis are not the primary drivers of individual 
differences in social cognition across diverse settings. Although both 
factors showed the expected effects when assessed independently, 
such influences attenuate or vanish when other factors are considered. 
Previous works have failed to detect age associations with social cogni-
tion after accounting for cognitive57,58 and mood (that is, depression58) 
factors. Older adults might even show improved mentalizing abilities 
when considering education, race and ethnicity in explanatory mod-
els12. Thus, age-related normal and pathological brain mechanisms 
may become less influential when accounting for sample diversity.

These unforeseen findings extend beyond the social cognition 
field. Most studies on factors associated with brain health and patho-
logical aging have been performed in HICs73. However, risk may differ 
in underrepresented regions such as Latin America where multiple 
social and health disadvantages converge, including poverty, limited 
access to formal education and healthcare, and barriers to a healthy 
lifestyle21–23,74. Indeed, recent evidence from Latin American older 
adults underscores a more pronounced influence of heterogeneous 
and disparity-related factors (that is, social determinants of health, 

education, mental health symptoms and physical activity) on healthy 
aging relative to the age and sex traditional factors21. The present work 
aligns with this research and contributes to current calls of increasing 
sample diversity26,30,72, aiming to make cognitive and behavioral science 
more situated75,76.

These findings also question whether social cognition can be 
distinguished from broader cognitive function. Existing answers in 
the literature are inconclusive3,77. As cognitive and executive functions 
mediate social cognition16,17,19,56–58, there are important considerations. 
First, even after accounting for those factors, older adults might still 
experience sociocognitive difficulties4,78. Second, while socioeconomic 
disadvantages harm cognitive and executive functions, they can para-
doxically enhance social cognition in some settings18. Third, cognition 
and social cognition engage partially distinct neural correlates79 and 
are linked to somewhat different functional outcomes80,81. Our results 
point to a partial overlap between domains. While social cognition 
showed a strong association with cognition in the regression models, 
the expected differences in performance between patients and controls 
on the mini-SEA persisted after covarying for the mentalizing control 
questions of the task. This suggests that patients’ performance might 
not be entirely attributed to a failure in processing task stimuli (that is, 
lack of attention or understanding). However, as control of task perfor-
mance does not fully capture complex cognitive/executive processes, 
further research is needed in older adults.

This work carries relevant implications. Our results inform the 
development of tailored predictive models that acknowledge the 
diverse characteristics of the population under study. This may lead 
to more accurate and ethical interpretations82, improving decision-
making in region-specific approaches to brain health. The results 
suggest a more nuanced approach to social cognition assessment by 
reducing cognitive demands, accounting for potential attentional or 
comprehension issues (for example, by analyzing control stimuli)77, 
and developing norms adjusted for years of education and country. 
These recommendations are particularly relevant in light of recent 
calls to use standardized social cognition tasks in clinical settings to 
support patient characterization and differential diagnosis2,11,83. In the 
realm of interventions, the findings emphasize the need for contextual 
approaches when addressing social cognition impairments84,85. Demo-
graphic, socioeconomic and cognitive diversity might modulate the 
response to social cognition interventions and their impact on every-
day function. Tailored predictive models, more sensitive assessments, 
heterogeneity-robust methods and situated interventions in social 
cognition may prove crucial to advance brain health equity.

