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Early-life adversity (ELA) exposure is suggested to accelerate development.
However, theinfluence of ELA on neurodevelopmental trajectories has not
been assessed directly but largely inferred from retrospective reporting
inadult cohorts. Using multimodal neuroimaging data from a pediatric
cohortstudy (V=549), we modeled neurodevelopmental trajectories over
childhood with structure-function coupling (SC-FC), the correlation
between structural and functional connectivity. A linear decrease in SC-FC
was observed from age 4.5to 7.5 years. When stratified by ELA, only the
high-adversity group showed a curvilinear trajectory, with asteep decrease
between age 4.5 and 6 years, suggestive of accelerated neurodevelopment.
This finding was confirmed by increased DNA-derived epigenetic age
acceleration at age 6 years in the high- relative to low-adversity groups.
SC-FCatage4.5years also positively moderated the associations between
ELA and behavioral outcomes assessed in mid-childhood. These results
demonstrate the association between ELA and neurodevelopment, and how
they interact to influence behavior.

Exposure to early-life adversity (ELA) isarisk factor for behavioraland  regions thatareimplicated incommon mental disorders. The associa-
emotional problems in childhood as well as long-term health conse-  tion of ELA with structural and functional development of the brain*
quences'. Neuroimaging studies provide a wealth of evidence for the  is now thought to represent adversity-related adaptations rather than
association of perinatal adversity with neurodevelopmental outcomes®’.  stress-induced damage. ELA serves as a signal of the prevailing environ-
These findingsinclude alterationsinstructure and connectivityinbrain  mental conditions that influence the pace of brain development as an
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adaptive response to match the demands of unfavorable developmental
conditions, at the potential cost to adult well-being’. Inacompromised
environment, accelerating development to achieve independence may
be prioritized over extended neuroplasticity that benefits the develop-
ment of higher brain function®. The ‘stress acceleration’ hypothesis
proposes that exposure to ELA accelerates development, especially in
fear/stress-related domains and emotion circuits’. Rodents raised in
stressful environments show accelerated development of fear learning
and memory retention®’. In humans, children exposed to maternal dis-
tressand deprivation show adult-like limbic brain features (for example,
larger amygdala volumes, functional connectivity patterns typically
observed in adults)'°"2. Moreover, children exposed to early-life stress
show accelerated biological age measured via either telomere length
or DNA methylation-derived epigenetic age™".

The current literature on ELA and neurodevelopmental trajec-
tories is limited by a lack of longitudinal neuroimaging data during
childhood that are required for a within-subject assessment of the
developmental acceleration hypothesis. Most adversity-related stud-
ieswithlarge neuroimaging datasets are retrospective cross-sectional
studies where the neuroimaging dataare collected in adultsreporting
on adverse childhood experiences (ACE). Therefore, developmental
trajectories are not assessed directly but are inferred based on adult
data. Inaddition, existing neurodevelopmental cohorts (for example,
the Adolescent Brain Cognitive Development (ABCD), Human Con-
nectome Project Development (HCP-D) and Pediatric Imaging, Neuro-
cognition, and Genetics (PING) studies) cover large age ranges with few
subjectsbelow age 7 years, possibly due to the challenges of collecting
high-quality neuroimaging datain preschool children. Thus, thereisa
critical gapintheliterature on neurodevelopmental trajectories from
earlytolate childhood, making it difficult (1) to assess the effect of high
ELA exposure on brain development and (2) to identify sensitive time
windows for intervention during childhood.

Recent studies on neurodevelopmental trajectories have focused
on the correlation between structural and functional connectivity,
thatis, structure-function coupling (SC-FC), as ameasure to capture
changes in brain organization and maturation. Between the ages of 8
and 22 years, SC-FC changes inafunctional-network-specific manner,
with decreases in highly conserved motor regions and increases in
transmodal cortices®. In adults, SC-FC is highest in unimodal corti-
cal regions and lowest in transmodal cortices'. Whereas high SC-FC
implies functional communication supported directly by local white-
matter pathways, low SC-FC suggests that functional communication
relies on polysynaptic indirect pathways (circuit-level modulation)
and a greater capacity for plasticity”. The extent of SC-FC is linked to
behavioral outcomes, such as executive function and higher cogni-
tive abilities”” ", Notably, significant SC-FC in the reward network is
associated with poor performance on executive function tasksin later
childhood®. Therefore, SC-FC captures information on age and the
current state of plasticity (highly conserved unimodal regions versus
transmodal regions with increased potential for plasticity)'.

Current SC-FCstudies focus onadolescents and adults, such that
SC-FCtrajectories have notbeenstudiedin children. Studies of ELA will
predict outcomes apparent in early childhood, consistent with early
biological embedding of experience. To examine this hypothesis, we
leveraged datafromthe deeply phenotyped Growing Up inSingapore
Towards healthy Outcomes (GUSTO) birth cohort (Table1and Extended
DataFig.1) toinvestigate whether or not neurodevelopment, estimated
by SC-FC averaged across the whole cortex, is accelerated in children
exposed to high ELA. We focused on measures of prenatal adversity
(Supplementary Section1.1) based on previous neuroimaging studies
showing associations withbrain structure at birth****aswell as analyses
revealing the fetal neurodevelopment period as atime of peak expres-
sion of genes associated with a range of neuropsychiatric disorders®.
Despite the evidence of prenatal adversity as a risk factor for psycho-
pathology, itis stillunclear how prenatal adversity influences the pace

Table 1| Summary of demographics for the neuroimaging
dataset and the dataset with complete neuroimaging and
adversity scores data

Dataset Pvalue
FullMRI Adversity+MRI
N=549 N=354
Sex 0.73

Female 280 (51.0%) 176 (49.7%)

Male 269  (49.0%) 178 (50.3%)
Ethnicity 0.58

Chinese 295  (53.7%) 179 (50.6%)