Some limitations and additional lines of research must be acknowl-
edged. First, although we used one of the most widely used social 
cognition assessment13,33,54, it has low ecological validity. Future stud-
ies should incorporate more naturalistic stimuli86. Also, other social 
cognition components (such as empathy and compassion87) should 
be investigated in older adults. Second, we included only a limited 
number of countries with unbalanced participants, reducing the pos-
sibilities for cross-country interpretations. Two clinical groups (SCC 
and MCI) were enrolled exclusively in one country and recruitment 
center, potentially introducing confounds. However, separate analyses 
of this cohort (Supplementary Table 2) and the remaining groups col-
lectively (Supplementary Table 3) yielded results consistent with our 
main findings. Relatedly, assembling participants from multiple sites 
and using different cognitive and scanning protocols may introduce 
disparate sources of uncontrolled variability. However, our methods, 
combining data harmonization (equivalence tables for cognitive data50, 
site-specific z-scores for fMRI data54,88–92 and missing data imputation51) 
and machine learning algorithms (involving stratified data partition, 
hyperparameter tuning, cross-validation, SVR48 with Ridge regulari-
zation51, backward feature selection53 and generalization to unseen 
samples) prove robust to handle unbalanced and diverse samples21,50, 
multicollinearity between predictors49 and the identification of top 
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contributing factors93. Taken together, our approach is suitable to 
leverage the intrinsic heterogeneity of our multi-setting sample. In 
any case, global approaches to brain health need larger and more 
balanced samples to perform more systematic comparisons across 
regions. Third, we used a country-level index of socioeconomic status, 
potentially lacking accuracy in reflecting the precise circumstances of 
each participant, particularly in Latin America, which is known by its 
marked inequality. Other socioeconomic indicators such as the Gini 
index or the human capital index might prove more sensitive to better 
capture the distinct inequalities inherent to each region. Moreover, 
global socioeconomic status indexes should be complemented with 
measures at the individual or family level (for example, household 
income and occupation prestige). Fourth, the cross-sectional nature of 
our study impedes causal conclusions. Further research should adopt 
longitudinal designs to understand the temporal dynamics between 
disparate factors and social cognition performance in brain health and 
disease. Finally, given the small sample size of our clinical groups and 
the disbalance across countries and sites, our design was unsuitable 
for exploring diagnosis stratification. Studies involving larger and bal-
anced clinical cohorts should examine whether social cognition relies 
on distinct factors across different patient groups. Available evidence 
emphasizes a primary deficit in bvFTD and a secondary impairment in 
AD that would depend on memory and other cognitive functions83,94. 
This approach could be enriched by a more diverse range of social 
cognition predictors (for example, ethnicity and genetics) and diag-
nostic categories (for example, language variants of FTD95 and other 
neurodegenerative and neuropsychiatric disorders96).

Conclusions
Using a multicentric computational approach across three levels of 
analysis, our findings reveal that social cognition in aging is shaped 
by a heterogeneous array of cognitive and sociodemographic factors. 
The most influential predictors were cognitive and executive func-
tions (together with education in most models), which outweighed the 
impact of age, clinical diagnosis and brain reserve. The results challenge 
traditional interpretations of age decline, patient–control differences 
and brain associations of social cognition. We emphasize the need to 
consider heterogeneous factors in further studies, with implications for 
predictive models, assessments and interventions, aimed at developing 
more global and inclusive approaches to brain health.

Methods
Participants
The study comprised 1,063 participants aged between 50 and 98 years 
(mean age 71.56 years, s.d. 8.42 years, 64.6% women, mean years of edu-
cation 12.01, s.d. years of education 5). The recruitment was performed 
across 13 sites in 9 countries, 4 HICs (Chile, France, Italy and the United 
Kingdom, n = 476) and 5 UMICs (Argentina, Brazil, Colombia, Peru and 
Mexico, n = 587) as classified according to the World Bank34. The sample 
included HCs and individuals with different conditions associated with 
aging (SCC, MCI, AD and bvFTD, see below). Participants were recruited 
from different international consortia, including the Multi-Partner 
Consortium to Expand Dementia Research in Latin America (ReDLat)97, 
the International Network on Social Condition Disorders (INSCD)13 and 
the Geroscience Center for Brain Health and Metabolism (GERO)98.

All participants underwent extensive neurological, neuropsycho-
logical and neuropsychiatric examinations comprising semistructured 
interviews, standardized cognitive assessments and MRI scanning 
(when available). Clinical diagnoses were performed by multidiscipli-
nary expert teams following established criteria as detailed below. The 
diagnostic process did not include the mini-SEA, ruling out a potential 
selection bias. HCs (n = 325) had preserved cognition and no history of 
neurological or psychiatric conditions. Participants with SCC (n = 145) 
presented cognitive complaints either self-reported or reported by a 
knowledgeable informant, scored 0.5 or less on the Clinical Dementia 

Rating scale99 and had preserved functional abilities98. The MCI group 
(n = 96) was composed of participants fulfilling the same criteria as 
those with SCC but scoring <22 in the Montreal Cognitive Assessment 
(MoCA)36, the most frequently used cut-off to detect MCI100. Individu-
als with AD (n = 389) fulfilled the National Institute of Neurological 
and Communicative Disorders and Stroke–AD and Related Disorders 
Association criteria101, were in early and middle stages of the disease, 
presented memory deficits and were functionally impaired. Individuals 
with bvFTD (n = 114) fulfilled the revised Rascovsky criteria102, were in 
the early and middle stages of the disease, exhibited prominent behav-
ioral changes, lacked primary language deficits and had functional 
impairment. Supporting the clinical diagnosis of neurodegenerative 
conditions, an analysis of a subsample of participants with available 
structural MRI data revealed temporal and frontoparietal atrophy in the 
AD group101, and fronto-temporo-insular atrophy in the bvFTD group103 
(Supplementary Fig. 1 and Supplementary Table 4). Demographic and 
cognitive information of each participant group is provided in Sup-
plementary Table 5. The institutional review board of each recruitment 
site and the executive committee of the ReDLat consortium approved 
this study. All participants signed informed consent as approved by 
their respective center’s ethics committee. No compensation was 
provided for this study.

Social cognition assessment
Participants completed the mini-SEA, a short battery designed to 
assess two social cognition domains: facial emotion recognition and 
mentalizing33. In the facial emotion recognition subtest, participants 
are asked to identify the emotion being depicted by an individual in 
35 different photos from the Ekman series. The following options are 
provided: fear, sadness, disgust, anger, happiness, surprise and neutral. 
Each correct item is given one point. The mentalizing subtest consists 
of an adaptation of the Faux Pas test. Participants are presented with 
ten short stories and asked to identify if the protagonist committed an 
unintended transgression of a social rule (that is, a faux pas). Each story 
also includes two control questions to assess general understanding. 
The maximum score for this subtest is 40 points. The scores of emo-
tion recognition and mentalizing subtests are converted to a score of 
15 each and then summed, resulting in a total score of 30, with higher 
scores representing better performance. From the full sample, 6.11% 
of participants (n = 65) were removed for lacking a valid score either 
in the emotion recognition or the mentalizing subtest, resulting in a 
final sample of 998 individuals.

Predictors of social cognition
The set of potential predictors of social cognition included:

(a) Behavioral features
(a.1) Diagnosis, HCs, SCC, MCI, AD and bvFTD.
(a.2) Demographics, sex (female, male), age (years), education 

(years) and country income (HICs and UMICs) following the World 
Bank classification34.

(a.3) Cognition
(a.3.1) Cognitive score, derived from harmonized scores in the 

Addenbrooke’s Cognitive Examination III (ref. 37), the Mini-Mental 
State Examination (MMSE)35 and the MoCA36. For details about these 
tools, see Supplementary Information and Supplementary Table 5 for 
the number of participants assessed with each tool in each group and 
the ‘Data harmonization’ section.

(a.3.2) Executive score, derived from harmonized scores in the 
INECO Frontal Screening (IFS)39 and the Frontal Assessment Battery 
(FAB)38 (Supplementary Information, Supplementary Table 5 and 
‘Data harmonization’).

(b) Brain reserve features
(b.1) Gray matter volume, average volume of key hubs of the SN, 

the DMN, the EN, the MN and the VN from the Automated Anatomical 
Labeling atlas104 calculated using VBM analysis (see below).
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(b.2) Functional connectivity, average connectivity strength of 
the SN, the DMN, the EN, the VN and the MN calculated via seed analysis 
of the fMRI resting-state series (see below).

(c) Motion artifacts, average translation and rotation movements 
estimated during the preprocessing of the fMRI sequence.