Indian 92 (16.8%) 56 (15.8%)

Malay 161 (29.3%) 118 (33.3%)

Other 1 (0.2%) 1 (0.3%)
Gestational age (weeks) 38.8 (+1.4) 389 (+1.3) 0.64
Maternal age at birth (years) 311 (#£5.2) 30.8 (¥5.1) 0.33
Highest maternal education 0.28

None/primary 30 (5.5%) 19 (5.4%)

Secondary/technical 218 (39.7%) 144 (40.7%)

GCE ‘A’ levels/university 295  (537%) 191 (54.0%)

Missing (NA) 6 (11%) 0 (0.0%)
Household monthly income 0.28
(SGD)

<2,000 80 (14.6%) 49 (13.8%)

2,000-5,999 309 (56.3%) 21 (59.6%)

26,000 124 (22.6%) 81 (22.9%)

Missing (NA) 36 6.6%) 13 (8.7%)

Continuous variables are presented as the mean+s.d. (in parentheses). Two-sample t-tests were
used to assess group differences for continuous variables. Fisher’s exact test for proportions was
used to assess group differences for categorical variables. The P values reported are two-tailed.
MRI, Magnetic resonance imaging; NA, Not available; SGD, Singapore dollars.

of neurodevelopmentin childhood. We first modeled SC-FC changes
over three time points (ages of 4.5, 6 and 7.5 years) in our full neuro-
imaging cohort, which is a mixture of distinct and repeated samples
(Fig. 1and Supplementary Section 1.2). Our three time points corre-
spond to two standard childhood phases—preschool and mid-child-
hood®*. We then stratified our cohort via groups with exposure to
different levels of adversity (no adversity, low adversity and high adver-
sity) and compared the SC-FC trajectories between these groups. Next,
weinvestigated whether or not the trajectory differences were specific
to transmodal association regions with protracted development. We
specifically examined the frontoparietal network (FPN) and the visual
network (VIS), functional networks that represent transmodal regions
and unimodal regions, respectively”. We hypothesized that acceler-
ated development would be observed in the high-adversity group,
which would be specific to transmodal association regions. Finally,
we performed exploratory analyses studying whether or not SC-FC
atour earliest time point (age 4.5 years) altered a child’s susceptibility
to developing psychopathologies, that is, it modulated the effects of
adversity scores on behavioral outcomes in childhood.

Results

SC-FCtrajectories over childhood and stratified by ELA
Resting-state functional MRI (rs-fMRI) and diffusion tensor imag-
ing data from 549 participants (Table 1) were included in the current
study, for a total of 917 scans over the three time points (age range,
4.4-8 years).For each participant, structural connectivity (indexed by
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Fig.1|Study design and aims. Regional SC-FC values were calculated for a
114-region cortical parcellation through the Spearman correlation of structural
connectivity (SC) and functional connectivity (FC) values of each region (colors
are arbitrary and for qualitative purposes). Whole-cortex SC-FC was calculated
by averaging values across all 114 regions. Network-specific coupling was
calculated by averaging values across regions assigned to a network. Cumulative
adversity scores were calculated based on seven components. This enabled us to
model non-linear SC-FC trajectories (solid black line + 95% confidence interval)

Adversity score

over three time points (age 4.5, 6 and 7.5 years; age range, 4.4-8 years), as well

as stratified by exposure to adversity (‘No’ (no adversity), score 0, N =121, total
of 206 scans; ‘Low’ (low adversity), score 1-2, N =199, total of 353 scans; ‘High’
(high adversity), score >3, N = 34, total of 60 scans). The Child Behavior Checklist
(CBCL) was administered at age 7 years to detect internalizing and externalizing
problems. Brain network images were made using the ggsegYeo02011 package”
(https://doi.org/10.5281/zenod0.4896734).

streamline densities) and functional connectivity matrices were esti-
mated for each pair of al14-region cortical parcellation. Whole-cortex
SC-FC was calculated by deriving the Spearman correlation between
non-zero structuraland functional connectivity values for each region,
and taking the mean of all 114 regions. Whole-cortex SC-FC trajec-
tories, modeled via generalized additive models (GAMs), decreased
linearly from age 4.5to 7.5 years (Fig. 2a; effective degrees of freedom
(e.d.f.)=1.006, F=114.9,P<0.001).

Prospective data collection of pregnancy and early-life measures
were used to calculate the ELA exposure in a subset of participants
(N =354, total of 619 scans). When the cohort was stratified by ELA
exposure (Fig.2b,c), we observed alinear decrease in SC-FC averaged
across the whole cortex for the no-adversity and low-adversity groups

(e.d.f.=1,F>30,P<0.001).Acurvilinear decrease was observed only
for the high-adversity group (e.d.f. =1.8, F= 9.6, P < 0.001; Supplemen-
tary Section 2), suggesting that SC-FC decreased at a different rate
between4.5and 6 and between 6 and 7.5 years of age.

To compare thetrajectories, we plotted the difference curves for
each pair of trajectories (Fig. 2d). The trajectories for the no-adversity
and low-adversity groups were similar. The difference curves that
comparethe no- or low-adversity groups with the high-adversity group
have similar shapes, with anegative value (agreater decrease for high
adversity relative to low adversity) between ages 4.5 and 6 years, and
a positive value (a lesser decrease for high adversity relative to low
adversity) between ages 6 and 7.5 years. The greatest difference was
observed between the low- and high-adversity trajectories.
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Fig.2|Modeling SC-FC trajectories with GAMs. a,In the left panel, SC-FC

(N =549, total of 917 scans) averaged across the whole cortex, modeled over age
4.5to 7.5 years using GAMs, is shown as the mean estimate (purple line) +95%
confidence intervals (purple shading). Individual trajectories based on actual
dataacross the three time points are plotted in black. The right panel displays
the GAM-estimated additive effect of age (solid line + shaded 95% confidence
interval). Black markings on the x-axis show individual age data points. b, SC-FC
trajectories stratified by ELA scores (N = 354, total of 619 scans; categorized

Age (years) Age (years)

as no adversity, low adversity and high adversity) displayed on the same scale.
c,d, Trajectories estimating the effect of the time point displayed separately

for each adversity group (c) and the difference curves graphically showing the
differences between each pair of trajectories (d). Trajectories are considered to
be significantly different if the confidence interval does notinclude zero (dashed
redline). GAM results for b-d are displayed as the mean estimates (solid lines)
+95% confidence intervals (shaded areas).