Neuroimage acquisition and preprocessing
This section is reported following recommendations from the Organiza-
tion for Human Brain Mapping105. Whole-brain structural three-dimen-
sional T1-weighted and resting-state sequences were obtained for 598 
(195 HCs, 91 SCC, 53 MCI, 194 AD and 65 bvFTD) and 388 (125 HCs, 91 
SCC, 52 MCI, 82 AD and 38 bvFTD) participants, respectively, across 
acquisition centers. For the resting-state sequence, participants were 
instructed to remain still, awake, with eyes closed and not to think about 
anything in particular. Demographic and cognitive information of these 
subsamples are provided in Supplementary Tables 6 and 7. The scanning 
protocols followed by each center are detailed in Supplementary Tables 
8 and 9. Structural MRI scans were preprocessed using the DARTEL 
Toolbox following standard procedures for VBM40 through the Statisti-
cal Parametric Mapping software (SPM12 (ref. 106)). Functional images 
were preprocessed using the Data Processing Assistant for Resting-State 
fMRI toolbox (v.4.4 (ref. 107)) following published procedures41 (details 
in Supplementary Information). Six movement parameters (right, 
forward, up, pitch, roll and yaw) were estimated during realignment to 
calculate average translation and rotation movements per participant 
(group statistics are reported in Supplementary Table 10).

Data harmonization
Two procedures were applied to increase the number of partici-
pants with homogeneous cognitive and executive measures and 
harmonize the available data. First, cognitive screening measures  
were harmonized using equivalence tables following recommended 
methods50,108,109, validated for multicentric studies using data from 
Latin American underrepresented samples50. This procedure allows 
for MoCA and ACE scores to be estimated using MMSE scores and the 
MMSE scores using MoCA and ACE scores. As a result, a total of three 
new converted–harmonized variables were added. Then, the MMSE 
and MoCA scores were transformed from a 0–30 to a 0–100 scale and 
averaged with the ACE score to create a single cognitive score per par-
ticipant (scale 0–100). All participants had a cognitive score. Finally, 
IFS and FAΒ scores were also transformed into a 0–100 scale and aver-
aged to obtain a single executive score per participant. Both the IFS and 
the FAB have previously shown significant associations with classical 
executive tests across healthy individuals and patients with dementia, 
as well as adequate discriminatory accuracy to differentiate between 
those groups110. This suggests these measures have similar external 
validity. A correlational analysis using the subsample of participants 
with both tests revealed a strong correlation between the IFS and FAB 
transformed scores (Pearson’s r = 0.72 and P < 0.0001). This result fur-
ther supports comparability (inferential equivalence111) between such 
measures. In total, 833 participants had an executive score. Second, we 
calculated z-scores for demographic (sex, age, education and country 
income), cognitive (cognitive score and executive score), gray matter, 
functional connectivity and motion artifacts variables. For neuroimag-
ing variables, z-scores were estimated using normative data from each 
fMRI acquisition site according to the following equation:

xz =
x − μ
s

where xz is the new value, x is the original raw score, μ is the mean 
score for HCs from the center to which the participant belongs and s 
is the standard deviation for HCs from the site or center to which the 
participant belongs.

Using site-specific z-scores is a standard procedure for 
harmonizing neuroimaging data in multicentric studies on 

neurodegeneration54,88–92. This procedure directly compares differ-
ent sites and imaging modalities112, controlling for protocol effects (for 
example, various magnetic fields and scanner-related artifacts) while 
addressing potential neuroanatomical/neurofunctional differences 
between normative groups92. Site-specific standardization proves 
more robust than conventional covariance methods in controlling 
for protocol effects without losing information on diagnosis effects92.

Data imputation
A sklearn iterative imputer with Bayesian ridge regression51 (Python 3.7) 
was used to impute missing values for age (n = 4), education (n = 2) and 
executive score (n = 165). This algorithm applies a multivariate imput-
ing strategy, modeling a column with missing values as a function of 
other features and using the estimate for imputation. Each feature is 
imputed sequentially allowing the usage of prior imputed values on 
the model that predicts later features. This process is repeated several 
times, allowing increasingly better estimates of missing values to be 
calculated as the missing values for each feature are estimated.

SVR models
To generate predictions of continuous variables (emotion recognition, 
mentalizing and total scores) from multimodal features (behavior, brain 
reserve and motion artifacts), we ran SVR models using the sklearn51 
package in Python 3.7. SVR is a variation of support vector machine 
that allows linear and nonlinear regression. SVR transforms the feature 
space to establish a hyperplane that best fits the training data, while also 
minimizing the generalization error on new, unseen data48. The hyper-
plane is defined as the set of all points x in the feature space such that:

w ⋅ x + b = 0

where w is the weight vector, b is the bias term and · denotes the dot 
product.

The SVR model seeks to find the weight vector w and bias term b 
that satisfy this constraint, while also minimizing the distance between 
the hyperplane and the training data. The distance is measured using 
a loss function, typically the ε-insensitive loss:

L( y, ŷ) = max(| y − ŷ| − ε,0)

where y is the true target value, ̂y  is the predicted target value and ε is 
a small constant that defines the width of the margin around the hyper-
plane. The loss function penalizes errors that exceed ε, but ignores 
errors that fall within ε.

To find the optimal weight vector w and bias term b, SVR  
introduces two slack variables ξi and ξ̂i for each training example, which 
allow for violations of the margin and the ε-insensitive loss, respec-
tively. The optimization problem for SVR is then given by:

Minimize:

1
2 ||w||

2 + C (
n

∑
i=1
(ξi + ξ̂i))

Subject to:

yi − ⟨w,ϕ(xi)⟩ ≤ ε + ξi i = 1,⋯ ,n

⟨w,ϕ(xi)⟩ − yi ≤ ε + ξ̂i i = 1,⋯ ,n

ξi ≥ 0, ξ̂i ≥ 0 i = 1,⋯ ,n

where C is a hyperparameter that controls the trade-off between 
the margin width and the number of violations allowed, and n is the 
number of training examples. The first term in the objective function 
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encourages a wide margin, while the second term penalizes violations 
of the margin and the ε-insensitive loss.

SVR can be extended to handle nonlinear regression tasks by using 
a kernel function to map the input data to a higher-dimensional feature 
space, where the problem may become linearly separable. The optimi-
zation problem then becomes:

Minimize:

− 1
2

n

∑
i, j=1

(αi − α̂i)(αi − α̂i)K(xi, xj) − ε

Subject to:

n

∑
i=1
(αi − α̂i) = 0

0 ≤ αi, α̂i ≤ C

where K(xi, xj) is the kernel function that computes the inner product 
between the mapped feature vectors, and αi and are Lagrange multipli-
ers that determine the importance of each training example in defining 
the hyperplane. The kernel function allows SVR to learn complex, 
nonlinear relationships between the input features and the  
target variable.

Sklearn’s SVR uses the L2 regularization term (Ridge regulari-
zation) in its function51. This regularization term helps control the 
model’s complexity, prevents overfitting113, and mitigates the impact 
of multicollinearity by penalizing the magnitudes of regression coef-
ficients49. The strength of the L2 regularization is controlled by the  
C hyperparameter, where a smaller value of C corresponds to a stronger 
regularization effect.

Hyperparameter tuning
A Bayesian optimization52 with k = 3 cross-validation was applied for 
tuning the hyperparameters. A radial basis function kernel was used 
with optimized gamma value. Models with the best hyperparameters 
were trained on a training sample (70%) and tested in a testing set (30%), 
with ten repetitions (Supplementary Information).

Feature selection
We used a backward elimination approach53 to select the most sig-
nificant predictors for each model. For each iteration, we dropped 
the predictor with the largest P value until we reached a statistically 
significant model, a predictor with a P value that became statistically 
significant or a model with two predictors. This procedure allowed us 
to automatically rank predictors based on their contribution to the 
model’s prediction accuracy without assuming a priori theoretical 
importance, which is required when classical statistical methods are 
applied93. Moreover, backward elimination mitigates the impact of mul-
ticollinearity between predictors by removing correlated features49.