Modeling using GAMS suggested that there was agreater decrease
in SC-FC in the high-adversity group relative to the low-adversity
group during early childhood. We tested this statistically using linear
mixed effects (LME) models (ages 4.5 to 6; N =251, total of 343 scans)

and found that Adversity, ,..:Age was significantly higher relative to
Adversityy,n:Age (Fig. 3a; estimate = 0.024, s.e.m.=0.012, t=2.05, P
(one-tailed) = 0.022; Supplementary Section 3a) on SC-FC averaged
across the whole cortex.
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Fig.3|Model estimates from LME models. a,b, An accelerated decrease in
SC-FCbetween ages 4.5and 6 years in the high-adversity group (N = 25, total
of 34 scans) relative to the low-adversity group (N = 143, total of 197 scans) was
observed for the whole cortex (P=0.022) (a) and for the FPN (P = 0.007) (b) but
not for the VIS (P=0.438) (b). Results were estimated using LME models, and
one-tailed Pvalues reported are for the Adversity, ,,:Age interaction term. In

a, the bar charts show model estimates of the mean + s.e.m. Inb, the boxplots
are displayed as the Tukey’s five number summary (the bold horizontal line
denotes the median; the lower and upper hinges denote the first and third
quartiles, respectively; the whiskers extend to the furthest data point within

Time point (years)
E3 E3 Age 4.5 (range, 4.44-4.94 years)
‘ ‘ Age 6 (range, 5.82-6.60 years)

1.5 x the interquartile range; and the dots exceeding the whiskers denote
outliers). c, DNA methylation-based epigenetic age acceleration (N = 241) at
age 6 years is significantly higher in the high-adversity group (N = 25) relative to
the low-adversity group (N=132; P=0.01). The Pvalues (one-tailed) reported
were estimated using a linear regression model. Data in the bar charts show

the mean + s.e.m. of the actual data. No multiple comparison corrections

were performed. For all plots, *P < 0.05, **P < 0.01. The brain network images

in b were made using the ggsegYeo02011 package” (https://doi.org/10.5281/
zen0do.4896734).

We next explored whether or not this finding was different in
specific functional networks (Fig. 3b). LME models were performed
specifically for the VIS and the FPN, which represent a unimodal sen-
sory network and a transmodal network that matures slowly, respec-
tively. We found that Adversity, ,,-Age was significantly higher relative
to Adversityy,:Age for the FPN (estimate = 0.033, s.e.m.=0.013,
t=2.51, P (one-tailed) = 0.007) but not for the VIS (estimate = 0.004,
s.e.m.=0.023,¢=0.16, P(one-tailed) = 0.44), suggesting a higher sus-
ceptibility of transmodal brain networks. To confirm this finding, we
performed LME models (1) without covariates to obtain unadjusted
estimates and (2) with potential confounders (Supplementary Section
3b). We also performed LME models for the remaining networks, and

observed asimilaraccelerated decrease for the default mode network
(DMN) and salience network, both of which are transmodal networks
(Supplementary Section 3c and Extended Data Fig. 2).

Validation

Epigenetic age. Given that SC-FC decreased over our time period
of interest, the accelerated decrease between ages 4.5 and 6 years
observed for the high-adversity group suggests accelerated neu-
rodevelopment. To validate our finding, we assessed age acceleration
at age 6 years based on DNA-derived methylation epigenetic clocks
(N=241). We found that age acceleration was significantly higher in
the high-adversity group relative to the low-adversity group (Fig. 3¢c;
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Fig.4 | Adversity scores, whole-cortex SC-FC and the CBCL. a,b, A significant
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Coefficient value

¢, Summary of the coefficients of variables selected by the elastic net regression
models. The direction of modulation, positive or negative, is displayed as
greenor red, respectively. VAN, ventral attention network; SOM, somatomotor
network; LIM, limbic network.

estimate = 0.28, s.e.m.=0.12, t=2.36, P (one-tailed) = 0.0095). We
observed a similar pattern to SC-FC where the greatest difference
was found between the high- and low-adversity groups, whereas the
low- and no-adversity groups were similar to each other.

Sensitivity analysis. We replicated our LME findings in a small inde-
pendent dataset (30 scans) (Supplementary Section 4a). Given the
confounding effects of motion on neuroimaging data, especially in
young children, we performed sensitivity analyses on an extended
dataset excluding subsets of scans based on different motion criteria.

The main findings remained unchanged (Supplementary Section 4b).
SC-FC estimates were also assessed to be reliable for our quantity of
available data (Supplementary Section 4c), and with strict motion
parameters (Supplementary Section 4d).

Association with behavioral outcomes

The ELA scores were positively and significantly correlated with child
behavioral problems atage 7 years (N =427). High adversity scores were
associated withanincreased risk of both internalizing (Pearson’sr=0.22,
P<0.001) and externalizing behaviors (Pearson’s r = 0.20, P < 0.001).
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We then examined whether or not SC-FC would moderate the
association of ELAscores with the CBCL at age 7 years (N=117). We used
SC-FC averaged across the whole cortex at age 4.5 years as the mod-
erator variable. The interaction between SC-FC and adversity scores
had asignificant association with both internalizing (estimate = 0.23,
s.e.m.=0.086,t=2.66, P=0.0089) and externalizing behaviors (esti-
mate =0.28,s.e.m.=0.086,t=3.31,P=0.0013). Simple slope analyses
revealed that a significant positive correlation between adversity
scores and externalizing/internalizing behavior was only present when
SC-FCwas high atage 4.5 years (Fig. 4a,b).