Statistical analyses
VBM analysis. Using VBM preprocessed structural images, we 
calculated the average gray matter volume (ml, corrected by total  
intracranial volume) of 116 regions of the Automated Anatomical Labe-
ling atlas104 to create gray matter volume indexes of the main hubs of 
the SN (average of the bilateral anterior cingulum and insula volume42), 
the DMN (average of the bilateral medial frontal and posterior cingulate 
volume43), the EN (average of the bilateral middle frontal and inferior 
parietal volume67), the VN (average of the bilateral occipital volume67) 
and the MN (average of the bilateral precentral volume67).

Functional connectivity analysis. The functional connectivity 
strength of the SN, the DMN, the EN, the VN and the MN was calculated 
using seed analysis. Two bilateral seeds were placed on cubic regions 

of interest (voxel size 7 × 7 × 7) for each network: the dorsal anterior 
cingulate cortex for the SN42, MNI coordinates 10, 34, 24 and −10, 34, 24; 
the posterior cingulate cortex for the DMN43, MNI coordinates 3,−54, 
27 and −3, −54, 27; the middle frontal gyri for the EN44, MNI coordinates 
30, −2, 62 and −30, −2, 62; the primary visual cortex for the VN45, MNI 
coordinates 8, −92, 8 and −8, −92, 8; and the primary motor cortex for 
the MN46, MNI coordinates 32, −30, 68 and −32, −30, 68. The Pearson 
correlation coefficient between the averaged blood-oxygen-level-
dependent signal of each pair of seeds and voxels comprised in stand-
ard masks114 typically involved in each resting-state network was used 
to extract one feature per network for each participant. The statistical 
significance of the resting-state networks was tested by comparing 
them with null surrogate models. This approach enables robust statisti-
cal evaluations to ensure that the results observed are not obtained by 
chance but represent a true characteristic of the underlying system115. 
The surrogate data technique is based on comparing a particular prop-
erty of the data (a discriminating statistic) with the distribution of the 
same property calculated in a set of constructed signals (surrogates) 
that match the original dataset but do not possess the property that is 
being tested. To this end, we used Fourier transform-based surrogates 
to recreate the brain’s complex-system dynamics, including uncor-
related and correlated noise, coupling between different brain areas, 
and synchronization. We found that all the computed resting-state 
networks were statistically significant against null connectivity (SN: 
P = 0.02; DMN: P = 0.02; EN: P = 0.03; VN: P = 0.02 and MN: P = 0.03), 
further corroborating our connectivity methods.

Age effects on social cognition. Simple linear regression analyses 
were used to evaluate the predictive value of age on emotion recogni-
tion, mentalizing and the social cognition total score. Analyses were 
performed in R software (version 4.1.3). The alpha threshold was set at 
P < 0.05. Effect size was evaluated with f2, following Cohen’s criteria,116 
stating that 0.02 indicates a small effect, 0.15 indicates a medium effect 
and 0.35 indicates a large effect.

Social cognition performance across diagnostic groups. Linear 
mixed-effects models47 were performed in R (version 4.1.3) to examine 
diagnosis effects and between-group differences in emotion recogni-
tion, mentalizing and the total score. Sex, age and education were 
entered in the model as covariates of no interest, and the participant’s 
country of origin was entered as a random effect. Additional analyses 
included the participants’ performance in the mentalizing control 
questions of the mini-SEA as a covariate of no interest. Post hoc tests 
were corrected using the Šidák method. The alpha threshold was set at 
P < 0.05. Effect size was evaluated with ηp

2 where 0.01 indicates a small 
effect, 0.06 indicates a medium effect and 0.14 indicates a large effect117.

SVR model estimation and performance assessment. We trained 
and tested 1,000 optimized SVR models for each outcome variable to 
obtain the final models using a bootstrap approach. We applied P value 
correction for false discovery rate using statsmodels (version 0.13.2) 
and set aside a median-stratified 30% of the data as a test set. To evalu-
ate the models’ performance, we used four statistics: the coefficient 
of determination R², 95% CI, Cohen’s f2 (ref. 116), Fisher’s F test and the 
largest corrected P values. Outlier results (R² < interquartile range 
(IQR) − 1.5 × s.d. and R² > IQR + 1.5 × s.d.) were discarded to improve 
average estimates.
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Data availability
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Code availability
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Extended Data Fig. 1 | Diagnosis effect on social cognition when covarying 
for mentalizing control questions. (A) MCI, AD, and bvFTD participants 
showed significantly worse mentalizing than HCs. Participants with MCI and 
bvFTD also showed poorer performance in mentalizing than those with SCC. No 
other significant between-group differences were found. (B) Participants with 
MCI (n = 96), AD (n = 202), and bvFTD (n = 68) had poorer overall performance 
in social cognition than HCs (n = 229) and participants with SCC (n = 145). No 
other significant between-group differences were found. Data were analyzed 

using linear mixed-effects models controlling for sex, age, education, country 
of origin, and performance in the mentalizing control questions of the test 
using the subsample of 740 participants for whom such scores were available. 
The red dots and lines display the mean and SD. P values are corrected for 
multiple comparisons using the Sidak method. AD: Alzheimer’s disease, bvFTD: 
behavioral variant frontotemporal dementia, HCs: healthy controls, MCI: mild 
cognitive impairment, SCC: subjective cognitive complaints.
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Extended Data Table 1 | Simple regression results including age as isolated predictor of social cognition

Data were analyzed with simple linear regression analysis. N = 998.
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Extended Data Table 2 | Models with behavioral predictors in the sample without data imputation

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, 
we report the largest false discovery rate-corrected P value from 1000 bootstrapped SVR models. Results are shown on the test partition of the data. N = 827.
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Extended Data Table 3 | Models with behavioral predictors in the subsample with structural MRI data

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, 
we report the largest false discovery rate-corrected P value from 1000 bootstrapped SVR models. Results are shown on the test partition of the data. N = 598.
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Extended Data Table 4 | Models with behavioral predictors in the subsample with resting-state fMRI data

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, 
we report the largest false discovery rate-corrected P value from 1000 bootstrapped SVR models. Results are shown on the test partition of the data. N = 388.
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Extended Data Table 5 | Models with behavioral predictors in each sex separately

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, P values 
were corrected for false discovery rate from 1000 bootstrapped SVR models and aggregated using the Fisher method for combining independent P values. Results are shown on the test partition of 
the data.
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Extended Data Table 6 | Models with behavioral predictors in healthy controls

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, P 
values were corrected for false discovery rate from 1000 bootstrapped SVR models and aggregated using the Fisher method for combining independent P values. Results are shown on the 
test partition of the data. N = 316.
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Extended Data Table 7 | Models with grey matter predictors

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, we 
report the largest false discovery rate-corrected P value from 1000 bootstrapped SVR models. Results are shown on the test partition of the data. DMN: default mode network, EN: executive 
network, MN: motor network, SN: salience network, VN: visual network, vol: volume. N = 598.
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Extended Data Table 8 | Models with functional connectivity and motion artifacts predictors

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, we 
report the largest false discovery rate-corrected P value from 1000 bootstrapped SVR models. Results are shown on the test partition of the data. DMN: default mode network, EN: executive 
network, move rot: rotation movements, move trans: translation movements, SN: salience network. N = 388.
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Extended Data Table 9 | Models with grey matter, functional connectivity, and motion artifacts predictors

Data were analyzed using support vector regression (SVR) models with Bayesian optimization for hyperparameter tuning and backward elimination for feature selection. For each outcome, 
we report the largest false discovery rate-corrected P value from 1000 bootstrapped SVR models. Results are shown on the test partition of the data. DMN: default mode network, EN: execu-
tive network, MN: motor network, move rot: rotation movements, move trans: translation movements, SN: salience network, VN: visual network, vol: volume. N = 388.
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