To explore network-specific modulation, we examined theinterac-
tion between SC-FC for seven functional networks and adversity scores.
The dorsal attention network (DAN) interaction termis highlighted as
having the highest estimated coefficient, suggesting a strong positive
modulatory effect, especially oninternalizing behavior (Fig. 4c).

Similarly, we found network-specific modulatory effects onrela-
tional aggression and frustration levels (Supplementary Section 5).

Discussion

Our study modeled SC-FC changes from preschool to mid-childhood.
Thus, we address a critical gap in the neurodevelopmental literature,
which previously lacked longitudinal neuroimaging datastarting from
the preschool age. The relevance of these data canbe best appreciated
when considering theimportance of this period of neurodevelopment
forarange of socioemotional and cognitive functions®. Our finding of
anaccelerated decrease in SC-FC for the high-adversity group between
ages4.5and 6 years suggests this time period as a potential window for
interventionto reduce the effects of ELA on later outcomes. Inaddition,
our findings portray the heterogeneity in neurodevelopment over dif-
ferent stages of childhood and highlight the limitations of collapsing
childreninto asingle cohort.

We observed that SC-FC changes as afunction of age during child-
hood—specifically, there is a positive association between structural
connectivity and functional connectivity that weakens fromage 4.5 to
7.5years. Thisreflects the diverse processes underlying neurodevelop-
ment that follow different timelines. From the neurodevelopmental
literature, the brain undergoes pronounced yearly change during the
preschool years®. White-matter tracts show increases in fiber density
andbundlesize, suggesting agradual increase in structural connectiv-
ity”. By contrast, functional connectivity tends to follow a pattern of
overconnectivity, followed by pruning and restructuring to achieve
functional network segregation®. Inaddition, brain SC-FC is thought
to beameasure of plasticity where high couplingimplies high regional
specialization/low plasticity”. During early childhood, low specializa-
tion and high plasticity are expected due to the ongoing neurode-
velopmental processes. Our understanding of neurodevelopmental
processes during early childhood matches the observed decrease in
SC-FC.Insum, SC-FCisapromising summary measure for capturing
changesinbrain connectivity and organization during childhood that
canbe used to identify abnormalities in developmental trajectories.

We showed that exposure to prenatal adversity is associated with
asteeper decrease in SC-FC between ages 4.5 and 6 years, suggesting
accelerated development. However, we acknowledge that the steeper
slope between 4.5 and 6 years observed in the high-adversity group
may be due to the higher SC-FC at age 4.5 years, and could poten-
tially represent ‘catch up’ development to the norm at age 7.5 years.
Nevertheless, it is evident that the developmental trajectory of brain
maturation in young children is altered as a result of ELA exposure.
For instance, exposure to low socioeconomic status (SES) has been
linked to changes in cortical thickness and functional segregation®.
Cortical thickness peaks at around age 2 years, and exposure to low
SESisassociated with cortical thinning occurring earlierinlife*”. These
findings are suggested toreflect an earlier curtailment of synaptic pro-
liferationand a decreased window for synaptic pruning. Other studies
suggest that higher SES is linked to more protracted functional network

development®*®, Tooley et al. suggest a theoretical model where the
extended period of structural development associated with high SES
isreflected in functional segregation, that is, a slower trajectory of
functional network segregation’. Our findings suggest that whereas
accelerated development is sufficiently widespread to be detected
by averaging over the whole cortex, regions with alonger maturation
window are particularly susceptible. Indistinct cortical boundaries
of transmodal association networks®? support the hypothesis that
these brain networks undergo protracted development and are more
susceptible to factors influencing development. Lin et al. postulate
that protracted development enables adaptive developmental plas-
ticity in behaviors such as learning™®. This understanding suggests
thataccelerated development occursin networks such asthe FPN and
DMN because these regions are important for experience-dependent
learning. Our study adds to this literature by showing that accelerated
developmentinthe form of areduced window for neural plasticity—as
captured by a steeper SC-FC decrease—in transmodal regions with
protracted development may occur during early childhood as aresult
of exposure to prenatal adversity. This is not surprising as substantial
brain development occurs in utero. Moreover, exposure to prenatal
adversity is postulated to increase susceptibility to postnatal influ-
ences?, highlighting the distinct complementary effects of prenatal
and postnatal adversity on neurodevelopment.

The literature on prenatal stress suggests several mechanisms
through which the in utero environment could affect downstream
development. These include alterations in the neuroendocrine and
immune system that have a sustained impact on later life develop-
ment*. Glucocorticoids and pro-inflammatory cytokines have wide-
spread effects in the brain and have been considered as candidate
mechanisms for the effects of prenatal stress on child outcomes®’,
These chemical messengers act as signals that influence cell-signaling
pathways (for example, regulating enzyme activity), which inturninflu-
ence neurotransmission and the proper formation of neural circuits
and maintenance.

Contrary to previous literature using the ACE framework, we did
not observe a graded response between our three groups. One possi-
bility is that our adversity score was computed with population-based
measures (for example, SES or birth weight) as opposed to the typical
ACE questionnaire which focuses on childhood maltreatment®. Our
adversity score did not include any categories of abuse. Thus, the
literature on neglect/poverty and developmental support, which are
also highly predictive of child developmental outcomes®’, may be
more relevant to our study. In addition, Keding et al. show that physi-
cal neglectis linked to widespread accelerated maturation, although
exposure to abuse in girls is associated with delayed maturation in
emotion circuitry*°, Although we observed the greatest differences
between the low- and high-adversity groups, we did not observe any
differences between the no-and low-adversity groups. When we com-
bined the no-adversity and low-adversity groups, we obtained the
same results—accelerated decrease between ages 4.5 and 6 years in
the high-adversity group relative to the low-adversity group (Sup-
plementary Section 6).

Results from our exploratory analyses showed that a positive
association between prenatal adversity scores and both internaliz-
ing and externalizing behaviors was only observed for high SC-FC at
age 4.5 years. Follow-up analysis suggests that the DAN plays arole in
modulating the effect of ELA on externalizing and internalizing behav-
iors. Herzberg et al. also show circuit-specific adaptations following
early-life stress—within-DAN functional connectivity differed between
previously institutionalized youths and controls, and was positively
associated with both internalizing and externalizing symptoms*.
The DAN may also be important for recovery processes after stress
exposure, a potential mechanism through which later life behavior is
affected*’. We also found positive whole-cortex and network-specific
modulatory effects with a child-report measure of relational aggression
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and a task-based measure of emotion regulation (Supplementary
Section 5). It may be worthwhile to explore network-specific SC-FCin
relation to different dimensions of psychopathologiesin future studies.

Some limitations should be considered when interpreting the
study findings. First, as our study population is largely a typically
developing cohort, the sample size for the high-adversity group was
smallrelative to the low/no-adversity groups. This feature may increase
therisk of overfitting curves and limits our ability to stratify further the
population by sex, even though sex was a significant covariate in our
analyses (Supplementary Section 3a). Our findings also suggest that the
associations between adversity and behavioral problems are different
at different degrees of SC-FC, but may be under-powered to detect a
mediation effect. Second, motion is always a possible confounder for
neuroimaging studies, and collecting high-quality neuroimaging data
is especially challenging in pediatric populations under age 7 years.
We corrected for motion during pre-processing, and also conducted
a sensitivity analysis based on motion criteria, and the main findings
remain unchanged. Moreover, a relatively short rs-fMRI sequence
(~5.32 min) was used to reduce the burden on young participants.
However, the acquisition time of ~52 min has been shown to produce
stable functional connectivity estimates in children*’, as well as stable
SC-FC estimatesin our study (Supplementary Section 4c). Third, our
study lacks imaging data before age 4.5 years; thus we were unable to
establish the SC-FC developmental trajectory before age 4.5 years
and can only interpret SC-FC changes between the ages of 4.5and 7.5
years. As our dataset is semi-longitudinal, our trajectory estimates
areat the group, not individual, level. Fourth, we focused on prenatal
exposures of adversity, but results could potentially be correlated with
postnatal adversity. Therefore, our findings do not necessarily inform
onthe timing of effects. Finally, our study datarepresent a Singaporean
population, and replication in other cohorts is needed to assess the
generalizability of our findings.

We present evidence that accelerated neurodevelopment occurs
in regions with protracted development after exposure to ELA. This
observationis probably an adaptive response to adjust to a suboptimal
environment that resultsin ashortened window for plasticity-related
learning. Our findings suggest that the period before the age of 6 years
is critical, and they highlight the importance of early detection and
intervention to ameliorate the effects of ELA on later life outcomes.

Methods

Methods are described in detail in Supplementary Section 1.

Subjects

Participants were part of the GUSTO study***, a longitudinal, Sin-
gaporean community-based birth cohort. Neuroimaging data from
549 participants were included, with a total of 917 scans at ages of
4.5, 6 and 7.5 years. A subset of participants (N =354) had sufficient
datafor adversity score computation (Table 1). The GUSTO study was
approved by the National Healthcare Group Domain Specific Review
Board (D/2009/021 and B/2014/00411) and the SingHealth Central-
ized Institutional Review Board (D/2018/2767 and A/2019/2406). All
investigations were conducted according to the principles expressed
inthe Declaration of Helsinki. Written informed consent was obtained
from all guardians on behalf of the children enrolled in this study.
Participants received 150 SGD for each MRI session and an additional
120 SGD for questionnaires and laboratory-based tasks. The study
followed the STROBE (strengthening the reporting of observational
studies in epidemiology) reporting guidelines for cohort studies*.

Adversity score calculation

Adversity scores focused on prenatal exposures and were calculated
as described previously*. Adversity scores were based on seven
components, and participants scored 1 point for each component
if the respective criteria were met, resulting in a maximum score of

7 (Supplementary Section 1.1). On the basis of the ACE literature on
cumulative adversity exposure, scores were re-categorized into three
groups: no adversity (score 0,33%), low adversity (score1-2,57%) and
high adversity (>3,10%) (Supplementary Section 1.1d).

MRI acquisition and pre-processing

Neuroimaging data were acquired at two sites using 3 T MRI scan-
ners (Siemens). For each subject, diffusion-weighted, rs-fMRI and
T,-weighted images were collected.

Diffusion data were processed in FMRIB'’s Software Library (FSL
v.6.0.4)*. A brain mask was created from the b0 image, underwent
motion correction using the eddy tool (with an outlier threshold of
3s.d.) and was de-noised using a local principal component analysis
method®. The rs-fMRI data were processed with the default pre-pro-
cessing and de-noising pipelines using the functional connectivity
toolbox Conn (v.20b)*° as described previously” (Supplementary
Section1.2).

Regions of interest and connectivity matrices

The regions of interest (ROIs) were 114 cortical regions® that were
assigned to the seven functional networks identified by Yeo and co-
workers®. For each scan, functional connectivity matrices were com-
puted by measuring the bivariate correlation coefficients of the BOLD
(blood oxygenation level-dependent) time series between each seed
and target ROIs through a hemodynamic response factor-weighted
general linear model. Structural connectivity matrices were computed
by calculating streamline densities between each seed and target ROIs
derived from probabilistic tractography using FSL's BEDPOSTX and
PROBTRACKX tools****,

Deriving structure-function coupling

The SC-FC was calculated as described in Baum et al.”>, where the
Spearman correlation between non-zero structural and functional con-
nectivity values was obtained for each region. Whole-cortex SC-FC was
calculated by averaging values across all 114 regions. Network-specific
coupling was calculated by averaging values across regions assigned
to anetwork. As the first two time points (that is, ages 4.5and 6 years)
were collected at site1, while the age 7.5 years data were collected at site
2,eachregion was harmonized across site using longitudinal ComBat
(v.0.0.0.90)* (Supplementary Section 7).

Epigenetic clock

Epigenetic age was used asavalidation measure of development. Blood
was collected from participants at age 6 years, and was processed to
obtain the buffy coat layer for DNA extraction. DNA methylation was
profiled using an Infinium MethylationEPIC BeadChip array following
thestandard protocol™. Wu's epigenetic clock®*** and age acceleration
(adjusted for cell counts, ageAcc3) were computed using the DNAmAge
function from the methylclock package (v.0.99.25)*. The Wu clock was
chosen as it was trained on both pediatric data and blood samples.

Child behavior outcomes

The Child Behavior Checklist (CBCL)*°is used to detect behavioral and
emotional problems in children. The CBCL was administered at age 7
years, and is a maternal-reported questionnaire that categorizes 118
items into internalizing and externalizing behaviors®. The CBCL sub-
scales showed very good reliability inour cohort (Cronbach’s a = 0.855
for the internalizing subscale; Cronbach’s a = 0.888 for the external-
izing subscale). Additional dimensions of psychopathology in relation
to ELA are described in Supplementary Section 5.

Statistical analysis

Allstatistical analyses were performed in R (v.4.04)%. Sex was included
as a covariate for all models. The alpha level was set at P < 0.05 (two-
tailed unless stated otherwise).
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Trajectory analysis. GAMs were used to model whole-cortex SC-FC
(outcome) over the three time points (age range, 4.4-8.0 years) using
the mgcv package (v.1.8-39)%. To model possible non-linear trajecto-
ries, asmoothing function f was applied to the age (predictor), where
the e.d.f. statistic reflects the degree of non-linearity of a curve®. To
account for longitudinal data, we also included asmoothing function
f, equivalent to adding a random effect, for each subject®:

SC—FC = f(age) + f(subject) + sex+ € .

Tomodel the SC-FC trajectories stratified by adversity groups, a
second GAM was run with individual trajectories estimated for each
adversity group:

SC—FC = adversity + f(age, by = adversity) + f(subject) + sex+ € .

Comparing adversity trajectories. Adversity trajectories were com-
pared visually with difference curves and statistically with LME models.
Difference curves were computed using the gratia package (v.0.7.2)%
to assess differences between each pair of adversity trajectories (for
example, no adversity minus low adversity). Trajectories are signifi-
cantly differentifthe confidence interval of the difference curve does
notinclude zero.

LME models were performed with the nime package (v.3.1-160) and
were used toassess whether or not the changein SC-FCbetweenages 4.5
and 6 years differed significantly between adversity groups (reference:
high adversity), thatis, a significant interaction between the adversity
group and the time point®. Given our hypothesis of accelerated develop-
ment, one-tailed Pvalues were reported for interaction terms.

Validation of accelerated development. Regression analysis was
used to compare whether or not epigenetic age acceleration was sig-
nificantly different between the adversity groups, with high adversity
as the reference group. The first three principle components of the
genotyped autosomal single nucleotide polymorphisms were used
as co-variates to adjust for population stratification as typically per-
formed in analyses involving genetic datasets®®,

Associations with behavioral outcomes. Regression models were
used to explore whether or not whole-cortex SC-FC modulated the
effects of adversity scores on behavioral outcomes. Separate models
wererun foreach measure. Simple slope analyses were conducted using
theinteractions package (v.1.1.5)* to analyse the post-hoc differences
iftheinteraction was significant. Elastic net regression was performed,
using the caret (v6.0-92) and glmnet (v4.1-2) packages’™”", to explore
network-specific modulators of behavioral outcomes. Predictors
included adversity scores, seven functional-network-specific SC-FC
measures and seven interaction terms (adversity scores x network-
specific SC-FC).

Power analysis. The current study is part of an ongoing birth cohort;
study objectives are not a primary outcome of the original cohort
recruitment. Furthermore, given the longitudinal follow-up involved,
the data in our study (especially the first time point of age 4.5 years)
were collected several years before our study conception. Therefore,
a power analysis was not conducted for this study as it has been sug-
gested that post-hoc power analyses may not be very informative’.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
The GUSTO data are not deposited into a public repository due to
multi-site partnership agreements and conditions for Internal Review

Board approval. GUSTO data are routinely made available through
submission and approval from the cohort executive committee of a
data access form. Details may be obtained from the corresponding
author uponreasonable request.

Code availability

No new algorithms were written for this study. Study analyses were
carried out in R using published R packages. The R code is available
fromthe corresponding author upon reasonable request.
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Inclusion Criteria
Women >= age 18 years

L GUSTO Recruited: N = 1465 |

Pregnant 1
Residing in Singapore for next 5 { GUSTO fulfilled criteria: N = 1257
years -
| ( Exclusion (N):
Neuroimaging data not collected during
l childhood = 708

Neuroimaging Data: - R

. e N =549 (Age Range: 4.4 to 8 years)
Resting state and Diffusion data Female = 51%, Male = 49% 1. Analysis — SC-FC trajectory (GAMs)
collected at least once (4.5, 6, ’

7.5 years) L 917 Scans 5

Exclusion (N):
Data not collected for at least 1 adversity
exposure category = 195

2. Analysis — SC-FC trajectories stratified by
N = 354 (Age Range: 4.4 to 8 years) —)Ladversit roup (GAMs

Female = 49.7%, Male = 50.3% 3. Analysis — Age:Adversity interaction

Adversity Scores:
Neuroimaging data collected +

Adversity Score computed - 619 Scans - between age 4.5 and 6 (LME)
N =251, 343 Scans
| ( Exclusion (N):
Behavioral outcomes at age 7 not collected = 33
1 Resting state and/or diffusion data not collected
) L at age 4.5 = 201
Behavioral Outcomes: — Analysis — Modulation
Completed CBCL, BPI or IT at N =120 (Age Range: 7 to 7.5 years) SC-FC at 4.5 + Adversity score + CBCL = 117
age 7 Female = 52.5%, Male = 47.5% SC-FC at 4.5 + Adversity score + BPI = 104
SC-FC derived at age 4.5 = ” SC-FC at 4.5 + Adversity score + IT = 106
Extended Data Fig. 1| Study Flowchart. The GUSTO cohort involves multiple they had data collected at at least one time-point. Finally, child behaviour data
waves of data collection from mother-child dyads. Pregnant women were was assessed at age 7 years. Sample size for each analysis was based on complete
recruited during their first trimester, during which demographic and maternal available data at that stage. Note: SC-FC, Structure-function coupling; GAM,
measures were collected. Neuroimaging data was collected at three study time- Generalized Additive Model; LME, Linear Mixed Effects model; CBCL, Child
points during childhood (age 4.5, 6, 7.5 years) - participants were included if Behavior Checklist; BPI, Berkeley Puppet Interview; IT, Impossible Tangram.
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Extended Data Fig. 2| Network-specific SC-FC between age 4.5 and 6 for
remaining networks. Accelerated decrease in SC-FC between age 4.5and 6
inthe high adversity group (N =25, total of 34 scans) relative to low adversity

group (N =143, total of 197 scans) was observed for the Default Mode Network,

Salience Network, and the Limbic Network. Results were estimated by LME

models and p-values reported are one-tailed. Boxplots are displayed as Tukey’s

five number summary (the bold horizontal line denotes the median; lower and
upper hinges denote the first and third quartiles, respectively; whiskers extend to
the furthest data point within 1.5*IQR; dots exceeding whiskers denote outliers).
Brain network images were made using the ggsegYeo02011 package” (https://doi.
org/10.5281/zenod0.4896734).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Neuroimaging data was processed with established pipelines - the CONN toolbox v20b (dependencies: SPM12) and the FMRIB Software
Library (FSL) v6.0.4 (tools: Brain Extraction Tool [bet], TOPUP, eddy, eddy_quad, BEDPOSTX, PROBTRACKYX, flirt, fnirt)
T1 images were processed using the FreeSurfer cortical reconstruction pipeline v6: recon-all

Data analysis Analysis was performed in R v4.04. R packages used are: mgcv v1.8-39; gratia v0.7.2; nime v3.1-160; interactions v1.1.5; caret v6.0-92; glmnet
v4.1-2; methylclock v0.99.25; longCombat v0.0.0.90; ggsegYeo2011 v1.0.2.002

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data that support the findings of this study are not publicly available. Restrictions apply to the availability of these data, which were used under license for the
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current study. Data is, however, available from the corresponding author upon reasonable request and with the permission of the Singapore Institute for Clinical
Sciences (SICS), A*STAR Research Entities (ARES).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was determined at birth. Findings apply to both sexes with sex included as a co-variate in all models. Sex-specific analyses
were not performed due to small sample sizes in the high adversity group - this has been highlighted as a limitation of the
study. The proportion of males and females were approximately equal in all datasets (Neuroimaging: Female = 51%, Male =
49%; Behavioral outcomes: Female = 52.5%, Male = 47.5%).

Reporting on race, ethnicityl or | Ethnicity of the cohort was reported in the demographics table, but not included in the analysis. Ethnicity categories followed
other socially relevant the major ethnic groups in Singapore (Chinese, Indian, Malay). Recruited participants (pregnant mothers) had homogeneous
groupings parental ethnic background. To examine the potential confounding effect of ethnicity, ethnicity was added as a co-variate in
our analysis and findings remained unchanged (reported in Supplement S3b).

Population characteristics Study data is from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort. Participants were
recruited from two of Singapore's major public maternity units during pregnancy, and represent the general Singaporean
population. The study population of the current study are offspring of the recruited participants (pregnant mothers).
Neuroimaging data was collected over three study time-points: 4.5 years (range: 4.4 to 4.9); 6 years (5.8 to 6.6); 7.5 years
(7.2 to 8.0). Behavioral outcomes were collected at age 7 years (range: 7.0 to 7.5).

Recruitment The GUSTO study recruited pregnant women aged 18 years and above, attending their first trimester antenatal dating
ultrasound scan clinic at Singapore’s two major public maternity units, National University Hospital (NUH) and KK Women's
and Children's Hospital (KKH), between June 2009 and September 2010. Participants were (i) Singapore citizens or
permanent residents who were of (ii) Chinese, Malay or Indian ethnicity with homogeneous parental ethnic background, who
(iii) had the intention of eventually delivering in NUH or KKH and (iv) intended to reside in Singapore for the next 5 years.
Furthermore, (v) only women who agreed to donate birth tissues (including cord, placenta and cord blood) at delivery were
included. Mothers receiving chemotherapy, psychotropic drugs or who had type | diabetes mellitus were excluded. It is
possible that participants who agree to participate in the GUSTO study may be more conscious of scientific research.

Ethics oversight The GUSTO study was approved by the National Healthcare Group Domain Specific Review Board (D/2009/021 and
B/2014/00411) and the SingHealth Centralized Institutional Review Board (D/2018/2767 and A/2019/2406).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For the current study, data has already been collected as it involves multiple time-points (from 4.5 years to 7.5 years). Therefore, sample size
was determined by the data available. The total number of scans over the three time-points (N = 917) is one of the largest for pediatric
neuroimaging cohorts, and equivalent to other published neuroimaging cohorts (e.g., PING) covering larger age ranges.

Data exclusions  Participants were excluded from analyses if there were incomplete/missing data, preventing the calculation of adversity scores and
neuroimaging measures. Instead of data exclusions, a sensitivity analysis was conducted with exclusions based on neuroimaging motion
criteria - main findings remain unchanged.

Replication Findings were validated in two ways. First, the finding of accelerated development in the high relative to low adversity groups was validated
with a different modality (DNA-derived biological age). Participants were included in this analysis as long as they had biological age data
available at age 6, irrespective of whether they were included in the main analyses. Second, we compiled a small independent dataset of
children with neuroimaging data, but incomplete adversity data (missing one category - the family assessment device). From this dataset, we
included a small number of participants with adversity scores of 1 (representing the low adversity group), and adversity scores > 3
(representing the high adversity group) (n = 30 scans over two time-points). Numbers were small but we observed a similar trend to our main
findings.

Randomization  Adversity groups were determined based on a cumulative adversity score (How many adversity categories a participant met criteria for). The
cut-off for the high adversity group (>= 3) was pre-determined based on the Adverse Child Experience literature - where a cut-off of 3or 4 is
typically recommended.

Blinding Adversity groups were assigned after data collection and processing. Thus, investigators were blinded during the data collection and
processing stages.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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Materials & experimental systems

Methods

Involved in the study
|:| Antibodies
|:| Eukaryotic cell lines

|:| Palaeontology and archaeology

n/a | Involved in the study
|:| ChiIP-seq
|Z |:| Flow cytometry

|:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data
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Magnetic resonance imaging

Experimental design
Design type Resting state
Design specifications One run for each imaging modality

Behavioral performance measures  NA

Acquisition
Imaging type(s) Functional, Diffusion
Field strength 3T

Sequence & imaging parameters Resting State Site 1: gradient-echo planar imaging sequence sensitive to blood oxygenation level-dependent (BOLD)
contrast; repetition time = 2660ms, echo time = 27ms, flip angle = 90 degrees, 3mm isotropic voxels, matrix size = 64 x
64 x 48, field of view = 192mm

Resting State Site 2: gradient-echo planar imaging sequence sensitive to blood oxygenation level-dependent (BOLD)
contrast; repetition time = 2620ms, echo time = 27ms, flip angle = 90 degrees, 3mm isotropic voxels, matrix size = 64 x
64 x 48, field of view = 192mm

DTl site 1: single shot EPI sequence; repetition time = 8200ms, echo time = 85ms, 2mm isotropic voxels, matrix size = 96
x 96 x 69, field of view = 192mm

DTl site 2: single shot EPI sequence; repetition time = 3572ms, echo time = 91.2ms, 2mm isotropic voxels, matrix size =
96 x 96 x 69, field of view = 192mm

Area of acquisition Whole brain scan

Diffusion MRI Used

Parameters Site 1: 30 directions, b value = 1000 s/mm2, single-shell; Site 2: 30 directions per shell, b value = 1000, 2000, multi-shell. To
harmonize with site 1, after cleaning and noise correction, only the b=0 and b=1000 diffusion gradients were extracted for use in
probabilistic tractography

|:| Not used

Preprocessing

Preprocessing software Resting State: the CONN toolbox v20b - default preprocessing and denoising pipelines; Scan volumes with framewise
displacement above 0.9mm or global BOLD signal changes above 5 standard deviations were identified as potential outliers.
Both functional and anatomical data were resampled using 4th order spline interpolation. Functional data was smoothed

using spatial convolution with a Gaussian kernel of 6mm full width half maximum (FWHM)
DTI: Processed in FMRIB Software Library (FSL) v6.0.4

Normalization ROIs from the yeo114 parcellation were normalized into subject T1 space using both linear and non-linear registration (FSLs

FLIRT and FNIRT tools) before being transformed into subject specific diffusion space using FLIRT.




Normalization template Functional and anatomical data were normalized into standard MNI space and segmented into grey matter, white matter,
and CSF tissue classes using SPM12 unified segmentation and normalization procedure

Noise and artifact removal Resting state: BOLD signal variance over time explained by nuisance variables was removed from the data using Ordinary
Least Squares regression. BOLD time series were band-pass filtered to preserve only frequencies between 0.008 and 0.09 Hz.

DTI: All images were corrected for eddy currents which include susceptibility-by-motion interactions. Outlier slices are
replaced with a Gaussian Process prediction with a set threshold of 3 standard deviations. The corrected data is then skull-

stripped once more to provide a brain-tissue-only image which is further de-noised using a local PCA method.

Volume censoring Resting state: First 4 volumes excluded to allow for magnetic field saturation.

Statistical modeling & inference

Model type and settings Statistical models performed in R - generalized additive models and linear mixed effects models

Effect(s) tested Predictor - ScanAge by adversity groups (No, Low, High)
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Specify type of analysis: [ | whole brain || ROI-based Both

114-region cortical atlas corresponding to 7 functional networks identified by Yeo et al. (Neuroimage.
Anatomical location(s) 2015;111:147-58), averaged over 114 regions for whole brain estimate, and over regions within a
network for network estimate.

Statistic type for inference NA

(See Eklund et al. 2016)
Correction NA

Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity

IZ |:| Graph analysis

IZ |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity matrices were computed by measuring the bivariate correlation coefficients of the
BOLD time series between each seed and target ROIls through a haemodynamic response factor (hrf)-
weighted general linear model. Structural connectivity matrices were computed by calculating streamline
densities between each seed and target ROls derived from probabilistic tractography using FSL’s BEDPOSTX
and PROBTRACKX tools
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